LLVM OpenMP* Runtime Library
z_Linux_util.cpp
1 /*
2  * z_Linux_util.cpp -- platform specific routines.
3  */
4 
5 //===----------------------------------------------------------------------===//
6 //
7 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8 // See https://llvm.org/LICENSE.txt for license information.
9 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "kmp.h"
14 #include "kmp_affinity.h"
15 #include "kmp_i18n.h"
16 #include "kmp_io.h"
17 #include "kmp_itt.h"
18 #include "kmp_lock.h"
19 #include "kmp_stats.h"
20 #include "kmp_str.h"
21 #include "kmp_wait_release.h"
22 #include "kmp_wrapper_getpid.h"
23 
24 #if !KMP_OS_DRAGONFLY && !KMP_OS_FREEBSD && !KMP_OS_NETBSD && !KMP_OS_OPENBSD
25 #include <alloca.h>
26 #endif
27 #include <math.h> // HUGE_VAL.
28 #if KMP_OS_LINUX
29 #include <semaphore.h>
30 #endif // KMP_OS_LINUX
31 #include <sys/resource.h>
32 #include <sys/syscall.h>
33 #include <sys/time.h>
34 #include <sys/times.h>
35 #include <unistd.h>
36 
37 #if KMP_OS_LINUX
38 #include <sys/sysinfo.h>
39 #if KMP_USE_FUTEX
40 // We should really include <futex.h>, but that causes compatibility problems on
41 // different Linux* OS distributions that either require that you include (or
42 // break when you try to include) <pci/types.h>. Since all we need is the two
43 // macros below (which are part of the kernel ABI, so can't change) we just
44 // define the constants here and don't include <futex.h>
45 #ifndef FUTEX_WAIT
46 #define FUTEX_WAIT 0
47 #endif
48 #ifndef FUTEX_WAKE
49 #define FUTEX_WAKE 1
50 #endif
51 #endif
52 #elif KMP_OS_DARWIN
53 #include <mach/mach.h>
54 #include <sys/sysctl.h>
55 #elif KMP_OS_DRAGONFLY || KMP_OS_FREEBSD
56 #include <sys/types.h>
57 #include <sys/sysctl.h>
58 #include <sys/user.h>
59 #include <pthread_np.h>
60 #elif KMP_OS_NETBSD || KMP_OS_OPENBSD
61 #include <sys/types.h>
62 #include <sys/sysctl.h>
63 #endif
64 
65 #include <ctype.h>
66 #include <dirent.h>
67 #include <fcntl.h>
68 
69 struct kmp_sys_timer {
70  struct timespec start;
71 };
72 
73 // Convert timespec to nanoseconds.
74 #define TS2NS(timespec) \
75  (((timespec).tv_sec * (long int)1e9) + (timespec).tv_nsec)
76 
77 static struct kmp_sys_timer __kmp_sys_timer_data;
78 
79 #if KMP_HANDLE_SIGNALS
80 typedef void (*sig_func_t)(int);
81 STATIC_EFI2_WORKAROUND struct sigaction __kmp_sighldrs[NSIG];
82 static sigset_t __kmp_sigset;
83 #endif
84 
85 static int __kmp_init_runtime = FALSE;
86 
87 static int __kmp_fork_count = 0;
88 
89 static pthread_condattr_t __kmp_suspend_cond_attr;
90 static pthread_mutexattr_t __kmp_suspend_mutex_attr;
91 
92 static kmp_cond_align_t __kmp_wait_cv;
93 static kmp_mutex_align_t __kmp_wait_mx;
94 
95 kmp_uint64 __kmp_ticks_per_msec = 1000000;
96 
97 #ifdef DEBUG_SUSPEND
98 static void __kmp_print_cond(char *buffer, kmp_cond_align_t *cond) {
99  KMP_SNPRINTF(buffer, 128, "(cond (lock (%ld, %d)), (descr (%p)))",
100  cond->c_cond.__c_lock.__status, cond->c_cond.__c_lock.__spinlock,
101  cond->c_cond.__c_waiting);
102 }
103 #endif
104 
105 #if ((KMP_OS_LINUX || KMP_OS_FREEBSD) && KMP_AFFINITY_SUPPORTED)
106 
107 /* Affinity support */
108 
109 void __kmp_affinity_bind_thread(int which) {
110  KMP_ASSERT2(KMP_AFFINITY_CAPABLE(),
111  "Illegal set affinity operation when not capable");
112 
113  kmp_affin_mask_t *mask;
114  KMP_CPU_ALLOC_ON_STACK(mask);
115  KMP_CPU_ZERO(mask);
116  KMP_CPU_SET(which, mask);
117  __kmp_set_system_affinity(mask, TRUE);
118  KMP_CPU_FREE_FROM_STACK(mask);
119 }
120 
121 /* Determine if we can access affinity functionality on this version of
122  * Linux* OS by checking __NR_sched_{get,set}affinity system calls, and set
123  * __kmp_affin_mask_size to the appropriate value (0 means not capable). */
124 void __kmp_affinity_determine_capable(const char *env_var) {
125  // Check and see if the OS supports thread affinity.
126 
127 #if KMP_OS_LINUX
128 #define KMP_CPU_SET_SIZE_LIMIT (1024 * 1024)
129 #define KMP_CPU_SET_TRY_SIZE CACHE_LINE
130 #elif KMP_OS_FREEBSD
131 #define KMP_CPU_SET_SIZE_LIMIT (sizeof(cpuset_t))
132 #endif
133 
134 #if KMP_OS_LINUX
135  long gCode;
136  unsigned char *buf;
137  buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT);
138 
139  // If the syscall returns a suggestion for the size,
140  // then we don't have to search for an appropriate size.
141  gCode = syscall(__NR_sched_getaffinity, 0, KMP_CPU_SET_TRY_SIZE, buf);
142  KA_TRACE(30, ("__kmp_affinity_determine_capable: "
143  "initial getaffinity call returned %ld errno = %d\n",
144  gCode, errno));
145 
146  if (gCode < 0 && errno != EINVAL) {
147  // System call not supported
148  if (__kmp_affinity_verbose ||
149  (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) &&
150  (__kmp_affinity_type != affinity_default) &&
151  (__kmp_affinity_type != affinity_disabled))) {
152  int error = errno;
153  kmp_msg_t err_code = KMP_ERR(error);
154  __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var),
155  err_code, __kmp_msg_null);
156  if (__kmp_generate_warnings == kmp_warnings_off) {
157  __kmp_str_free(&err_code.str);
158  }
159  }
160  KMP_AFFINITY_DISABLE();
161  KMP_INTERNAL_FREE(buf);
162  return;
163  } else if (gCode > 0) {
164  // The optimal situation: the OS returns the size of the buffer it expects.
165  KMP_AFFINITY_ENABLE(gCode);
166  KA_TRACE(10, ("__kmp_affinity_determine_capable: "
167  "affinity supported (mask size %d)\n",
168  (int)__kmp_affin_mask_size));
169  KMP_INTERNAL_FREE(buf);
170  return;
171  }
172 
173  // Call the getaffinity system call repeatedly with increasing set sizes
174  // until we succeed, or reach an upper bound on the search.
175  KA_TRACE(30, ("__kmp_affinity_determine_capable: "
176  "searching for proper set size\n"));
177  int size;
178  for (size = 1; size <= KMP_CPU_SET_SIZE_LIMIT; size *= 2) {
179  gCode = syscall(__NR_sched_getaffinity, 0, size, buf);
180  KA_TRACE(30, ("__kmp_affinity_determine_capable: "
181  "getaffinity for mask size %ld returned %ld errno = %d\n",
182  size, gCode, errno));
183 
184  if (gCode < 0) {
185  if (errno == ENOSYS) {
186  // We shouldn't get here
187  KA_TRACE(30, ("__kmp_affinity_determine_capable: "
188  "inconsistent OS call behavior: errno == ENOSYS for mask "
189  "size %d\n",
190  size));
191  if (__kmp_affinity_verbose ||
192  (__kmp_affinity_warnings &&
193  (__kmp_affinity_type != affinity_none) &&
194  (__kmp_affinity_type != affinity_default) &&
195  (__kmp_affinity_type != affinity_disabled))) {
196  int error = errno;
197  kmp_msg_t err_code = KMP_ERR(error);
198  __kmp_msg(kmp_ms_warning, KMP_MSG(GetAffSysCallNotSupported, env_var),
199  err_code, __kmp_msg_null);
200  if (__kmp_generate_warnings == kmp_warnings_off) {
201  __kmp_str_free(&err_code.str);
202  }
203  }
204  KMP_AFFINITY_DISABLE();
205  KMP_INTERNAL_FREE(buf);
206  return;
207  }
208  continue;
209  }
210 
211  KMP_AFFINITY_ENABLE(gCode);
212  KA_TRACE(10, ("__kmp_affinity_determine_capable: "
213  "affinity supported (mask size %d)\n",
214  (int)__kmp_affin_mask_size));
215  KMP_INTERNAL_FREE(buf);
216  return;
217  }
218 #elif KMP_OS_FREEBSD
219  long gCode;
220  unsigned char *buf;
221  buf = (unsigned char *)KMP_INTERNAL_MALLOC(KMP_CPU_SET_SIZE_LIMIT);
222  gCode = pthread_getaffinity_np(pthread_self(), KMP_CPU_SET_SIZE_LIMIT,
223  reinterpret_cast<cpuset_t *>(buf));
224  KA_TRACE(30, ("__kmp_affinity_determine_capable: "
225  "initial getaffinity call returned %d errno = %d\n",
226  gCode, errno));
227  if (gCode == 0) {
228  KMP_AFFINITY_ENABLE(KMP_CPU_SET_SIZE_LIMIT);
229  KA_TRACE(10, ("__kmp_affinity_determine_capable: "
230  "affinity supported (mask size %d)\n",
231  (int)__kmp_affin_mask_size));
232  KMP_INTERNAL_FREE(buf);
233  return;
234  }
235 #endif
236  KMP_INTERNAL_FREE(buf);
237 
238  // Affinity is not supported
239  KMP_AFFINITY_DISABLE();
240  KA_TRACE(10, ("__kmp_affinity_determine_capable: "
241  "cannot determine mask size - affinity not supported\n"));
242  if (__kmp_affinity_verbose ||
243  (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none) &&
244  (__kmp_affinity_type != affinity_default) &&
245  (__kmp_affinity_type != affinity_disabled))) {
246  KMP_WARNING(AffCantGetMaskSize, env_var);
247  }
248 }
249 
250 #endif // KMP_OS_LINUX && KMP_AFFINITY_SUPPORTED
251 
252 #if KMP_USE_FUTEX
253 
254 int __kmp_futex_determine_capable() {
255  int loc = 0;
256  long rc = syscall(__NR_futex, &loc, FUTEX_WAKE, 1, NULL, NULL, 0);
257  int retval = (rc == 0) || (errno != ENOSYS);
258 
259  KA_TRACE(10,
260  ("__kmp_futex_determine_capable: rc = %d errno = %d\n", rc, errno));
261  KA_TRACE(10, ("__kmp_futex_determine_capable: futex syscall%s supported\n",
262  retval ? "" : " not"));
263 
264  return retval;
265 }
266 
267 #endif // KMP_USE_FUTEX
268 
269 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (!KMP_ASM_INTRINS)
270 /* Only 32-bit "add-exchange" instruction on IA-32 architecture causes us to
271  use compare_and_store for these routines */
272 
273 kmp_int8 __kmp_test_then_or8(volatile kmp_int8 *p, kmp_int8 d) {
274  kmp_int8 old_value, new_value;
275 
276  old_value = TCR_1(*p);
277  new_value = old_value | d;
278 
279  while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
280  KMP_CPU_PAUSE();
281  old_value = TCR_1(*p);
282  new_value = old_value | d;
283  }
284  return old_value;
285 }
286 
287 kmp_int8 __kmp_test_then_and8(volatile kmp_int8 *p, kmp_int8 d) {
288  kmp_int8 old_value, new_value;
289 
290  old_value = TCR_1(*p);
291  new_value = old_value & d;
292 
293  while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
294  KMP_CPU_PAUSE();
295  old_value = TCR_1(*p);
296  new_value = old_value & d;
297  }
298  return old_value;
299 }
300 
301 kmp_uint32 __kmp_test_then_or32(volatile kmp_uint32 *p, kmp_uint32 d) {
302  kmp_uint32 old_value, new_value;
303 
304  old_value = TCR_4(*p);
305  new_value = old_value | d;
306 
307  while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) {
308  KMP_CPU_PAUSE();
309  old_value = TCR_4(*p);
310  new_value = old_value | d;
311  }
312  return old_value;
313 }
314 
315 kmp_uint32 __kmp_test_then_and32(volatile kmp_uint32 *p, kmp_uint32 d) {
316  kmp_uint32 old_value, new_value;
317 
318  old_value = TCR_4(*p);
319  new_value = old_value & d;
320 
321  while (!KMP_COMPARE_AND_STORE_REL32(p, old_value, new_value)) {
322  KMP_CPU_PAUSE();
323  old_value = TCR_4(*p);
324  new_value = old_value & d;
325  }
326  return old_value;
327 }
328 
329 #if KMP_ARCH_X86
330 kmp_int8 __kmp_test_then_add8(volatile kmp_int8 *p, kmp_int8 d) {
331  kmp_int8 old_value, new_value;
332 
333  old_value = TCR_1(*p);
334  new_value = old_value + d;
335 
336  while (!KMP_COMPARE_AND_STORE_REL8(p, old_value, new_value)) {
337  KMP_CPU_PAUSE();
338  old_value = TCR_1(*p);
339  new_value = old_value + d;
340  }
341  return old_value;
342 }
343 
344 kmp_int64 __kmp_test_then_add64(volatile kmp_int64 *p, kmp_int64 d) {
345  kmp_int64 old_value, new_value;
346 
347  old_value = TCR_8(*p);
348  new_value = old_value + d;
349 
350  while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
351  KMP_CPU_PAUSE();
352  old_value = TCR_8(*p);
353  new_value = old_value + d;
354  }
355  return old_value;
356 }
357 #endif /* KMP_ARCH_X86 */
358 
359 kmp_uint64 __kmp_test_then_or64(volatile kmp_uint64 *p, kmp_uint64 d) {
360  kmp_uint64 old_value, new_value;
361 
362  old_value = TCR_8(*p);
363  new_value = old_value | d;
364  while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
365  KMP_CPU_PAUSE();
366  old_value = TCR_8(*p);
367  new_value = old_value | d;
368  }
369  return old_value;
370 }
371 
372 kmp_uint64 __kmp_test_then_and64(volatile kmp_uint64 *p, kmp_uint64 d) {
373  kmp_uint64 old_value, new_value;
374 
375  old_value = TCR_8(*p);
376  new_value = old_value & d;
377  while (!KMP_COMPARE_AND_STORE_REL64(p, old_value, new_value)) {
378  KMP_CPU_PAUSE();
379  old_value = TCR_8(*p);
380  new_value = old_value & d;
381  }
382  return old_value;
383 }
384 
385 #endif /* (KMP_ARCH_X86 || KMP_ARCH_X86_64) && (! KMP_ASM_INTRINS) */
386 
387 void __kmp_terminate_thread(int gtid) {
388  int status;
389  kmp_info_t *th = __kmp_threads[gtid];
390 
391  if (!th)
392  return;
393 
394 #ifdef KMP_CANCEL_THREADS
395  KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid));
396  status = pthread_cancel(th->th.th_info.ds.ds_thread);
397  if (status != 0 && status != ESRCH) {
398  __kmp_fatal(KMP_MSG(CantTerminateWorkerThread), KMP_ERR(status),
399  __kmp_msg_null);
400  }
401 #endif
402  KMP_YIELD(TRUE);
403 } //
404 
405 /* Set thread stack info according to values returned by pthread_getattr_np().
406  If values are unreasonable, assume call failed and use incremental stack
407  refinement method instead. Returns TRUE if the stack parameters could be
408  determined exactly, FALSE if incremental refinement is necessary. */
409 static kmp_int32 __kmp_set_stack_info(int gtid, kmp_info_t *th) {
410  int stack_data;
411 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \
412  KMP_OS_HURD
413  pthread_attr_t attr;
414  int status;
415  size_t size = 0;
416  void *addr = 0;
417 
418  /* Always do incremental stack refinement for ubermaster threads since the
419  initial thread stack range can be reduced by sibling thread creation so
420  pthread_attr_getstack may cause thread gtid aliasing */
421  if (!KMP_UBER_GTID(gtid)) {
422 
423  /* Fetch the real thread attributes */
424  status = pthread_attr_init(&attr);
425  KMP_CHECK_SYSFAIL("pthread_attr_init", status);
426 #if KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD
427  status = pthread_attr_get_np(pthread_self(), &attr);
428  KMP_CHECK_SYSFAIL("pthread_attr_get_np", status);
429 #else
430  status = pthread_getattr_np(pthread_self(), &attr);
431  KMP_CHECK_SYSFAIL("pthread_getattr_np", status);
432 #endif
433  status = pthread_attr_getstack(&attr, &addr, &size);
434  KMP_CHECK_SYSFAIL("pthread_attr_getstack", status);
435  KA_TRACE(60,
436  ("__kmp_set_stack_info: T#%d pthread_attr_getstack returned size:"
437  " %lu, low addr: %p\n",
438  gtid, size, addr));
439  status = pthread_attr_destroy(&attr);
440  KMP_CHECK_SYSFAIL("pthread_attr_destroy", status);
441  }
442 
443  if (size != 0 && addr != 0) { // was stack parameter determination successful?
444  /* Store the correct base and size */
445  TCW_PTR(th->th.th_info.ds.ds_stackbase, (((char *)addr) + size));
446  TCW_PTR(th->th.th_info.ds.ds_stacksize, size);
447  TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE);
448  return TRUE;
449  }
450 #endif /* KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD \
451  || KMP_OS_HURD */
452  /* Use incremental refinement starting from initial conservative estimate */
453  TCW_PTR(th->th.th_info.ds.ds_stacksize, 0);
454  TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data);
455  TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE);
456  return FALSE;
457 }
458 
459 static void *__kmp_launch_worker(void *thr) {
460  int status, old_type, old_state;
461 #ifdef KMP_BLOCK_SIGNALS
462  sigset_t new_set, old_set;
463 #endif /* KMP_BLOCK_SIGNALS */
464  void *exit_val;
465 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \
466  KMP_OS_OPENBSD || KMP_OS_HURD
467  void *volatile padding = 0;
468 #endif
469  int gtid;
470 
471  gtid = ((kmp_info_t *)thr)->th.th_info.ds.ds_gtid;
472  __kmp_gtid_set_specific(gtid);
473 #ifdef KMP_TDATA_GTID
474  __kmp_gtid = gtid;
475 #endif
476 #if KMP_STATS_ENABLED
477  // set thread local index to point to thread-specific stats
478  __kmp_stats_thread_ptr = ((kmp_info_t *)thr)->th.th_stats;
479  __kmp_stats_thread_ptr->startLife();
480  KMP_SET_THREAD_STATE(IDLE);
481  KMP_INIT_PARTITIONED_TIMERS(OMP_idle);
482 #endif
483 
484 #if USE_ITT_BUILD
485  __kmp_itt_thread_name(gtid);
486 #endif /* USE_ITT_BUILD */
487 
488 #if KMP_AFFINITY_SUPPORTED
489  __kmp_affinity_set_init_mask(gtid, FALSE);
490 #endif
491 
492 #ifdef KMP_CANCEL_THREADS
493  status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type);
494  KMP_CHECK_SYSFAIL("pthread_setcanceltype", status);
495  // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads?
496  status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state);
497  KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
498 #endif
499 
500 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
501  // Set FP control regs to be a copy of the parallel initialization thread's.
502  __kmp_clear_x87_fpu_status_word();
503  __kmp_load_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word);
504  __kmp_load_mxcsr(&__kmp_init_mxcsr);
505 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
506 
507 #ifdef KMP_BLOCK_SIGNALS
508  status = sigfillset(&new_set);
509  KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status);
510  status = pthread_sigmask(SIG_BLOCK, &new_set, &old_set);
511  KMP_CHECK_SYSFAIL("pthread_sigmask", status);
512 #endif /* KMP_BLOCK_SIGNALS */
513 
514 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \
515  KMP_OS_OPENBSD
516  if (__kmp_stkoffset > 0 && gtid > 0) {
517  padding = KMP_ALLOCA(gtid * __kmp_stkoffset);
518  (void)padding;
519  }
520 #endif
521 
522  KMP_MB();
523  __kmp_set_stack_info(gtid, (kmp_info_t *)thr);
524 
525  __kmp_check_stack_overlap((kmp_info_t *)thr);
526 
527  exit_val = __kmp_launch_thread((kmp_info_t *)thr);
528 
529 #ifdef KMP_BLOCK_SIGNALS
530  status = pthread_sigmask(SIG_SETMASK, &old_set, NULL);
531  KMP_CHECK_SYSFAIL("pthread_sigmask", status);
532 #endif /* KMP_BLOCK_SIGNALS */
533 
534  return exit_val;
535 }
536 
537 #if KMP_USE_MONITOR
538 /* The monitor thread controls all of the threads in the complex */
539 
540 static void *__kmp_launch_monitor(void *thr) {
541  int status, old_type, old_state;
542 #ifdef KMP_BLOCK_SIGNALS
543  sigset_t new_set;
544 #endif /* KMP_BLOCK_SIGNALS */
545  struct timespec interval;
546 
547  KMP_MB(); /* Flush all pending memory write invalidates. */
548 
549  KA_TRACE(10, ("__kmp_launch_monitor: #1 launched\n"));
550 
551  /* register us as the monitor thread */
552  __kmp_gtid_set_specific(KMP_GTID_MONITOR);
553 #ifdef KMP_TDATA_GTID
554  __kmp_gtid = KMP_GTID_MONITOR;
555 #endif
556 
557  KMP_MB();
558 
559 #if USE_ITT_BUILD
560  // Instruct Intel(R) Threading Tools to ignore monitor thread.
561  __kmp_itt_thread_ignore();
562 #endif /* USE_ITT_BUILD */
563 
564  __kmp_set_stack_info(((kmp_info_t *)thr)->th.th_info.ds.ds_gtid,
565  (kmp_info_t *)thr);
566 
567  __kmp_check_stack_overlap((kmp_info_t *)thr);
568 
569 #ifdef KMP_CANCEL_THREADS
570  status = pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, &old_type);
571  KMP_CHECK_SYSFAIL("pthread_setcanceltype", status);
572  // josh todo: isn't PTHREAD_CANCEL_ENABLE default for newly-created threads?
573  status = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, &old_state);
574  KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
575 #endif
576 
577 #if KMP_REAL_TIME_FIX
578  // This is a potential fix which allows application with real-time scheduling
579  // policy work. However, decision about the fix is not made yet, so it is
580  // disabled by default.
581  { // Are program started with real-time scheduling policy?
582  int sched = sched_getscheduler(0);
583  if (sched == SCHED_FIFO || sched == SCHED_RR) {
584  // Yes, we are a part of real-time application. Try to increase the
585  // priority of the monitor.
586  struct sched_param param;
587  int max_priority = sched_get_priority_max(sched);
588  int rc;
589  KMP_WARNING(RealTimeSchedNotSupported);
590  sched_getparam(0, &param);
591  if (param.sched_priority < max_priority) {
592  param.sched_priority += 1;
593  rc = sched_setscheduler(0, sched, &param);
594  if (rc != 0) {
595  int error = errno;
596  kmp_msg_t err_code = KMP_ERR(error);
597  __kmp_msg(kmp_ms_warning, KMP_MSG(CantChangeMonitorPriority),
598  err_code, KMP_MSG(MonitorWillStarve), __kmp_msg_null);
599  if (__kmp_generate_warnings == kmp_warnings_off) {
600  __kmp_str_free(&err_code.str);
601  }
602  }
603  } else {
604  // We cannot abort here, because number of CPUs may be enough for all
605  // the threads, including the monitor thread, so application could
606  // potentially work...
607  __kmp_msg(kmp_ms_warning, KMP_MSG(RunningAtMaxPriority),
608  KMP_MSG(MonitorWillStarve), KMP_HNT(RunningAtMaxPriority),
609  __kmp_msg_null);
610  }
611  }
612  // AC: free thread that waits for monitor started
613  TCW_4(__kmp_global.g.g_time.dt.t_value, 0);
614  }
615 #endif // KMP_REAL_TIME_FIX
616 
617  KMP_MB(); /* Flush all pending memory write invalidates. */
618 
619  if (__kmp_monitor_wakeups == 1) {
620  interval.tv_sec = 1;
621  interval.tv_nsec = 0;
622  } else {
623  interval.tv_sec = 0;
624  interval.tv_nsec = (KMP_NSEC_PER_SEC / __kmp_monitor_wakeups);
625  }
626 
627  KA_TRACE(10, ("__kmp_launch_monitor: #2 monitor\n"));
628 
629  while (!TCR_4(__kmp_global.g.g_done)) {
630  struct timespec now;
631  struct timeval tval;
632 
633  /* This thread monitors the state of the system */
634 
635  KA_TRACE(15, ("__kmp_launch_monitor: update\n"));
636 
637  status = gettimeofday(&tval, NULL);
638  KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
639  TIMEVAL_TO_TIMESPEC(&tval, &now);
640 
641  now.tv_sec += interval.tv_sec;
642  now.tv_nsec += interval.tv_nsec;
643 
644  if (now.tv_nsec >= KMP_NSEC_PER_SEC) {
645  now.tv_sec += 1;
646  now.tv_nsec -= KMP_NSEC_PER_SEC;
647  }
648 
649  status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex);
650  KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
651  // AC: the monitor should not fall asleep if g_done has been set
652  if (!TCR_4(__kmp_global.g.g_done)) { // check once more under mutex
653  status = pthread_cond_timedwait(&__kmp_wait_cv.c_cond,
654  &__kmp_wait_mx.m_mutex, &now);
655  if (status != 0) {
656  if (status != ETIMEDOUT && status != EINTR) {
657  KMP_SYSFAIL("pthread_cond_timedwait", status);
658  }
659  }
660  }
661  status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex);
662  KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
663 
664  TCW_4(__kmp_global.g.g_time.dt.t_value,
665  TCR_4(__kmp_global.g.g_time.dt.t_value) + 1);
666 
667  KMP_MB(); /* Flush all pending memory write invalidates. */
668  }
669 
670  KA_TRACE(10, ("__kmp_launch_monitor: #3 cleanup\n"));
671 
672 #ifdef KMP_BLOCK_SIGNALS
673  status = sigfillset(&new_set);
674  KMP_CHECK_SYSFAIL_ERRNO("sigfillset", status);
675  status = pthread_sigmask(SIG_UNBLOCK, &new_set, NULL);
676  KMP_CHECK_SYSFAIL("pthread_sigmask", status);
677 #endif /* KMP_BLOCK_SIGNALS */
678 
679  KA_TRACE(10, ("__kmp_launch_monitor: #4 finished\n"));
680 
681  if (__kmp_global.g.g_abort != 0) {
682  /* now we need to terminate the worker threads */
683  /* the value of t_abort is the signal we caught */
684 
685  int gtid;
686 
687  KA_TRACE(10, ("__kmp_launch_monitor: #5 terminate sig=%d\n",
688  __kmp_global.g.g_abort));
689 
690  /* terminate the OpenMP worker threads */
691  /* TODO this is not valid for sibling threads!!
692  * the uber master might not be 0 anymore.. */
693  for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid)
694  __kmp_terminate_thread(gtid);
695 
696  __kmp_cleanup();
697 
698  KA_TRACE(10, ("__kmp_launch_monitor: #6 raise sig=%d\n",
699  __kmp_global.g.g_abort));
700 
701  if (__kmp_global.g.g_abort > 0)
702  raise(__kmp_global.g.g_abort);
703  }
704 
705  KA_TRACE(10, ("__kmp_launch_monitor: #7 exit\n"));
706 
707  return thr;
708 }
709 #endif // KMP_USE_MONITOR
710 
711 void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size) {
712  pthread_t handle;
713  pthread_attr_t thread_attr;
714  int status;
715 
716  th->th.th_info.ds.ds_gtid = gtid;
717 
718 #if KMP_STATS_ENABLED
719  // sets up worker thread stats
720  __kmp_acquire_tas_lock(&__kmp_stats_lock, gtid);
721 
722  // th->th.th_stats is used to transfer thread-specific stats-pointer to
723  // __kmp_launch_worker. So when thread is created (goes into
724  // __kmp_launch_worker) it will set its thread local pointer to
725  // th->th.th_stats
726  if (!KMP_UBER_GTID(gtid)) {
727  th->th.th_stats = __kmp_stats_list->push_back(gtid);
728  } else {
729  // For root threads, __kmp_stats_thread_ptr is set in __kmp_register_root(),
730  // so set the th->th.th_stats field to it.
731  th->th.th_stats = __kmp_stats_thread_ptr;
732  }
733  __kmp_release_tas_lock(&__kmp_stats_lock, gtid);
734 
735 #endif // KMP_STATS_ENABLED
736 
737  if (KMP_UBER_GTID(gtid)) {
738  KA_TRACE(10, ("__kmp_create_worker: uber thread (%d)\n", gtid));
739  th->th.th_info.ds.ds_thread = pthread_self();
740  __kmp_set_stack_info(gtid, th);
741  __kmp_check_stack_overlap(th);
742  return;
743  }
744 
745  KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid));
746 
747  KMP_MB(); /* Flush all pending memory write invalidates. */
748 
749 #ifdef KMP_THREAD_ATTR
750  status = pthread_attr_init(&thread_attr);
751  if (status != 0) {
752  __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null);
753  }
754  status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE);
755  if (status != 0) {
756  __kmp_fatal(KMP_MSG(CantSetWorkerState), KMP_ERR(status), __kmp_msg_null);
757  }
758 
759  /* Set stack size for this thread now.
760  The multiple of 2 is there because on some machines, requesting an unusual
761  stacksize causes the thread to have an offset before the dummy alloca()
762  takes place to create the offset. Since we want the user to have a
763  sufficient stacksize AND support a stack offset, we alloca() twice the
764  offset so that the upcoming alloca() does not eliminate any premade offset,
765  and also gives the user the stack space they requested for all threads */
766  stack_size += gtid * __kmp_stkoffset * 2;
767 
768 #if defined(__ANDROID__) && __ANDROID_API__ < 19
769  // Round the stack size to a multiple of the page size. Older versions of
770  // Android (until KitKat) would fail pthread_attr_setstacksize with EINVAL
771  // if the stack size was not a multiple of the page size.
772  stack_size = (stack_size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1);
773 #endif
774 
775  KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, "
776  "__kmp_stksize = %lu bytes, final stacksize = %lu bytes\n",
777  gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size));
778 
779 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
780  status = pthread_attr_setstacksize(&thread_attr, stack_size);
781 #ifdef KMP_BACKUP_STKSIZE
782  if (status != 0) {
783  if (!__kmp_env_stksize) {
784  stack_size = KMP_BACKUP_STKSIZE + gtid * __kmp_stkoffset;
785  __kmp_stksize = KMP_BACKUP_STKSIZE;
786  KA_TRACE(10, ("__kmp_create_worker: T#%d, default stacksize = %lu bytes, "
787  "__kmp_stksize = %lu bytes, (backup) final stacksize = %lu "
788  "bytes\n",
789  gtid, KMP_DEFAULT_STKSIZE, __kmp_stksize, stack_size));
790  status = pthread_attr_setstacksize(&thread_attr, stack_size);
791  }
792  }
793 #endif /* KMP_BACKUP_STKSIZE */
794  if (status != 0) {
795  __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
796  KMP_HNT(ChangeWorkerStackSize), __kmp_msg_null);
797  }
798 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
799 
800 #endif /* KMP_THREAD_ATTR */
801 
802  status =
803  pthread_create(&handle, &thread_attr, __kmp_launch_worker, (void *)th);
804  if (status != 0 || !handle) { // ??? Why do we check handle??
805 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
806  if (status == EINVAL) {
807  __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
808  KMP_HNT(IncreaseWorkerStackSize), __kmp_msg_null);
809  }
810  if (status == ENOMEM) {
811  __kmp_fatal(KMP_MSG(CantSetWorkerStackSize, stack_size), KMP_ERR(status),
812  KMP_HNT(DecreaseWorkerStackSize), __kmp_msg_null);
813  }
814 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
815  if (status == EAGAIN) {
816  __kmp_fatal(KMP_MSG(NoResourcesForWorkerThread), KMP_ERR(status),
817  KMP_HNT(Decrease_NUM_THREADS), __kmp_msg_null);
818  }
819  KMP_SYSFAIL("pthread_create", status);
820  }
821 
822  th->th.th_info.ds.ds_thread = handle;
823 
824 #ifdef KMP_THREAD_ATTR
825  status = pthread_attr_destroy(&thread_attr);
826  if (status) {
827  kmp_msg_t err_code = KMP_ERR(status);
828  __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code,
829  __kmp_msg_null);
830  if (__kmp_generate_warnings == kmp_warnings_off) {
831  __kmp_str_free(&err_code.str);
832  }
833  }
834 #endif /* KMP_THREAD_ATTR */
835 
836  KMP_MB(); /* Flush all pending memory write invalidates. */
837 
838  KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid));
839 
840 } // __kmp_create_worker
841 
842 #if KMP_USE_MONITOR
843 void __kmp_create_monitor(kmp_info_t *th) {
844  pthread_t handle;
845  pthread_attr_t thread_attr;
846  size_t size;
847  int status;
848  int auto_adj_size = FALSE;
849 
850  if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) {
851  // We don't need monitor thread in case of MAX_BLOCKTIME
852  KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of "
853  "MAX blocktime\n"));
854  th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op
855  th->th.th_info.ds.ds_gtid = 0;
856  return;
857  }
858  KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n"));
859 
860  KMP_MB(); /* Flush all pending memory write invalidates. */
861 
862  th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR;
863  th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR;
864 #if KMP_REAL_TIME_FIX
865  TCW_4(__kmp_global.g.g_time.dt.t_value,
866  -1); // Will use it for synchronization a bit later.
867 #else
868  TCW_4(__kmp_global.g.g_time.dt.t_value, 0);
869 #endif // KMP_REAL_TIME_FIX
870 
871 #ifdef KMP_THREAD_ATTR
872  if (__kmp_monitor_stksize == 0) {
873  __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
874  auto_adj_size = TRUE;
875  }
876  status = pthread_attr_init(&thread_attr);
877  if (status != 0) {
878  __kmp_fatal(KMP_MSG(CantInitThreadAttrs), KMP_ERR(status), __kmp_msg_null);
879  }
880  status = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_JOINABLE);
881  if (status != 0) {
882  __kmp_fatal(KMP_MSG(CantSetMonitorState), KMP_ERR(status), __kmp_msg_null);
883  }
884 
885 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
886  status = pthread_attr_getstacksize(&thread_attr, &size);
887  KMP_CHECK_SYSFAIL("pthread_attr_getstacksize", status);
888 #else
889  size = __kmp_sys_min_stksize;
890 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
891 #endif /* KMP_THREAD_ATTR */
892 
893  if (__kmp_monitor_stksize == 0) {
894  __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE;
895  }
896  if (__kmp_monitor_stksize < __kmp_sys_min_stksize) {
897  __kmp_monitor_stksize = __kmp_sys_min_stksize;
898  }
899 
900  KA_TRACE(10, ("__kmp_create_monitor: default stacksize = %lu bytes,"
901  "requested stacksize = %lu bytes\n",
902  size, __kmp_monitor_stksize));
903 
904 retry:
905 
906 /* Set stack size for this thread now. */
907 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
908  KA_TRACE(10, ("__kmp_create_monitor: setting stacksize = %lu bytes,",
909  __kmp_monitor_stksize));
910  status = pthread_attr_setstacksize(&thread_attr, __kmp_monitor_stksize);
911  if (status != 0) {
912  if (auto_adj_size) {
913  __kmp_monitor_stksize *= 2;
914  goto retry;
915  }
916  kmp_msg_t err_code = KMP_ERR(status);
917  __kmp_msg(kmp_ms_warning, // should this be fatal? BB
918  KMP_MSG(CantSetMonitorStackSize, (long int)__kmp_monitor_stksize),
919  err_code, KMP_HNT(ChangeMonitorStackSize), __kmp_msg_null);
920  if (__kmp_generate_warnings == kmp_warnings_off) {
921  __kmp_str_free(&err_code.str);
922  }
923  }
924 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
925 
926  status =
927  pthread_create(&handle, &thread_attr, __kmp_launch_monitor, (void *)th);
928 
929  if (status != 0) {
930 #ifdef _POSIX_THREAD_ATTR_STACKSIZE
931  if (status == EINVAL) {
932  if (auto_adj_size && (__kmp_monitor_stksize < (size_t)0x40000000)) {
933  __kmp_monitor_stksize *= 2;
934  goto retry;
935  }
936  __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize),
937  KMP_ERR(status), KMP_HNT(IncreaseMonitorStackSize),
938  __kmp_msg_null);
939  }
940  if (status == ENOMEM) {
941  __kmp_fatal(KMP_MSG(CantSetMonitorStackSize, __kmp_monitor_stksize),
942  KMP_ERR(status), KMP_HNT(DecreaseMonitorStackSize),
943  __kmp_msg_null);
944  }
945 #endif /* _POSIX_THREAD_ATTR_STACKSIZE */
946  if (status == EAGAIN) {
947  __kmp_fatal(KMP_MSG(NoResourcesForMonitorThread), KMP_ERR(status),
948  KMP_HNT(DecreaseNumberOfThreadsInUse), __kmp_msg_null);
949  }
950  KMP_SYSFAIL("pthread_create", status);
951  }
952 
953  th->th.th_info.ds.ds_thread = handle;
954 
955 #if KMP_REAL_TIME_FIX
956  // Wait for the monitor thread is really started and set its *priority*.
957  KMP_DEBUG_ASSERT(sizeof(kmp_uint32) ==
958  sizeof(__kmp_global.g.g_time.dt.t_value));
959  __kmp_wait_4((kmp_uint32 volatile *)&__kmp_global.g.g_time.dt.t_value, -1,
960  &__kmp_neq_4, NULL);
961 #endif // KMP_REAL_TIME_FIX
962 
963 #ifdef KMP_THREAD_ATTR
964  status = pthread_attr_destroy(&thread_attr);
965  if (status != 0) {
966  kmp_msg_t err_code = KMP_ERR(status);
967  __kmp_msg(kmp_ms_warning, KMP_MSG(CantDestroyThreadAttrs), err_code,
968  __kmp_msg_null);
969  if (__kmp_generate_warnings == kmp_warnings_off) {
970  __kmp_str_free(&err_code.str);
971  }
972  }
973 #endif
974 
975  KMP_MB(); /* Flush all pending memory write invalidates. */
976 
977  KA_TRACE(10, ("__kmp_create_monitor: monitor created %#.8lx\n",
978  th->th.th_info.ds.ds_thread));
979 
980 } // __kmp_create_monitor
981 #endif // KMP_USE_MONITOR
982 
983 void __kmp_exit_thread(int exit_status) {
984  pthread_exit((void *)(intptr_t)exit_status);
985 } // __kmp_exit_thread
986 
987 #if KMP_USE_MONITOR
988 void __kmp_resume_monitor();
989 
990 void __kmp_reap_monitor(kmp_info_t *th) {
991  int status;
992  void *exit_val;
993 
994  KA_TRACE(10, ("__kmp_reap_monitor: try to reap monitor thread with handle"
995  " %#.8lx\n",
996  th->th.th_info.ds.ds_thread));
997 
998  // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR.
999  // If both tid and gtid are 0, it means the monitor did not ever start.
1000  // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down.
1001  KMP_DEBUG_ASSERT(th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid);
1002  if (th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR) {
1003  KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n"));
1004  return;
1005  }
1006 
1007  KMP_MB(); /* Flush all pending memory write invalidates. */
1008 
1009  /* First, check to see whether the monitor thread exists to wake it up. This
1010  is to avoid performance problem when the monitor sleeps during
1011  blocktime-size interval */
1012 
1013  status = pthread_kill(th->th.th_info.ds.ds_thread, 0);
1014  if (status != ESRCH) {
1015  __kmp_resume_monitor(); // Wake up the monitor thread
1016  }
1017  KA_TRACE(10, ("__kmp_reap_monitor: try to join with monitor\n"));
1018  status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val);
1019  if (exit_val != th) {
1020  __kmp_fatal(KMP_MSG(ReapMonitorError), KMP_ERR(status), __kmp_msg_null);
1021  }
1022 
1023  th->th.th_info.ds.ds_tid = KMP_GTID_DNE;
1024  th->th.th_info.ds.ds_gtid = KMP_GTID_DNE;
1025 
1026  KA_TRACE(10, ("__kmp_reap_monitor: done reaping monitor thread with handle"
1027  " %#.8lx\n",
1028  th->th.th_info.ds.ds_thread));
1029 
1030  KMP_MB(); /* Flush all pending memory write invalidates. */
1031 }
1032 #endif // KMP_USE_MONITOR
1033 
1034 void __kmp_reap_worker(kmp_info_t *th) {
1035  int status;
1036  void *exit_val;
1037 
1038  KMP_MB(); /* Flush all pending memory write invalidates. */
1039 
1040  KA_TRACE(
1041  10, ("__kmp_reap_worker: try to reap T#%d\n", th->th.th_info.ds.ds_gtid));
1042 
1043  status = pthread_join(th->th.th_info.ds.ds_thread, &exit_val);
1044 #ifdef KMP_DEBUG
1045  /* Don't expose these to the user until we understand when they trigger */
1046  if (status != 0) {
1047  __kmp_fatal(KMP_MSG(ReapWorkerError), KMP_ERR(status), __kmp_msg_null);
1048  }
1049  if (exit_val != th) {
1050  KA_TRACE(10, ("__kmp_reap_worker: worker T#%d did not reap properly, "
1051  "exit_val = %p\n",
1052  th->th.th_info.ds.ds_gtid, exit_val));
1053  }
1054 #else
1055  (void)status; // unused variable
1056 #endif /* KMP_DEBUG */
1057 
1058  KA_TRACE(10, ("__kmp_reap_worker: done reaping T#%d\n",
1059  th->th.th_info.ds.ds_gtid));
1060 
1061  KMP_MB(); /* Flush all pending memory write invalidates. */
1062 }
1063 
1064 #if KMP_HANDLE_SIGNALS
1065 
1066 static void __kmp_null_handler(int signo) {
1067  // Do nothing, for doing SIG_IGN-type actions.
1068 } // __kmp_null_handler
1069 
1070 static void __kmp_team_handler(int signo) {
1071  if (__kmp_global.g.g_abort == 0) {
1072 /* Stage 1 signal handler, let's shut down all of the threads */
1073 #ifdef KMP_DEBUG
1074  __kmp_debug_printf("__kmp_team_handler: caught signal = %d\n", signo);
1075 #endif
1076  switch (signo) {
1077  case SIGHUP:
1078  case SIGINT:
1079  case SIGQUIT:
1080  case SIGILL:
1081  case SIGABRT:
1082  case SIGFPE:
1083  case SIGBUS:
1084  case SIGSEGV:
1085 #ifdef SIGSYS
1086  case SIGSYS:
1087 #endif
1088  case SIGTERM:
1089  if (__kmp_debug_buf) {
1090  __kmp_dump_debug_buffer();
1091  }
1092  __kmp_unregister_library(); // cleanup shared memory
1093  KMP_MB(); // Flush all pending memory write invalidates.
1094  TCW_4(__kmp_global.g.g_abort, signo);
1095  KMP_MB(); // Flush all pending memory write invalidates.
1096  TCW_4(__kmp_global.g.g_done, TRUE);
1097  KMP_MB(); // Flush all pending memory write invalidates.
1098  break;
1099  default:
1100 #ifdef KMP_DEBUG
1101  __kmp_debug_printf("__kmp_team_handler: unknown signal type");
1102 #endif
1103  break;
1104  }
1105  }
1106 } // __kmp_team_handler
1107 
1108 static void __kmp_sigaction(int signum, const struct sigaction *act,
1109  struct sigaction *oldact) {
1110  int rc = sigaction(signum, act, oldact);
1111  KMP_CHECK_SYSFAIL_ERRNO("sigaction", rc);
1112 }
1113 
1114 static void __kmp_install_one_handler(int sig, sig_func_t handler_func,
1115  int parallel_init) {
1116  KMP_MB(); // Flush all pending memory write invalidates.
1117  KB_TRACE(60,
1118  ("__kmp_install_one_handler( %d, ..., %d )\n", sig, parallel_init));
1119  if (parallel_init) {
1120  struct sigaction new_action;
1121  struct sigaction old_action;
1122  new_action.sa_handler = handler_func;
1123  new_action.sa_flags = 0;
1124  sigfillset(&new_action.sa_mask);
1125  __kmp_sigaction(sig, &new_action, &old_action);
1126  if (old_action.sa_handler == __kmp_sighldrs[sig].sa_handler) {
1127  sigaddset(&__kmp_sigset, sig);
1128  } else {
1129  // Restore/keep user's handler if one previously installed.
1130  __kmp_sigaction(sig, &old_action, NULL);
1131  }
1132  } else {
1133  // Save initial/system signal handlers to see if user handlers installed.
1134  __kmp_sigaction(sig, NULL, &__kmp_sighldrs[sig]);
1135  }
1136  KMP_MB(); // Flush all pending memory write invalidates.
1137 } // __kmp_install_one_handler
1138 
1139 static void __kmp_remove_one_handler(int sig) {
1140  KB_TRACE(60, ("__kmp_remove_one_handler( %d )\n", sig));
1141  if (sigismember(&__kmp_sigset, sig)) {
1142  struct sigaction old;
1143  KMP_MB(); // Flush all pending memory write invalidates.
1144  __kmp_sigaction(sig, &__kmp_sighldrs[sig], &old);
1145  if ((old.sa_handler != __kmp_team_handler) &&
1146  (old.sa_handler != __kmp_null_handler)) {
1147  // Restore the users signal handler.
1148  KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, "
1149  "restoring: sig=%d\n",
1150  sig));
1151  __kmp_sigaction(sig, &old, NULL);
1152  }
1153  sigdelset(&__kmp_sigset, sig);
1154  KMP_MB(); // Flush all pending memory write invalidates.
1155  }
1156 } // __kmp_remove_one_handler
1157 
1158 void __kmp_install_signals(int parallel_init) {
1159  KB_TRACE(10, ("__kmp_install_signals( %d )\n", parallel_init));
1160  if (__kmp_handle_signals || !parallel_init) {
1161  // If ! parallel_init, we do not install handlers, just save original
1162  // handlers. Let us do it even __handle_signals is 0.
1163  sigemptyset(&__kmp_sigset);
1164  __kmp_install_one_handler(SIGHUP, __kmp_team_handler, parallel_init);
1165  __kmp_install_one_handler(SIGINT, __kmp_team_handler, parallel_init);
1166  __kmp_install_one_handler(SIGQUIT, __kmp_team_handler, parallel_init);
1167  __kmp_install_one_handler(SIGILL, __kmp_team_handler, parallel_init);
1168  __kmp_install_one_handler(SIGABRT, __kmp_team_handler, parallel_init);
1169  __kmp_install_one_handler(SIGFPE, __kmp_team_handler, parallel_init);
1170  __kmp_install_one_handler(SIGBUS, __kmp_team_handler, parallel_init);
1171  __kmp_install_one_handler(SIGSEGV, __kmp_team_handler, parallel_init);
1172 #ifdef SIGSYS
1173  __kmp_install_one_handler(SIGSYS, __kmp_team_handler, parallel_init);
1174 #endif // SIGSYS
1175  __kmp_install_one_handler(SIGTERM, __kmp_team_handler, parallel_init);
1176 #ifdef SIGPIPE
1177  __kmp_install_one_handler(SIGPIPE, __kmp_team_handler, parallel_init);
1178 #endif // SIGPIPE
1179  }
1180 } // __kmp_install_signals
1181 
1182 void __kmp_remove_signals(void) {
1183  int sig;
1184  KB_TRACE(10, ("__kmp_remove_signals()\n"));
1185  for (sig = 1; sig < NSIG; ++sig) {
1186  __kmp_remove_one_handler(sig);
1187  }
1188 } // __kmp_remove_signals
1189 
1190 #endif // KMP_HANDLE_SIGNALS
1191 
1192 void __kmp_enable(int new_state) {
1193 #ifdef KMP_CANCEL_THREADS
1194  int status, old_state;
1195  status = pthread_setcancelstate(new_state, &old_state);
1196  KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
1197  KMP_DEBUG_ASSERT(old_state == PTHREAD_CANCEL_DISABLE);
1198 #endif
1199 }
1200 
1201 void __kmp_disable(int *old_state) {
1202 #ifdef KMP_CANCEL_THREADS
1203  int status;
1204  status = pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, old_state);
1205  KMP_CHECK_SYSFAIL("pthread_setcancelstate", status);
1206 #endif
1207 }
1208 
1209 static void __kmp_atfork_prepare(void) {
1210  __kmp_acquire_bootstrap_lock(&__kmp_initz_lock);
1211  __kmp_acquire_bootstrap_lock(&__kmp_forkjoin_lock);
1212 }
1213 
1214 static void __kmp_atfork_parent(void) {
1215  __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
1216  __kmp_release_bootstrap_lock(&__kmp_initz_lock);
1217 }
1218 
1219 /* Reset the library so execution in the child starts "all over again" with
1220  clean data structures in initial states. Don't worry about freeing memory
1221  allocated by parent, just abandon it to be safe. */
1222 static void __kmp_atfork_child(void) {
1223  __kmp_release_bootstrap_lock(&__kmp_forkjoin_lock);
1224  __kmp_release_bootstrap_lock(&__kmp_initz_lock);
1225  /* TODO make sure this is done right for nested/sibling */
1226  // ATT: Memory leaks are here? TODO: Check it and fix.
1227  /* KMP_ASSERT( 0 ); */
1228 
1229  ++__kmp_fork_count;
1230 
1231 #if KMP_AFFINITY_SUPPORTED
1232 #if KMP_OS_LINUX || KMP_OS_FREEBSD
1233  // reset the affinity in the child to the initial thread
1234  // affinity in the parent
1235  kmp_set_thread_affinity_mask_initial();
1236 #endif
1237  // Set default not to bind threads tightly in the child (we’re expecting
1238  // over-subscription after the fork and this can improve things for
1239  // scripting languages that use OpenMP inside process-parallel code).
1240  __kmp_affinity_type = affinity_none;
1241  if (__kmp_nested_proc_bind.bind_types != NULL) {
1242  __kmp_nested_proc_bind.bind_types[0] = proc_bind_false;
1243  }
1244  __kmp_affinity_masks = NULL;
1245  __kmp_affinity_num_masks = 0;
1246 #endif // KMP_AFFINITY_SUPPORTED
1247 
1248 #if KMP_USE_MONITOR
1249  __kmp_init_monitor = 0;
1250 #endif
1251  __kmp_init_parallel = FALSE;
1252  __kmp_init_middle = FALSE;
1253  __kmp_init_serial = FALSE;
1254  TCW_4(__kmp_init_gtid, FALSE);
1255  __kmp_init_common = FALSE;
1256 
1257  TCW_4(__kmp_init_user_locks, FALSE);
1258 #if !KMP_USE_DYNAMIC_LOCK
1259  __kmp_user_lock_table.used = 1;
1260  __kmp_user_lock_table.allocated = 0;
1261  __kmp_user_lock_table.table = NULL;
1262  __kmp_lock_blocks = NULL;
1263 #endif
1264 
1265  __kmp_all_nth = 0;
1266  TCW_4(__kmp_nth, 0);
1267 
1268  __kmp_thread_pool = NULL;
1269  __kmp_thread_pool_insert_pt = NULL;
1270  __kmp_team_pool = NULL;
1271 
1272  /* Must actually zero all the *cache arguments passed to __kmpc_threadprivate
1273  here so threadprivate doesn't use stale data */
1274  KA_TRACE(10, ("__kmp_atfork_child: checking cache address list %p\n",
1275  __kmp_threadpriv_cache_list));
1276 
1277  while (__kmp_threadpriv_cache_list != NULL) {
1278 
1279  if (*__kmp_threadpriv_cache_list->addr != NULL) {
1280  KC_TRACE(50, ("__kmp_atfork_child: zeroing cache at address %p\n",
1281  &(*__kmp_threadpriv_cache_list->addr)));
1282 
1283  *__kmp_threadpriv_cache_list->addr = NULL;
1284  }
1285  __kmp_threadpriv_cache_list = __kmp_threadpriv_cache_list->next;
1286  }
1287 
1288  __kmp_init_runtime = FALSE;
1289 
1290  /* reset statically initialized locks */
1291  __kmp_init_bootstrap_lock(&__kmp_initz_lock);
1292  __kmp_init_bootstrap_lock(&__kmp_stdio_lock);
1293  __kmp_init_bootstrap_lock(&__kmp_console_lock);
1294  __kmp_init_bootstrap_lock(&__kmp_task_team_lock);
1295 
1296 #if USE_ITT_BUILD
1297  __kmp_itt_reset(); // reset ITT's global state
1298 #endif /* USE_ITT_BUILD */
1299 
1300  __kmp_serial_initialize();
1301 
1302  /* This is necessary to make sure no stale data is left around */
1303  /* AC: customers complain that we use unsafe routines in the atfork
1304  handler. Mathworks: dlsym() is unsafe. We call dlsym and dlopen
1305  in dynamic_link when check the presence of shared tbbmalloc library.
1306  Suggestion is to make the library initialization lazier, similar
1307  to what done for __kmpc_begin(). */
1308  // TODO: synchronize all static initializations with regular library
1309  // startup; look at kmp_global.cpp and etc.
1310  //__kmp_internal_begin ();
1311 }
1312 
1313 void __kmp_register_atfork(void) {
1314  if (__kmp_need_register_atfork) {
1315  int status = pthread_atfork(__kmp_atfork_prepare, __kmp_atfork_parent,
1316  __kmp_atfork_child);
1317  KMP_CHECK_SYSFAIL("pthread_atfork", status);
1318  __kmp_need_register_atfork = FALSE;
1319  }
1320 }
1321 
1322 void __kmp_suspend_initialize(void) {
1323  int status;
1324  status = pthread_mutexattr_init(&__kmp_suspend_mutex_attr);
1325  KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status);
1326  status = pthread_condattr_init(&__kmp_suspend_cond_attr);
1327  KMP_CHECK_SYSFAIL("pthread_condattr_init", status);
1328 }
1329 
1330 void __kmp_suspend_initialize_thread(kmp_info_t *th) {
1331  int old_value = KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init_count);
1332  int new_value = __kmp_fork_count + 1;
1333  // Return if already initialized
1334  if (old_value == new_value)
1335  return;
1336  // Wait, then return if being initialized
1337  if (old_value == -1 || !__kmp_atomic_compare_store(
1338  &th->th.th_suspend_init_count, old_value, -1)) {
1339  while (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init_count) != new_value) {
1340  KMP_CPU_PAUSE();
1341  }
1342  } else {
1343  // Claim to be the initializer and do initializations
1344  int status;
1345  status = pthread_cond_init(&th->th.th_suspend_cv.c_cond,
1346  &__kmp_suspend_cond_attr);
1347  KMP_CHECK_SYSFAIL("pthread_cond_init", status);
1348  status = pthread_mutex_init(&th->th.th_suspend_mx.m_mutex,
1349  &__kmp_suspend_mutex_attr);
1350  KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
1351  KMP_ATOMIC_ST_REL(&th->th.th_suspend_init_count, new_value);
1352  }
1353 }
1354 
1355 void __kmp_suspend_uninitialize_thread(kmp_info_t *th) {
1356  if (KMP_ATOMIC_LD_ACQ(&th->th.th_suspend_init_count) > __kmp_fork_count) {
1357  /* this means we have initialize the suspension pthread objects for this
1358  thread in this instance of the process */
1359  int status;
1360 
1361  status = pthread_cond_destroy(&th->th.th_suspend_cv.c_cond);
1362  if (status != 0 && status != EBUSY) {
1363  KMP_SYSFAIL("pthread_cond_destroy", status);
1364  }
1365  status = pthread_mutex_destroy(&th->th.th_suspend_mx.m_mutex);
1366  if (status != 0 && status != EBUSY) {
1367  KMP_SYSFAIL("pthread_mutex_destroy", status);
1368  }
1369  --th->th.th_suspend_init_count;
1370  KMP_DEBUG_ASSERT(KMP_ATOMIC_LD_RLX(&th->th.th_suspend_init_count) ==
1371  __kmp_fork_count);
1372  }
1373 }
1374 
1375 // return true if lock obtained, false otherwise
1376 int __kmp_try_suspend_mx(kmp_info_t *th) {
1377  return (pthread_mutex_trylock(&th->th.th_suspend_mx.m_mutex) == 0);
1378 }
1379 
1380 void __kmp_lock_suspend_mx(kmp_info_t *th) {
1381  int status = pthread_mutex_lock(&th->th.th_suspend_mx.m_mutex);
1382  KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1383 }
1384 
1385 void __kmp_unlock_suspend_mx(kmp_info_t *th) {
1386  int status = pthread_mutex_unlock(&th->th.th_suspend_mx.m_mutex);
1387  KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1388 }
1389 
1390 /* This routine puts the calling thread to sleep after setting the
1391  sleep bit for the indicated flag variable to true. */
1392 template <class C>
1393 static inline void __kmp_suspend_template(int th_gtid, C *flag) {
1394  KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_suspend);
1395  kmp_info_t *th = __kmp_threads[th_gtid];
1396  int status;
1397  typename C::flag_t old_spin;
1398 
1399  KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag = %p\n", th_gtid,
1400  flag->get()));
1401 
1402  __kmp_suspend_initialize_thread(th);
1403 
1404  __kmp_lock_suspend_mx(th);
1405 
1406  KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for spin(%p)\n",
1407  th_gtid, flag->get()));
1408 
1409  /* TODO: shouldn't this use release semantics to ensure that
1410  __kmp_suspend_initialize_thread gets called first? */
1411  old_spin = flag->set_sleeping();
1412  TCW_PTR(th->th.th_sleep_loc, (void *)flag);
1413  th->th.th_sleep_loc_type = flag->get_type();
1414  if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME &&
1415  __kmp_pause_status != kmp_soft_paused) {
1416  flag->unset_sleeping();
1417  TCW_PTR(th->th.th_sleep_loc, NULL);
1418  th->th.th_sleep_loc_type = flag_unset;
1419  __kmp_unlock_suspend_mx(th);
1420  return;
1421  }
1422  KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for spin(%p)==%x,"
1423  " was %x\n",
1424  th_gtid, flag->get(), flag->load(), old_spin));
1425 
1426  if (flag->done_check_val(old_spin) || flag->done_check()) {
1427  flag->unset_sleeping();
1428  TCW_PTR(th->th.th_sleep_loc, NULL);
1429  th->th.th_sleep_loc_type = flag_unset;
1430  KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit "
1431  "for spin(%p)\n",
1432  th_gtid, flag->get()));
1433  } else {
1434  /* Encapsulate in a loop as the documentation states that this may
1435  "with low probability" return when the condition variable has
1436  not been signaled or broadcast */
1437  int deactivated = FALSE;
1438 
1439  while (flag->is_sleeping()) {
1440 #ifdef DEBUG_SUSPEND
1441  char buffer[128];
1442  __kmp_suspend_count++;
1443  __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1444  __kmp_printf("__kmp_suspend_template: suspending T#%d: %s\n", th_gtid,
1445  buffer);
1446 #endif
1447  // Mark the thread as no longer active (only in the first iteration of the
1448  // loop).
1449  if (!deactivated) {
1450  th->th.th_active = FALSE;
1451  if (th->th.th_active_in_pool) {
1452  th->th.th_active_in_pool = FALSE;
1453  KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth);
1454  KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0);
1455  }
1456  deactivated = TRUE;
1457  }
1458 
1459  KMP_DEBUG_ASSERT(th->th.th_sleep_loc);
1460  KMP_DEBUG_ASSERT(flag->get_type() == th->th.th_sleep_loc_type);
1461 
1462 #if USE_SUSPEND_TIMEOUT
1463  struct timespec now;
1464  struct timeval tval;
1465  int msecs;
1466 
1467  status = gettimeofday(&tval, NULL);
1468  KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1469  TIMEVAL_TO_TIMESPEC(&tval, &now);
1470 
1471  msecs = (4 * __kmp_dflt_blocktime) + 200;
1472  now.tv_sec += msecs / 1000;
1473  now.tv_nsec += (msecs % 1000) * 1000;
1474 
1475  KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform "
1476  "pthread_cond_timedwait\n",
1477  th_gtid));
1478  status = pthread_cond_timedwait(&th->th.th_suspend_cv.c_cond,
1479  &th->th.th_suspend_mx.m_mutex, &now);
1480 #else
1481  KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform"
1482  " pthread_cond_wait\n",
1483  th_gtid));
1484  status = pthread_cond_wait(&th->th.th_suspend_cv.c_cond,
1485  &th->th.th_suspend_mx.m_mutex);
1486 #endif // USE_SUSPEND_TIMEOUT
1487 
1488  if ((status != 0) && (status != EINTR) && (status != ETIMEDOUT)) {
1489  KMP_SYSFAIL("pthread_cond_wait", status);
1490  }
1491 
1492  KMP_DEBUG_ASSERT(flag->get_type() == flag->get_ptr_type());
1493 
1494  if (!flag->is_sleeping() &&
1495  ((status == EINTR) || (status == ETIMEDOUT))) {
1496  // if interrupt or timeout, and thread is no longer sleeping, we need to
1497  // make sure sleep_loc gets reset; however, this shouldn't be needed if
1498  // we woke up with resume
1499  flag->unset_sleeping();
1500  TCW_PTR(th->th.th_sleep_loc, NULL);
1501  th->th.th_sleep_loc_type = flag_unset;
1502  }
1503 #ifdef KMP_DEBUG
1504  if (status == ETIMEDOUT) {
1505  if (flag->is_sleeping()) {
1506  KF_TRACE(100,
1507  ("__kmp_suspend_template: T#%d timeout wakeup\n", th_gtid));
1508  } else {
1509  KF_TRACE(2, ("__kmp_suspend_template: T#%d timeout wakeup, sleep bit "
1510  "not set!\n",
1511  th_gtid));
1512  TCW_PTR(th->th.th_sleep_loc, NULL);
1513  th->th.th_sleep_loc_type = flag_unset;
1514  }
1515  } else if (flag->is_sleeping()) {
1516  KF_TRACE(100,
1517  ("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid));
1518  }
1519 #endif
1520  } // while
1521 
1522  // Mark the thread as active again (if it was previous marked as inactive)
1523  if (deactivated) {
1524  th->th.th_active = TRUE;
1525  if (TCR_4(th->th.th_in_pool)) {
1526  KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth);
1527  th->th.th_active_in_pool = TRUE;
1528  }
1529  }
1530  }
1531  // We may have had the loop variable set before entering the loop body;
1532  // so we need to reset sleep_loc.
1533  TCW_PTR(th->th.th_sleep_loc, NULL);
1534  th->th.th_sleep_loc_type = flag_unset;
1535 
1536  KMP_DEBUG_ASSERT(!flag->is_sleeping());
1537  KMP_DEBUG_ASSERT(!th->th.th_sleep_loc);
1538 #ifdef DEBUG_SUSPEND
1539  {
1540  char buffer[128];
1541  __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1542  __kmp_printf("__kmp_suspend_template: T#%d has awakened: %s\n", th_gtid,
1543  buffer);
1544  }
1545 #endif
1546 
1547  __kmp_unlock_suspend_mx(th);
1548  KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid));
1549 }
1550 
1551 template <bool C, bool S>
1552 void __kmp_suspend_32(int th_gtid, kmp_flag_32<C, S> *flag) {
1553  __kmp_suspend_template(th_gtid, flag);
1554 }
1555 template <bool C, bool S>
1556 void __kmp_suspend_64(int th_gtid, kmp_flag_64<C, S> *flag) {
1557  __kmp_suspend_template(th_gtid, flag);
1558 }
1559 template <bool C, bool S>
1560 void __kmp_atomic_suspend_64(int th_gtid, kmp_atomic_flag_64<C, S> *flag) {
1561  __kmp_suspend_template(th_gtid, flag);
1562 }
1563 void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) {
1564  __kmp_suspend_template(th_gtid, flag);
1565 }
1566 
1567 template void __kmp_suspend_32<false, false>(int, kmp_flag_32<false, false> *);
1568 template void __kmp_suspend_64<false, true>(int, kmp_flag_64<false, true> *);
1569 template void __kmp_suspend_64<true, false>(int, kmp_flag_64<true, false> *);
1570 template void
1571 __kmp_atomic_suspend_64<false, true>(int, kmp_atomic_flag_64<false, true> *);
1572 template void
1573 __kmp_atomic_suspend_64<true, false>(int, kmp_atomic_flag_64<true, false> *);
1574 
1575 /* This routine signals the thread specified by target_gtid to wake up
1576  after setting the sleep bit indicated by the flag argument to FALSE.
1577  The target thread must already have called __kmp_suspend_template() */
1578 template <class C>
1579 static inline void __kmp_resume_template(int target_gtid, C *flag) {
1580  KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume);
1581  kmp_info_t *th = __kmp_threads[target_gtid];
1582  int status;
1583 
1584 #ifdef KMP_DEBUG
1585  int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
1586 #endif
1587 
1588  KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n",
1589  gtid, target_gtid));
1590  KMP_DEBUG_ASSERT(gtid != target_gtid);
1591 
1592  __kmp_suspend_initialize_thread(th);
1593 
1594  __kmp_lock_suspend_mx(th);
1595 
1596  if (!flag || flag != th->th.th_sleep_loc) {
1597  // coming from __kmp_null_resume_wrapper, or thread is now sleeping on a
1598  // different location; wake up at new location
1599  flag = (C *)CCAST(void *, th->th.th_sleep_loc);
1600  }
1601 
1602  // First, check if the flag is null or its type has changed. If so, someone
1603  // else woke it up.
1604  if (!flag) { // Thread doesn't appear to be sleeping on anything
1605  KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
1606  "awake: flag(%p)\n",
1607  gtid, target_gtid, (void *)NULL));
1608  __kmp_unlock_suspend_mx(th);
1609  return;
1610  } else if (flag->get_type() != th->th.th_sleep_loc_type) {
1611  // Flag type does not appear to match this function template; possibly the
1612  // thread is sleeping on something else. Try null resume again.
1613  KF_TRACE(
1614  5,
1615  ("__kmp_resume_template: T#%d retrying, thread T#%d Mismatch flag(%p), "
1616  "spin(%p) type=%d ptr_type=%d\n",
1617  gtid, target_gtid, flag, flag->get(), flag->get_type(),
1618  th->th.th_sleep_loc_type));
1619  __kmp_unlock_suspend_mx(th);
1620  __kmp_null_resume_wrapper(th);
1621  return;
1622  } else { // if multiple threads are sleeping, flag should be internally
1623  // referring to a specific thread here
1624  if (!flag->is_sleeping()) {
1625  KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already "
1626  "awake: flag(%p): %u\n",
1627  gtid, target_gtid, flag->get(), (unsigned int)flag->load()));
1628  __kmp_unlock_suspend_mx(th);
1629  return;
1630  }
1631  }
1632  KMP_DEBUG_ASSERT(flag);
1633  flag->unset_sleeping();
1634  TCW_PTR(th->th.th_sleep_loc, NULL);
1635  th->th.th_sleep_loc_type = flag_unset;
1636 
1637  KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset "
1638  "sleep bit for flag's loc(%p): %u\n",
1639  gtid, target_gtid, flag->get(), (unsigned int)flag->load()));
1640 
1641 #ifdef DEBUG_SUSPEND
1642  {
1643  char buffer[128];
1644  __kmp_print_cond(buffer, &th->th.th_suspend_cv);
1645  __kmp_printf("__kmp_resume_template: T#%d resuming T#%d: %s\n", gtid,
1646  target_gtid, buffer);
1647  }
1648 #endif
1649  status = pthread_cond_signal(&th->th.th_suspend_cv.c_cond);
1650  KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
1651  __kmp_unlock_suspend_mx(th);
1652  KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up"
1653  " for T#%d\n",
1654  gtid, target_gtid));
1655 }
1656 
1657 template <bool C, bool S>
1658 void __kmp_resume_32(int target_gtid, kmp_flag_32<C, S> *flag) {
1659  __kmp_resume_template(target_gtid, flag);
1660 }
1661 template <bool C, bool S>
1662 void __kmp_resume_64(int target_gtid, kmp_flag_64<C, S> *flag) {
1663  __kmp_resume_template(target_gtid, flag);
1664 }
1665 template <bool C, bool S>
1666 void __kmp_atomic_resume_64(int target_gtid, kmp_atomic_flag_64<C, S> *flag) {
1667  __kmp_resume_template(target_gtid, flag);
1668 }
1669 void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) {
1670  __kmp_resume_template(target_gtid, flag);
1671 }
1672 
1673 template void __kmp_resume_32<false, true>(int, kmp_flag_32<false, true> *);
1674 template void __kmp_resume_32<false, false>(int, kmp_flag_32<false, false> *);
1675 template void __kmp_resume_64<false, true>(int, kmp_flag_64<false, true> *);
1676 template void
1677 __kmp_atomic_resume_64<false, true>(int, kmp_atomic_flag_64<false, true> *);
1678 
1679 #if KMP_USE_MONITOR
1680 void __kmp_resume_monitor() {
1681  KMP_TIME_DEVELOPER_PARTITIONED_BLOCK(USER_resume);
1682  int status;
1683 #ifdef KMP_DEBUG
1684  int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1;
1685  KF_TRACE(30, ("__kmp_resume_monitor: T#%d wants to wakeup T#%d enter\n", gtid,
1686  KMP_GTID_MONITOR));
1687  KMP_DEBUG_ASSERT(gtid != KMP_GTID_MONITOR);
1688 #endif
1689  status = pthread_mutex_lock(&__kmp_wait_mx.m_mutex);
1690  KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
1691 #ifdef DEBUG_SUSPEND
1692  {
1693  char buffer[128];
1694  __kmp_print_cond(buffer, &__kmp_wait_cv.c_cond);
1695  __kmp_printf("__kmp_resume_monitor: T#%d resuming T#%d: %s\n", gtid,
1696  KMP_GTID_MONITOR, buffer);
1697  }
1698 #endif
1699  status = pthread_cond_signal(&__kmp_wait_cv.c_cond);
1700  KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
1701  status = pthread_mutex_unlock(&__kmp_wait_mx.m_mutex);
1702  KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
1703  KF_TRACE(30, ("__kmp_resume_monitor: T#%d exiting after signaling wake up"
1704  " for T#%d\n",
1705  gtid, KMP_GTID_MONITOR));
1706 }
1707 #endif // KMP_USE_MONITOR
1708 
1709 void __kmp_yield() { sched_yield(); }
1710 
1711 void __kmp_gtid_set_specific(int gtid) {
1712  if (__kmp_init_gtid) {
1713  int status;
1714  status = pthread_setspecific(__kmp_gtid_threadprivate_key,
1715  (void *)(intptr_t)(gtid + 1));
1716  KMP_CHECK_SYSFAIL("pthread_setspecific", status);
1717  } else {
1718  KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n"));
1719  }
1720 }
1721 
1722 int __kmp_gtid_get_specific() {
1723  int gtid;
1724  if (!__kmp_init_gtid) {
1725  KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning "
1726  "KMP_GTID_SHUTDOWN\n"));
1727  return KMP_GTID_SHUTDOWN;
1728  }
1729  gtid = (int)(size_t)pthread_getspecific(__kmp_gtid_threadprivate_key);
1730  if (gtid == 0) {
1731  gtid = KMP_GTID_DNE;
1732  } else {
1733  gtid--;
1734  }
1735  KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n",
1736  __kmp_gtid_threadprivate_key, gtid));
1737  return gtid;
1738 }
1739 
1740 double __kmp_read_cpu_time(void) {
1741  /*clock_t t;*/
1742  struct tms buffer;
1743 
1744  /*t =*/times(&buffer);
1745 
1746  return (double)(buffer.tms_utime + buffer.tms_cutime) /
1747  (double)CLOCKS_PER_SEC;
1748 }
1749 
1750 int __kmp_read_system_info(struct kmp_sys_info *info) {
1751  int status;
1752  struct rusage r_usage;
1753 
1754  memset(info, 0, sizeof(*info));
1755 
1756  status = getrusage(RUSAGE_SELF, &r_usage);
1757  KMP_CHECK_SYSFAIL_ERRNO("getrusage", status);
1758 
1759  // The maximum resident set size utilized (in kilobytes)
1760  info->maxrss = r_usage.ru_maxrss;
1761  // The number of page faults serviced without any I/O
1762  info->minflt = r_usage.ru_minflt;
1763  // The number of page faults serviced that required I/O
1764  info->majflt = r_usage.ru_majflt;
1765  // The number of times a process was "swapped" out of memory
1766  info->nswap = r_usage.ru_nswap;
1767  // The number of times the file system had to perform input
1768  info->inblock = r_usage.ru_inblock;
1769  // The number of times the file system had to perform output
1770  info->oublock = r_usage.ru_oublock;
1771  // The number of times a context switch was voluntarily
1772  info->nvcsw = r_usage.ru_nvcsw;
1773  // The number of times a context switch was forced
1774  info->nivcsw = r_usage.ru_nivcsw;
1775 
1776  return (status != 0);
1777 }
1778 
1779 void __kmp_read_system_time(double *delta) {
1780  double t_ns;
1781  struct timeval tval;
1782  struct timespec stop;
1783  int status;
1784 
1785  status = gettimeofday(&tval, NULL);
1786  KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1787  TIMEVAL_TO_TIMESPEC(&tval, &stop);
1788  t_ns = (double)(TS2NS(stop) - TS2NS(__kmp_sys_timer_data.start));
1789  *delta = (t_ns * 1e-9);
1790 }
1791 
1792 void __kmp_clear_system_time(void) {
1793  struct timeval tval;
1794  int status;
1795  status = gettimeofday(&tval, NULL);
1796  KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1797  TIMEVAL_TO_TIMESPEC(&tval, &__kmp_sys_timer_data.start);
1798 }
1799 
1800 static int __kmp_get_xproc(void) {
1801 
1802  int r = 0;
1803 
1804 #if KMP_OS_LINUX || KMP_OS_DRAGONFLY || KMP_OS_FREEBSD || KMP_OS_NETBSD || \
1805  KMP_OS_OPENBSD || KMP_OS_HURD
1806 
1807  __kmp_type_convert(sysconf(_SC_NPROCESSORS_ONLN), &(r));
1808 
1809 #elif KMP_OS_DARWIN
1810 
1811  // Bug C77011 High "OpenMP Threads and number of active cores".
1812 
1813  // Find the number of available CPUs.
1814  kern_return_t rc;
1815  host_basic_info_data_t info;
1816  mach_msg_type_number_t num = HOST_BASIC_INFO_COUNT;
1817  rc = host_info(mach_host_self(), HOST_BASIC_INFO, (host_info_t)&info, &num);
1818  if (rc == 0 && num == HOST_BASIC_INFO_COUNT) {
1819  // Cannot use KA_TRACE() here because this code works before trace support
1820  // is initialized.
1821  r = info.avail_cpus;
1822  } else {
1823  KMP_WARNING(CantGetNumAvailCPU);
1824  KMP_INFORM(AssumedNumCPU);
1825  }
1826 
1827 #else
1828 
1829 #error "Unknown or unsupported OS."
1830 
1831 #endif
1832 
1833  return r > 0 ? r : 2; /* guess value of 2 if OS told us 0 */
1834 
1835 } // __kmp_get_xproc
1836 
1837 int __kmp_read_from_file(char const *path, char const *format, ...) {
1838  int result;
1839  va_list args;
1840 
1841  va_start(args, format);
1842  FILE *f = fopen(path, "rb");
1843  if (f == NULL)
1844  return 0;
1845  result = vfscanf(f, format, args);
1846  fclose(f);
1847 
1848  return result;
1849 }
1850 
1851 void __kmp_runtime_initialize(void) {
1852  int status;
1853  pthread_mutexattr_t mutex_attr;
1854  pthread_condattr_t cond_attr;
1855 
1856  if (__kmp_init_runtime) {
1857  return;
1858  }
1859 
1860 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64)
1861  if (!__kmp_cpuinfo.initialized) {
1862  __kmp_query_cpuid(&__kmp_cpuinfo);
1863  }
1864 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
1865 
1866  __kmp_xproc = __kmp_get_xproc();
1867 
1868 #if !KMP_32_BIT_ARCH
1869  struct rlimit rlim;
1870  // read stack size of calling thread, save it as default for worker threads;
1871  // this should be done before reading environment variables
1872  status = getrlimit(RLIMIT_STACK, &rlim);
1873  if (status == 0) { // success?
1874  __kmp_stksize = rlim.rlim_cur;
1875  __kmp_check_stksize(&__kmp_stksize); // check value and adjust if needed
1876  }
1877 #endif /* KMP_32_BIT_ARCH */
1878 
1879  if (sysconf(_SC_THREADS)) {
1880 
1881  /* Query the maximum number of threads */
1882  __kmp_type_convert(sysconf(_SC_THREAD_THREADS_MAX), &(__kmp_sys_max_nth));
1883  if (__kmp_sys_max_nth == -1) {
1884  /* Unlimited threads for NPTL */
1885  __kmp_sys_max_nth = INT_MAX;
1886  } else if (__kmp_sys_max_nth <= 1) {
1887  /* Can't tell, just use PTHREAD_THREADS_MAX */
1888  __kmp_sys_max_nth = KMP_MAX_NTH;
1889  }
1890 
1891  /* Query the minimum stack size */
1892  __kmp_sys_min_stksize = sysconf(_SC_THREAD_STACK_MIN);
1893  if (__kmp_sys_min_stksize <= 1) {
1894  __kmp_sys_min_stksize = KMP_MIN_STKSIZE;
1895  }
1896  }
1897 
1898  /* Set up minimum number of threads to switch to TLS gtid */
1899  __kmp_tls_gtid_min = KMP_TLS_GTID_MIN;
1900 
1901  status = pthread_key_create(&__kmp_gtid_threadprivate_key,
1902  __kmp_internal_end_dest);
1903  KMP_CHECK_SYSFAIL("pthread_key_create", status);
1904  status = pthread_mutexattr_init(&mutex_attr);
1905  KMP_CHECK_SYSFAIL("pthread_mutexattr_init", status);
1906  status = pthread_mutex_init(&__kmp_wait_mx.m_mutex, &mutex_attr);
1907  KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
1908  status = pthread_mutexattr_destroy(&mutex_attr);
1909  KMP_CHECK_SYSFAIL("pthread_mutexattr_destroy", status);
1910  status = pthread_condattr_init(&cond_attr);
1911  KMP_CHECK_SYSFAIL("pthread_condattr_init", status);
1912  status = pthread_cond_init(&__kmp_wait_cv.c_cond, &cond_attr);
1913  KMP_CHECK_SYSFAIL("pthread_cond_init", status);
1914  status = pthread_condattr_destroy(&cond_attr);
1915  KMP_CHECK_SYSFAIL("pthread_condattr_destroy", status);
1916 #if USE_ITT_BUILD
1917  __kmp_itt_initialize();
1918 #endif /* USE_ITT_BUILD */
1919 
1920  __kmp_init_runtime = TRUE;
1921 }
1922 
1923 void __kmp_runtime_destroy(void) {
1924  int status;
1925 
1926  if (!__kmp_init_runtime) {
1927  return; // Nothing to do.
1928  }
1929 
1930 #if USE_ITT_BUILD
1931  __kmp_itt_destroy();
1932 #endif /* USE_ITT_BUILD */
1933 
1934  status = pthread_key_delete(__kmp_gtid_threadprivate_key);
1935  KMP_CHECK_SYSFAIL("pthread_key_delete", status);
1936 
1937  status = pthread_mutex_destroy(&__kmp_wait_mx.m_mutex);
1938  if (status != 0 && status != EBUSY) {
1939  KMP_SYSFAIL("pthread_mutex_destroy", status);
1940  }
1941  status = pthread_cond_destroy(&__kmp_wait_cv.c_cond);
1942  if (status != 0 && status != EBUSY) {
1943  KMP_SYSFAIL("pthread_cond_destroy", status);
1944  }
1945 #if KMP_AFFINITY_SUPPORTED
1946  __kmp_affinity_uninitialize();
1947 #endif
1948 
1949  __kmp_init_runtime = FALSE;
1950 }
1951 
1952 /* Put the thread to sleep for a time period */
1953 /* NOTE: not currently used anywhere */
1954 void __kmp_thread_sleep(int millis) { sleep((millis + 500) / 1000); }
1955 
1956 /* Calculate the elapsed wall clock time for the user */
1957 void __kmp_elapsed(double *t) {
1958  int status;
1959 #ifdef FIX_SGI_CLOCK
1960  struct timespec ts;
1961 
1962  status = clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &ts);
1963  KMP_CHECK_SYSFAIL_ERRNO("clock_gettime", status);
1964  *t =
1965  (double)ts.tv_nsec * (1.0 / (double)KMP_NSEC_PER_SEC) + (double)ts.tv_sec;
1966 #else
1967  struct timeval tv;
1968 
1969  status = gettimeofday(&tv, NULL);
1970  KMP_CHECK_SYSFAIL_ERRNO("gettimeofday", status);
1971  *t =
1972  (double)tv.tv_usec * (1.0 / (double)KMP_USEC_PER_SEC) + (double)tv.tv_sec;
1973 #endif
1974 }
1975 
1976 /* Calculate the elapsed wall clock tick for the user */
1977 void __kmp_elapsed_tick(double *t) { *t = 1 / (double)CLOCKS_PER_SEC; }
1978 
1979 /* Return the current time stamp in nsec */
1980 kmp_uint64 __kmp_now_nsec() {
1981  struct timeval t;
1982  gettimeofday(&t, NULL);
1983  kmp_uint64 nsec = (kmp_uint64)KMP_NSEC_PER_SEC * (kmp_uint64)t.tv_sec +
1984  (kmp_uint64)1000 * (kmp_uint64)t.tv_usec;
1985  return nsec;
1986 }
1987 
1988 #if KMP_ARCH_X86 || KMP_ARCH_X86_64
1989 /* Measure clock ticks per millisecond */
1990 void __kmp_initialize_system_tick() {
1991  kmp_uint64 now, nsec2, diff;
1992  kmp_uint64 delay = 100000; // 50~100 usec on most machines.
1993  kmp_uint64 nsec = __kmp_now_nsec();
1994  kmp_uint64 goal = __kmp_hardware_timestamp() + delay;
1995  while ((now = __kmp_hardware_timestamp()) < goal)
1996  ;
1997  nsec2 = __kmp_now_nsec();
1998  diff = nsec2 - nsec;
1999  if (diff > 0) {
2000  kmp_uint64 tpms = ((kmp_uint64)1e6 * (delay + (now - goal)) / diff);
2001  if (tpms > 0)
2002  __kmp_ticks_per_msec = tpms;
2003  }
2004 }
2005 #endif
2006 
2007 /* Determine whether the given address is mapped into the current address
2008  space. */
2009 
2010 int __kmp_is_address_mapped(void *addr) {
2011 
2012  int found = 0;
2013  int rc;
2014 
2015 #if KMP_OS_LINUX || KMP_OS_HURD
2016 
2017  /* On GNUish OSes, read the /proc/<pid>/maps pseudo-file to get all the
2018  address ranges mapped into the address space. */
2019 
2020  char *name = __kmp_str_format("/proc/%d/maps", getpid());
2021  FILE *file = NULL;
2022 
2023  file = fopen(name, "r");
2024  KMP_ASSERT(file != NULL);
2025 
2026  for (;;) {
2027 
2028  void *beginning = NULL;
2029  void *ending = NULL;
2030  char perms[5];
2031 
2032  rc = fscanf(file, "%p-%p %4s %*[^\n]\n", &beginning, &ending, perms);
2033  if (rc == EOF) {
2034  break;
2035  }
2036  KMP_ASSERT(rc == 3 &&
2037  KMP_STRLEN(perms) == 4); // Make sure all fields are read.
2038 
2039  // Ending address is not included in the region, but beginning is.
2040  if ((addr >= beginning) && (addr < ending)) {
2041  perms[2] = 0; // 3th and 4th character does not matter.
2042  if (strcmp(perms, "rw") == 0) {
2043  // Memory we are looking for should be readable and writable.
2044  found = 1;
2045  }
2046  break;
2047  }
2048  }
2049 
2050  // Free resources.
2051  fclose(file);
2052  KMP_INTERNAL_FREE(name);
2053 #elif KMP_OS_FREEBSD
2054  char *buf;
2055  size_t lstsz;
2056  int mib[] = {CTL_KERN, KERN_PROC, KERN_PROC_VMMAP, getpid()};
2057  rc = sysctl(mib, 4, NULL, &lstsz, NULL, 0);
2058  if (rc < 0)
2059  return 0;
2060  // We pass from number of vm entry's semantic
2061  // to size of whole entry map list.
2062  lstsz = lstsz * 4 / 3;
2063  buf = reinterpret_cast<char *>(kmpc_malloc(lstsz));
2064  rc = sysctl(mib, 4, buf, &lstsz, NULL, 0);
2065  if (rc < 0) {
2066  kmpc_free(buf);
2067  return 0;
2068  }
2069 
2070  char *lw = buf;
2071  char *up = buf + lstsz;
2072 
2073  while (lw < up) {
2074  struct kinfo_vmentry *cur = reinterpret_cast<struct kinfo_vmentry *>(lw);
2075  size_t cursz = cur->kve_structsize;
2076  if (cursz == 0)
2077  break;
2078  void *start = reinterpret_cast<void *>(cur->kve_start);
2079  void *end = reinterpret_cast<void *>(cur->kve_end);
2080  // Readable/Writable addresses within current map entry
2081  if ((addr >= start) && (addr < end)) {
2082  if ((cur->kve_protection & KVME_PROT_READ) != 0 &&
2083  (cur->kve_protection & KVME_PROT_WRITE) != 0) {
2084  found = 1;
2085  break;
2086  }
2087  }
2088  lw += cursz;
2089  }
2090  kmpc_free(buf);
2091 
2092 #elif KMP_OS_DARWIN
2093 
2094  /* On OS X*, /proc pseudo filesystem is not available. Try to read memory
2095  using vm interface. */
2096 
2097  int buffer;
2098  vm_size_t count;
2099  rc = vm_read_overwrite(
2100  mach_task_self(), // Task to read memory of.
2101  (vm_address_t)(addr), // Address to read from.
2102  1, // Number of bytes to be read.
2103  (vm_address_t)(&buffer), // Address of buffer to save read bytes in.
2104  &count // Address of var to save number of read bytes in.
2105  );
2106  if (rc == 0) {
2107  // Memory successfully read.
2108  found = 1;
2109  }
2110 
2111 #elif KMP_OS_NETBSD
2112 
2113  int mib[5];
2114  mib[0] = CTL_VM;
2115  mib[1] = VM_PROC;
2116  mib[2] = VM_PROC_MAP;
2117  mib[3] = getpid();
2118  mib[4] = sizeof(struct kinfo_vmentry);
2119 
2120  size_t size;
2121  rc = sysctl(mib, __arraycount(mib), NULL, &size, NULL, 0);
2122  KMP_ASSERT(!rc);
2123  KMP_ASSERT(size);
2124 
2125  size = size * 4 / 3;
2126  struct kinfo_vmentry *kiv = (struct kinfo_vmentry *)KMP_INTERNAL_MALLOC(size);
2127  KMP_ASSERT(kiv);
2128 
2129  rc = sysctl(mib, __arraycount(mib), kiv, &size, NULL, 0);
2130  KMP_ASSERT(!rc);
2131  KMP_ASSERT(size);
2132 
2133  for (size_t i = 0; i < size; i++) {
2134  if (kiv[i].kve_start >= (uint64_t)addr &&
2135  kiv[i].kve_end <= (uint64_t)addr) {
2136  found = 1;
2137  break;
2138  }
2139  }
2140  KMP_INTERNAL_FREE(kiv);
2141 #elif KMP_OS_OPENBSD
2142 
2143  int mib[3];
2144  mib[0] = CTL_KERN;
2145  mib[1] = KERN_PROC_VMMAP;
2146  mib[2] = getpid();
2147 
2148  size_t size;
2149  uint64_t end;
2150  rc = sysctl(mib, 3, NULL, &size, NULL, 0);
2151  KMP_ASSERT(!rc);
2152  KMP_ASSERT(size);
2153  end = size;
2154 
2155  struct kinfo_vmentry kiv = {.kve_start = 0};
2156 
2157  while ((rc = sysctl(mib, 3, &kiv, &size, NULL, 0)) == 0) {
2158  KMP_ASSERT(size);
2159  if (kiv.kve_end == end)
2160  break;
2161 
2162  if (kiv.kve_start >= (uint64_t)addr && kiv.kve_end <= (uint64_t)addr) {
2163  found = 1;
2164  break;
2165  }
2166  kiv.kve_start += 1;
2167  }
2168 #elif KMP_OS_DRAGONFLY
2169 
2170  // FIXME(DragonFly): Implement this
2171  found = 1;
2172 
2173 #else
2174 
2175 #error "Unknown or unsupported OS"
2176 
2177 #endif
2178 
2179  return found;
2180 
2181 } // __kmp_is_address_mapped
2182 
2183 #ifdef USE_LOAD_BALANCE
2184 
2185 #if KMP_OS_DARWIN || KMP_OS_NETBSD
2186 
2187 // The function returns the rounded value of the system load average
2188 // during given time interval which depends on the value of
2189 // __kmp_load_balance_interval variable (default is 60 sec, other values
2190 // may be 300 sec or 900 sec).
2191 // It returns -1 in case of error.
2192 int __kmp_get_load_balance(int max) {
2193  double averages[3];
2194  int ret_avg = 0;
2195 
2196  int res = getloadavg(averages, 3);
2197 
2198  // Check __kmp_load_balance_interval to determine which of averages to use.
2199  // getloadavg() may return the number of samples less than requested that is
2200  // less than 3.
2201  if (__kmp_load_balance_interval < 180 && (res >= 1)) {
2202  ret_avg = (int)averages[0]; // 1 min
2203  } else if ((__kmp_load_balance_interval >= 180 &&
2204  __kmp_load_balance_interval < 600) &&
2205  (res >= 2)) {
2206  ret_avg = (int)averages[1]; // 5 min
2207  } else if ((__kmp_load_balance_interval >= 600) && (res == 3)) {
2208  ret_avg = (int)averages[2]; // 15 min
2209  } else { // Error occurred
2210  return -1;
2211  }
2212 
2213  return ret_avg;
2214 }
2215 
2216 #else // Linux* OS
2217 
2218 // The function returns number of running (not sleeping) threads, or -1 in case
2219 // of error. Error could be reported if Linux* OS kernel too old (without
2220 // "/proc" support). Counting running threads stops if max running threads
2221 // encountered.
2222 int __kmp_get_load_balance(int max) {
2223  static int permanent_error = 0;
2224  static int glb_running_threads = 0; // Saved count of the running threads for
2225  // the thread balance algorithm
2226  static double glb_call_time = 0; /* Thread balance algorithm call time */
2227 
2228  int running_threads = 0; // Number of running threads in the system.
2229 
2230  DIR *proc_dir = NULL; // Handle of "/proc/" directory.
2231  struct dirent *proc_entry = NULL;
2232 
2233  kmp_str_buf_t task_path; // "/proc/<pid>/task/<tid>/" path.
2234  DIR *task_dir = NULL; // Handle of "/proc/<pid>/task/<tid>/" directory.
2235  struct dirent *task_entry = NULL;
2236  int task_path_fixed_len;
2237 
2238  kmp_str_buf_t stat_path; // "/proc/<pid>/task/<tid>/stat" path.
2239  int stat_file = -1;
2240  int stat_path_fixed_len;
2241 
2242  int total_processes = 0; // Total number of processes in system.
2243  int total_threads = 0; // Total number of threads in system.
2244 
2245  double call_time = 0.0;
2246 
2247  __kmp_str_buf_init(&task_path);
2248  __kmp_str_buf_init(&stat_path);
2249 
2250  __kmp_elapsed(&call_time);
2251 
2252  if (glb_call_time &&
2253  (call_time - glb_call_time < __kmp_load_balance_interval)) {
2254  running_threads = glb_running_threads;
2255  goto finish;
2256  }
2257 
2258  glb_call_time = call_time;
2259 
2260  // Do not spend time on scanning "/proc/" if we have a permanent error.
2261  if (permanent_error) {
2262  running_threads = -1;
2263  goto finish;
2264  }
2265 
2266  if (max <= 0) {
2267  max = INT_MAX;
2268  }
2269 
2270  // Open "/proc/" directory.
2271  proc_dir = opendir("/proc");
2272  if (proc_dir == NULL) {
2273  // Cannot open "/prroc/". Probably the kernel does not support it. Return an
2274  // error now and in subsequent calls.
2275  running_threads = -1;
2276  permanent_error = 1;
2277  goto finish;
2278  }
2279 
2280  // Initialize fixed part of task_path. This part will not change.
2281  __kmp_str_buf_cat(&task_path, "/proc/", 6);
2282  task_path_fixed_len = task_path.used; // Remember number of used characters.
2283 
2284  proc_entry = readdir(proc_dir);
2285  while (proc_entry != NULL) {
2286  // Proc entry is a directory and name starts with a digit. Assume it is a
2287  // process' directory.
2288  if (proc_entry->d_type == DT_DIR && isdigit(proc_entry->d_name[0])) {
2289 
2290  ++total_processes;
2291  // Make sure init process is the very first in "/proc", so we can replace
2292  // strcmp( proc_entry->d_name, "1" ) == 0 with simpler total_processes ==
2293  // 1. We are going to check that total_processes == 1 => d_name == "1" is
2294  // true (where "=>" is implication). Since C++ does not have => operator,
2295  // let us replace it with its equivalent: a => b == ! a || b.
2296  KMP_DEBUG_ASSERT(total_processes != 1 ||
2297  strcmp(proc_entry->d_name, "1") == 0);
2298 
2299  // Construct task_path.
2300  task_path.used = task_path_fixed_len; // Reset task_path to "/proc/".
2301  __kmp_str_buf_cat(&task_path, proc_entry->d_name,
2302  KMP_STRLEN(proc_entry->d_name));
2303  __kmp_str_buf_cat(&task_path, "/task", 5);
2304 
2305  task_dir = opendir(task_path.str);
2306  if (task_dir == NULL) {
2307  // Process can finish between reading "/proc/" directory entry and
2308  // opening process' "task/" directory. So, in general case we should not
2309  // complain, but have to skip this process and read the next one. But on
2310  // systems with no "task/" support we will spend lot of time to scan
2311  // "/proc/" tree again and again without any benefit. "init" process
2312  // (its pid is 1) should exist always, so, if we cannot open
2313  // "/proc/1/task/" directory, it means "task/" is not supported by
2314  // kernel. Report an error now and in the future.
2315  if (strcmp(proc_entry->d_name, "1") == 0) {
2316  running_threads = -1;
2317  permanent_error = 1;
2318  goto finish;
2319  }
2320  } else {
2321  // Construct fixed part of stat file path.
2322  __kmp_str_buf_clear(&stat_path);
2323  __kmp_str_buf_cat(&stat_path, task_path.str, task_path.used);
2324  __kmp_str_buf_cat(&stat_path, "/", 1);
2325  stat_path_fixed_len = stat_path.used;
2326 
2327  task_entry = readdir(task_dir);
2328  while (task_entry != NULL) {
2329  // It is a directory and name starts with a digit.
2330  if (proc_entry->d_type == DT_DIR && isdigit(task_entry->d_name[0])) {
2331  ++total_threads;
2332 
2333  // Construct complete stat file path. Easiest way would be:
2334  // __kmp_str_buf_print( & stat_path, "%s/%s/stat", task_path.str,
2335  // task_entry->d_name );
2336  // but seriae of __kmp_str_buf_cat works a bit faster.
2337  stat_path.used =
2338  stat_path_fixed_len; // Reset stat path to its fixed part.
2339  __kmp_str_buf_cat(&stat_path, task_entry->d_name,
2340  KMP_STRLEN(task_entry->d_name));
2341  __kmp_str_buf_cat(&stat_path, "/stat", 5);
2342 
2343  // Note: Low-level API (open/read/close) is used. High-level API
2344  // (fopen/fclose) works ~ 30 % slower.
2345  stat_file = open(stat_path.str, O_RDONLY);
2346  if (stat_file == -1) {
2347  // We cannot report an error because task (thread) can terminate
2348  // just before reading this file.
2349  } else {
2350  /* Content of "stat" file looks like:
2351  24285 (program) S ...
2352 
2353  It is a single line (if program name does not include funny
2354  symbols). First number is a thread id, then name of executable
2355  file name in paretheses, then state of the thread. We need just
2356  thread state.
2357 
2358  Good news: Length of program name is 15 characters max. Longer
2359  names are truncated.
2360 
2361  Thus, we need rather short buffer: 15 chars for program name +
2362  2 parenthesis, + 3 spaces + ~7 digits of pid = 37.
2363 
2364  Bad news: Program name may contain special symbols like space,
2365  closing parenthesis, or even new line. This makes parsing
2366  "stat" file not 100 % reliable. In case of fanny program names
2367  parsing may fail (report incorrect thread state).
2368 
2369  Parsing "status" file looks more promissing (due to different
2370  file structure and escaping special symbols) but reading and
2371  parsing of "status" file works slower.
2372  -- ln
2373  */
2374  char buffer[65];
2375  ssize_t len;
2376  len = read(stat_file, buffer, sizeof(buffer) - 1);
2377  if (len >= 0) {
2378  buffer[len] = 0;
2379  // Using scanf:
2380  // sscanf( buffer, "%*d (%*s) %c ", & state );
2381  // looks very nice, but searching for a closing parenthesis
2382  // works a bit faster.
2383  char *close_parent = strstr(buffer, ") ");
2384  if (close_parent != NULL) {
2385  char state = *(close_parent + 2);
2386  if (state == 'R') {
2387  ++running_threads;
2388  if (running_threads >= max) {
2389  goto finish;
2390  }
2391  }
2392  }
2393  }
2394  close(stat_file);
2395  stat_file = -1;
2396  }
2397  }
2398  task_entry = readdir(task_dir);
2399  }
2400  closedir(task_dir);
2401  task_dir = NULL;
2402  }
2403  }
2404  proc_entry = readdir(proc_dir);
2405  }
2406 
2407  // There _might_ be a timing hole where the thread executing this
2408  // code get skipped in the load balance, and running_threads is 0.
2409  // Assert in the debug builds only!!!
2410  KMP_DEBUG_ASSERT(running_threads > 0);
2411  if (running_threads <= 0) {
2412  running_threads = 1;
2413  }
2414 
2415 finish: // Clean up and exit.
2416  if (proc_dir != NULL) {
2417  closedir(proc_dir);
2418  }
2419  __kmp_str_buf_free(&task_path);
2420  if (task_dir != NULL) {
2421  closedir(task_dir);
2422  }
2423  __kmp_str_buf_free(&stat_path);
2424  if (stat_file != -1) {
2425  close(stat_file);
2426  }
2427 
2428  glb_running_threads = running_threads;
2429 
2430  return running_threads;
2431 
2432 } // __kmp_get_load_balance
2433 
2434 #endif // KMP_OS_DARWIN
2435 
2436 #endif // USE_LOAD_BALANCE
2437 
2438 #if !(KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_MIC || \
2439  ((KMP_OS_LINUX || KMP_OS_DARWIN) && KMP_ARCH_AARCH64) || \
2440  KMP_ARCH_PPC64 || KMP_ARCH_RISCV64)
2441 
2442 // we really only need the case with 1 argument, because CLANG always build
2443 // a struct of pointers to shared variables referenced in the outlined function
2444 int __kmp_invoke_microtask(microtask_t pkfn, int gtid, int tid, int argc,
2445  void *p_argv[]
2446 #if OMPT_SUPPORT
2447  ,
2448  void **exit_frame_ptr
2449 #endif
2450 ) {
2451 #if OMPT_SUPPORT
2452  *exit_frame_ptr = OMPT_GET_FRAME_ADDRESS(0);
2453 #endif
2454 
2455  switch (argc) {
2456  default:
2457  fprintf(stderr, "Too many args to microtask: %d!\n", argc);
2458  fflush(stderr);
2459  exit(-1);
2460  case 0:
2461  (*pkfn)(&gtid, &tid);
2462  break;
2463  case 1:
2464  (*pkfn)(&gtid, &tid, p_argv[0]);
2465  break;
2466  case 2:
2467  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1]);
2468  break;
2469  case 3:
2470  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2]);
2471  break;
2472  case 4:
2473  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3]);
2474  break;
2475  case 5:
2476  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4]);
2477  break;
2478  case 6:
2479  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2480  p_argv[5]);
2481  break;
2482  case 7:
2483  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2484  p_argv[5], p_argv[6]);
2485  break;
2486  case 8:
2487  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2488  p_argv[5], p_argv[6], p_argv[7]);
2489  break;
2490  case 9:
2491  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2492  p_argv[5], p_argv[6], p_argv[7], p_argv[8]);
2493  break;
2494  case 10:
2495  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2496  p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9]);
2497  break;
2498  case 11:
2499  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2500  p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10]);
2501  break;
2502  case 12:
2503  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2504  p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2505  p_argv[11]);
2506  break;
2507  case 13:
2508  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2509  p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2510  p_argv[11], p_argv[12]);
2511  break;
2512  case 14:
2513  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2514  p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2515  p_argv[11], p_argv[12], p_argv[13]);
2516  break;
2517  case 15:
2518  (*pkfn)(&gtid, &tid, p_argv[0], p_argv[1], p_argv[2], p_argv[3], p_argv[4],
2519  p_argv[5], p_argv[6], p_argv[7], p_argv[8], p_argv[9], p_argv[10],
2520  p_argv[11], p_argv[12], p_argv[13], p_argv[14]);
2521  break;
2522  }
2523 
2524  return 1;
2525 }
2526 
2527 #endif
2528 
2529 #if KMP_OS_LINUX
2530 // Functions for hidden helper task
2531 namespace {
2532 // Condition variable for initializing hidden helper team
2533 pthread_cond_t hidden_helper_threads_initz_cond_var;
2534 pthread_mutex_t hidden_helper_threads_initz_lock;
2535 volatile int hidden_helper_initz_signaled = FALSE;
2536 
2537 // Condition variable for deinitializing hidden helper team
2538 pthread_cond_t hidden_helper_threads_deinitz_cond_var;
2539 pthread_mutex_t hidden_helper_threads_deinitz_lock;
2540 volatile int hidden_helper_deinitz_signaled = FALSE;
2541 
2542 // Condition variable for the wrapper function of main thread
2543 pthread_cond_t hidden_helper_main_thread_cond_var;
2544 pthread_mutex_t hidden_helper_main_thread_lock;
2545 volatile int hidden_helper_main_thread_signaled = FALSE;
2546 
2547 // Semaphore for worker threads. We don't use condition variable here in case
2548 // that when multiple signals are sent at the same time, only one thread might
2549 // be waken.
2550 sem_t hidden_helper_task_sem;
2551 } // namespace
2552 
2553 void __kmp_hidden_helper_worker_thread_wait() {
2554  int status = sem_wait(&hidden_helper_task_sem);
2555  KMP_CHECK_SYSFAIL("sem_wait", status);
2556 }
2557 
2558 void __kmp_do_initialize_hidden_helper_threads() {
2559  // Initialize condition variable
2560  int status =
2561  pthread_cond_init(&hidden_helper_threads_initz_cond_var, nullptr);
2562  KMP_CHECK_SYSFAIL("pthread_cond_init", status);
2563 
2564  status = pthread_cond_init(&hidden_helper_threads_deinitz_cond_var, nullptr);
2565  KMP_CHECK_SYSFAIL("pthread_cond_init", status);
2566 
2567  status = pthread_cond_init(&hidden_helper_main_thread_cond_var, nullptr);
2568  KMP_CHECK_SYSFAIL("pthread_cond_init", status);
2569 
2570  status = pthread_mutex_init(&hidden_helper_threads_initz_lock, nullptr);
2571  KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
2572 
2573  status = pthread_mutex_init(&hidden_helper_threads_deinitz_lock, nullptr);
2574  KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
2575 
2576  status = pthread_mutex_init(&hidden_helper_main_thread_lock, nullptr);
2577  KMP_CHECK_SYSFAIL("pthread_mutex_init", status);
2578 
2579  // Initialize the semaphore
2580  status = sem_init(&hidden_helper_task_sem, 0, 0);
2581  KMP_CHECK_SYSFAIL("sem_init", status);
2582 
2583  // Create a new thread to finish initialization
2584  pthread_t handle;
2585  status = pthread_create(
2586  &handle, nullptr,
2587  [](void *) -> void * {
2588  __kmp_hidden_helper_threads_initz_routine();
2589  return nullptr;
2590  },
2591  nullptr);
2592  KMP_CHECK_SYSFAIL("pthread_create", status);
2593 }
2594 
2595 void __kmp_hidden_helper_threads_initz_wait() {
2596  // Initial thread waits here for the completion of the initialization. The
2597  // condition variable will be notified by main thread of hidden helper teams.
2598  int status = pthread_mutex_lock(&hidden_helper_threads_initz_lock);
2599  KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2600 
2601  if (!TCR_4(hidden_helper_initz_signaled)) {
2602  status = pthread_cond_wait(&hidden_helper_threads_initz_cond_var,
2603  &hidden_helper_threads_initz_lock);
2604  KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
2605  }
2606 
2607  status = pthread_mutex_unlock(&hidden_helper_threads_initz_lock);
2608  KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2609 }
2610 
2611 void __kmp_hidden_helper_initz_release() {
2612  // After all initialization, reset __kmp_init_hidden_helper_threads to false.
2613  int status = pthread_mutex_lock(&hidden_helper_threads_initz_lock);
2614  KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2615 
2616  status = pthread_cond_signal(&hidden_helper_threads_initz_cond_var);
2617  KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
2618 
2619  TCW_SYNC_4(hidden_helper_initz_signaled, TRUE);
2620 
2621  status = pthread_mutex_unlock(&hidden_helper_threads_initz_lock);
2622  KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2623 }
2624 
2625 void __kmp_hidden_helper_main_thread_wait() {
2626  // The main thread of hidden helper team will be blocked here. The
2627  // condition variable can only be signal in the destructor of RTL.
2628  int status = pthread_mutex_lock(&hidden_helper_main_thread_lock);
2629  KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2630 
2631  if (!TCR_4(hidden_helper_main_thread_signaled)) {
2632  status = pthread_cond_wait(&hidden_helper_main_thread_cond_var,
2633  &hidden_helper_main_thread_lock);
2634  KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
2635  }
2636 
2637  status = pthread_mutex_unlock(&hidden_helper_main_thread_lock);
2638  KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2639 }
2640 
2641 void __kmp_hidden_helper_main_thread_release() {
2642  // The initial thread of OpenMP RTL should call this function to wake up the
2643  // main thread of hidden helper team.
2644  int status = pthread_mutex_lock(&hidden_helper_main_thread_lock);
2645  KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2646 
2647  status = pthread_cond_signal(&hidden_helper_main_thread_cond_var);
2648  KMP_CHECK_SYSFAIL("pthread_cond_signal", status);
2649 
2650  // The hidden helper team is done here
2651  TCW_SYNC_4(hidden_helper_main_thread_signaled, TRUE);
2652 
2653  status = pthread_mutex_unlock(&hidden_helper_main_thread_lock);
2654  KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2655 }
2656 
2657 void __kmp_hidden_helper_worker_thread_signal() {
2658  int status = sem_post(&hidden_helper_task_sem);
2659  KMP_CHECK_SYSFAIL("sem_post", status);
2660 }
2661 
2662 void __kmp_hidden_helper_threads_deinitz_wait() {
2663  // Initial thread waits here for the completion of the deinitialization. The
2664  // condition variable will be notified by main thread of hidden helper teams.
2665  int status = pthread_mutex_lock(&hidden_helper_threads_deinitz_lock);
2666  KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2667 
2668  if (!TCR_4(hidden_helper_deinitz_signaled)) {
2669  status = pthread_cond_wait(&hidden_helper_threads_deinitz_cond_var,
2670  &hidden_helper_threads_deinitz_lock);
2671  KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
2672  }
2673 
2674  status = pthread_mutex_unlock(&hidden_helper_threads_deinitz_lock);
2675  KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2676 }
2677 
2678 void __kmp_hidden_helper_threads_deinitz_release() {
2679  int status = pthread_mutex_lock(&hidden_helper_threads_deinitz_lock);
2680  KMP_CHECK_SYSFAIL("pthread_mutex_lock", status);
2681 
2682  status = pthread_cond_signal(&hidden_helper_threads_deinitz_cond_var);
2683  KMP_CHECK_SYSFAIL("pthread_cond_wait", status);
2684 
2685  TCW_SYNC_4(hidden_helper_deinitz_signaled, TRUE);
2686 
2687  status = pthread_mutex_unlock(&hidden_helper_threads_deinitz_lock);
2688  KMP_CHECK_SYSFAIL("pthread_mutex_unlock", status);
2689 }
2690 #else // KMP_OS_LINUX
2691 void __kmp_hidden_helper_worker_thread_wait() {
2692  KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2693 }
2694 
2695 void __kmp_do_initialize_hidden_helper_threads() {
2696  KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2697 }
2698 
2699 void __kmp_hidden_helper_threads_initz_wait() {
2700  KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2701 }
2702 
2703 void __kmp_hidden_helper_initz_release() {
2704  KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2705 }
2706 
2707 void __kmp_hidden_helper_main_thread_wait() {
2708  KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2709 }
2710 
2711 void __kmp_hidden_helper_main_thread_release() {
2712  KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2713 }
2714 
2715 void __kmp_hidden_helper_worker_thread_signal() {
2716  KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2717 }
2718 
2719 void __kmp_hidden_helper_threads_deinitz_wait() {
2720  KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2721 }
2722 
2723 void __kmp_hidden_helper_threads_deinitz_release() {
2724  KMP_ASSERT(0 && "Hidden helper task is not supported on this OS");
2725 }
2726 #endif // KMP_OS_LINUX
2727 
2728 // end of file //
#define KMP_INIT_PARTITIONED_TIMERS(name)
Initializes the partitioned timers to begin with name.
Definition: kmp_stats.h:937