Claire Xenia Wolf
https://yosyshq.net/yosys/

November 13, 2022

T S S GRS November 13,2022 17150

Yosys is the first full-featured open source software for Verilog HDL
synthesis. It supports most of Verilog-2005 and is well tested with
real-world designs from the ASIC and FPGA world.

Learn how to use Yosys to create your own custom synthesis flows and
discover why open source HDL synthesis is important for researchers,
hobbyists, educators and engineers alike.

This presentation covers basic concepts of Yosys, writing synthesis scripts
for a wide range of applications, creating Yosys scripts for various
non-synthesis applications (such as formal equivalence checking) and
writing extensions to Yosys using the C++ API.

_ Yosys Open SYnthesis Suite November 13, 2022 2 /150

Hil I'm Claire Xenia Wolf.

| like writing open source software. For example:

@ Yosys

@ OpenSCAD (now maintained by Marius Kintel)

@ SPL (a not very popular scripting language)
EmbedVM (a very simple compiler+vm for 8 bit micros)
Lib(X)SVF (a library to play SVF/XSVF files over JTAG)
ROCK Linux (discontinued since 2010)

T S NGRS November 13,2022 3150

Yosys is an Open Source Verilog synthesis tool, and more.

Outline of this presentation:
@ Introduction to the field and Yosys
@ Yosys by example: synthesis
@ Yosys by example: advanced synthesis
@ Yosys by example: beyond synthesis
o Writing Yosys extensions in C4++

T S NGRS November 13,2022 4150

Section 1

o System Level

High Level

Behavioral Level
Register-Transfer Level (RTL)
Logical Gate Level

Physical Gate Level
Switch Level

Overall view of the circuit. E.g. block-diagrams or instruction-set
architecture descriptions.

T SR EV AT November 13,2022 6150

@ System Level

High Level

Behavioral Level
Register-Transfer Level (RTL)
Logical Gate Level

Physical Gate Level

Switch Level

Functional implementation of circuit in high-level programming language
(C, C++, SystemC, Matlab, Python, etc.).

T SR E VAT November 13,2022 6150

@ System Level

High Level

Behavioral Level
Register-Transfer Level (RTL)
Logical Gate Level

Physical Gate Level

Switch Level

Cycle-accurate description of circuit in hardware description language
(Verilog, VHDL, etc.).

T TSGR E VAT November 13,2022 6150

@ System Level

High Level

Behavioral Level
Register-Transfer Level (RTL)
Logical Gate Level

Physical Gate Level

Switch Level

List of registers (flip-flops) and logic functions that calculate the next
state from the previous one. Usually a netlist utilizing high-level cells such
as adders, multipliers, multiplexer, etc.

T SR E VAT November 13,2022 6150

@ System Level

High Level

Behavioral Level
Register-Transfer Level (RTL)
Logical Gate Level

Physical Gate Level

Switch Level

Netlist of single-bit registers and basic logic gates (such as AND, OR,
NOT, etc.). Popular form: And-Inverter-Graphs (AlGs) with pairs of
primary inputs and outputs for each register bit.

T SR E VAT November 13,2022 6150

@ System Level

High Level

Behavioral Level
Register-Transfer Level (RTL)
Logical Gate Level

Physical Gate Level

Switch Level

Netlist of cells that actually are available on the target architecture (such
as CMOS gates in an ASIC or LUTs in an FPGA). Optimized for area,
power, and/or speed (static timing or number of logic levels).

T TSGR E VAT November 13,2022 6150

@ System Level

High Level

Behavioral Level
Register-Transfer Level (RTL)
Logical Gate Level

Physical Gate Level

Switch Level

Netlist of individual transistors. I

T SR EV AT November 13,2022 6150

Synthesis Tools (such as Yosys) can transform HDL code to circuits:

System Design

High Level Synthesis (HLS)

Behavioral Synthesis

RTL Synthesis Yosys

Logic Synthesis

Cell Library

_ Yosys Open SYnthesis Suite November 13, 2022 7/150

Things Yosys can do:
@ Read and process (most of) modern Verilog-2005 code.
@ Perform all kinds of operations on netlist (RTL, Logic, Gate).

o Perform logic optimizations and gate mapping with ABC!.

Things Yosys can't do:
@ Process high-level languages such as C/C++/SystemC.
o Create physical layouts (place&route).

A typical flow combines Yosys with with a low-level implementation tool,
such as Qflow? for ASIC designs.

1http://www.eecs.berkeley.edu/~alanmi/abc/
2http://opencircuitdesign.com/qflow/

_ Yosys Open SYnthesis Suite November 13, 2022 8/150

http://www.eecs.berkeley.edu/~alanmi/abc/
http://opencircuitdesign.com/qflow/

A (usually short) synthesis script controls Yosys.
This scripts contain three types of commands:

e Frontends, that read input files (usually Verilog).
o Passes, that perform transformations on the design in memory.

o Backends, that write the design in memory to a file (various formats
are available: Verilog, BLIF, EDIF, SPICE, BTOR, ...).

High-Level Low-Level

Frontend

HDL Internal Format (RTLIL) Netlist

_ Yosys Open SYnthesis Suite November 13, 2022 9 /150

Verilog Frontend : VHDL Frontend ! Other Frontends

AST Frontend

Passes

Verilog Backend RTLIL Backend Other Backends

November 13, 2022 10/ 150

The following slides cover an example project. This project contains three
files:

o A simple ASIC synthesis script
o A digital design written in Verilog
@ A simple CMOS cell library

Direct link to the files:
https://github.com/YosysHQ/yosys/tree/master/manual/PRESENTATION_Intro

T NS GEEE VAT November 13,2022 117150

https://github.com/YosysHQ/yosys/tree/master/manual/PRESENTATION_Intro

read design

read_verilog counter.v

hierarchy -check -top counter

the high-level stuff
proc; opt; fsm; opt; memory; opt

mapping to internal cell library
techmap; opt

mapping flip-flops to mycells.lib
dfflibmap -liberty mycells.lib

mapping logic to mycells.lib
abc -liberty mycells.lib

cleanup

clean

write synthesized design
write_verilog synth.v

Read Verilog source file and convert to internal representation.

T T NS GEEE VAT November 13,2022 12/150

read design

read_verilog counter.v

hierarchy -check -top counter

the high-level stuff
proc; opt; fsm; opt; memory; opt

mapping to internal cell library
techmap; opt

mapping flip-flops to mycells.lib
dfflibmap -liberty mycells.lib

mapping logic to mycells.lib
abc -liberty mycells.lib

cleanup

clean

write synthesized design
write_verilog synth.v

Elaborate the design hierarchy. Should always be the first command after
reading the design. Can re-run AST front-end.

T NS GEEE VAT November 13,2022 12/150

read design # mapping flip-flops to mycells.lib

read_verilog counter.v dfflibmap -liberty mycells.lib

hierarchy -check -top counter
mapping logic to mycells.lib

the high-level stuff abc -liberty mycells.lib

EE; opt; fsm; opt; memory; opt
cleanup

mapping to internal cell library clean

techmap; opt
write synthesized design

write_verilog synth.v

Convert “processes” (the internal representation of behavioral Verilog
code) into multiplexers and registers.

T NS GEEE VAT November 13,2022 12/150

read design

read_verilog counter.v
hierarchy -check -top counter

the high-level stuff
proc; [; fsm; opt; memory; opt

mapping to internal cell library
techmap; opt

mapping flip-flops to mycells.lib
dfflibmap -liberty mycells.lib

mapping logic to mycells.lib
abc -liberty mycells.lib

cleanup

clean

write synthesized design
write_verilog synth.v

Perform some basic optimizations and cleanups.

T T SRR E VAT November 13,2022 12/150

read design

read_verilog counter.v
hierarchy -check -top counter

the high-level stuff
proc; opt; [&0; opt; memory; opt

mapping to internal cell library
techmap; opt

mapping flip-flops to mycells.lib
dfflibmap -liberty mycells.lib

mapping logic to mycells.lib
abc -liberty mycells.lib

cleanup

clean

write synthesized design
write_verilog synth.v

Analyze and optimize finite state machines.

T S GEEE VAT November 13,2022 12/150

read design

read_verilog counter.v
hierarchy -check -top counter

the high-level stuff
proc; opt; fsm; ELEH; memory; opt

mapping to internal cell library
techmap; opt

mapping flip-flops to mycells.lib
dfflibmap -liberty mycells.lib

mapping logic to mycells.lib
abc -liberty mycells.lib

cleanup

clean

write synthesized design
write_verilog synth.v

Perform some basic optimizations and cleanups.

T T SRR E VAT November 13,2022 12/150

read design

read_verilog counter.v
hierarchy -check -top counter

the high-level stuff
proc; opt; fsm; opt; [EIE]; opt

mapping to internal cell library
techmap; opt

mapping flip-flops to mycells.lib
dfflibmap -liberty mycells.lib

mapping logic to mycells.lib
abc -liberty mycells.lib

cleanup

clean

write synthesized design
write_verilog synth.v

Analyze memories and create circuits to implement them.

T T NS GEEE VAT November 13,2022 12/150

read design

read_verilog counter.v
hierarchy -check -top counter

the high-level stuff
proc; opt; fsm; opt; memory;

mapping to internal cell library
techmap; opt

mapping flip-flops to mycells.lib
dfflibmap -liberty mycells.lib

mapping logic to mycells.lib
abc -liberty mycells.lib

cleanup

clean

write synthesized design
write_verilog synth.v

Perform some basic optimizations and cleanups.

T T SRR E VAT November 13,2022 12/150

read design

read_verilog counter.v
hierarchy -check -top counter

the high-level stuff
proc; opt; fsm; opt; memory; opt

mapping to internal cell library

cechnap IR

mapping flip-flops to mycells.lib
dfflibmap -liberty mycells.lib

mapping logic to mycells.lib
abc -liberty mycells.lib

cleanup

clean

write synthesized design
write_verilog synth.v

Map coarse-grain RTL cells (adders, etc.) to fine-grain logic gates (AND,
OR, NOT, etc.).

T NS GEEE VAT November 13,2022 12/150

read design

read_verilog counter.v
hierarchy -check -top counter

the high-level stuff
proc; opt; fsm; opt; memory; opt

mapping to internal cell library
techmap;

mapping flip-flops to mycells.lib
dfflibmap -liberty mycells.lib

mapping logic to mycells.lib
abc -liberty mycells.lib

cleanup

clean

write synthesized design
write_verilog synth.v

Perform some basic optimizations and cleanups.

T T SRR E VAT November 13,2022 12/150

read design

read_verilog counter.v
hierarchy -check -top counter

the high-level stuff
proc; opt; fsm; opt; memory; opt

mapping to internal cell library
techmap; opt

mapping flip-flops to mycells.lib
dfflibmap -liberty mycells.lib

mapping logic to mycells.lib
abc -liberty mycells.lib

cleanup

clean

write synthesized design
write_verilog synth.v

Map registers to available hardware flip-flops.

T T NS GEEE VAT November 13,2022 12/150

read design

read_verilog counter.v
hierarchy -check -top counter

the high-level stuff
proc; opt; fsm; opt; memory; opt

mapping to internal cell library
techmap; opt

mapping flip-flops to mycells.lib
dfflibmap -liberty mycells.lib

mapping logic to mycells.lib

abc -liberty mycells.lib

cleanup

clean

write synthesized design
write_verilog synth.v

Map logic to available hardware gates.

T T NS GEEE VAT November 13,2022 12/150

read design

read_verilog counter.v
hierarchy -check -top counter

the high-level stuff
proc; opt; fsm; opt; memory; opt

mapping to internal cell library
techmap; opt

mapping flip-flops to mycells.lib
dfflibmap -liberty mycells.lib

mapping logic to mycells.lib
abc -liberty mycells.lib

cleanup

write synthesized design
write_verilog synth.v

Clean up the design (just the last step of opt).

T T NS GEEE VAT November 13,2022 12/150

read design

read_verilog counter.v
hierarchy -check -top counter

the high-level stuff
proc; opt; fsm; opt; memory; opt

mapping to internal cell library
techmap; opt

mapping flip-flops to mycells.lib
dfflibmap -liberty mycells.lib

mapping logic to mycells.lib
abc -liberty mycells.lib

cleanup
clean

write synthesized design

write_verilog synth.v

Write final synthesis result to output file.

T T S GEEE VAT November 13,2022 12/150

module counter (clk, rst, en, count);

input clk, rst, en;
output reg [1:0] count;

always @(posedge clk)
if (rst)
count <= 2'do;
else if (en)

count <= count + 2'd1l;

endmodule

T NS GEEE VAT November 13,2022 13150

library(demo) {
cell (BUF) {

area: 6;

pin(A) { direction:
pin(Y) { direction:
function:

}
cell (NOT) {

area: 3;

pin(A) { direction:
pin(Y) { direction:
function:

}
cell (NAND) {
area: 4;

pin(A) { direction:
pin(B) { direction:
pin(Y) { direction:

function:

cell (NOR) {

area: 4;
pin(A) { direction: input; }
pin(B) { direction: input; }
pin(Y) { direction: output;
function: "(A+B)'"; }
3}
cell (DFF) {
area: 18;
ff(IQ, IQN) { clocked_on: C;
next_state: D; }
pin(C) { direction: input;
clock: true; }
pin(D) { direction: input; }
pin(Q) { direction: output;
function: "IQ"; }
3
November 13, 2022 14 /150

read_verilog counter.v

hierarchy -check -top counter

f PROC $1

counter.v:6.2-10.26

November 13, 2022 15 /150

proc; opt; fsm; opt; memory; opt

A
(o ~fp | 520 w
W CLK @

+ D $10

® EN | $sdffe | @
SRST

clk

November 13, 2022 16 /150

techmap; opt

A $99 v C ﬂl]\
| B | $_XOR_ \T $92
& 1 $ SDFFE pPoP_ | Q
clk 'R |
- —
count[0]
$119
rst qA $ NOT_| Y \i
D] s g
E | $ SDFFE PPOP_
'R |

T SRR E VAT November 13,2022 17150

dfflibmap -liberty mycells.lib
abc -liberty mycells.lib
clean

count(0]

November 13, 2022 18 /150

Yosys contains a default (recommended example) synthesis script in form
of the synth command. The following commands are executed by this
synthesis command:

begin: fine:
hierarchy -check [-top <top>] opt -fast -full
memory_map
coarse: opt -full
proc techmap
opt opt -fast
wreduce
alumacc abc:
share abc -fast
opt opt -fast
fsm
opt -fast

memory -nomap

opt_clean

T SRR E VAT November 13,2022 19150

Command reference:

@ Use “help” for a command list and “help command’ for details.
@ Or run “yosys -H" or “yosys -h command".

o Or go to https://yosyshqg.net/yosys/documentation.html.

Commands for design navigation and investigation:

cd # a shortcut for 'select -module <name>'

1s # list modules or objects in modules

dump # print parts of the design in RTLIL format
show # generate schematics using graphviz

select # modify and view the list of selected objects

Commands for executing scripts or entering interactive mode:

shell # enter interactive command mode
history # show last interactive commands
script # execute commands from script file
tcl # execute a TCL script file

T T NSRS November 13,2022 20150

https://yosyshq.net/yosys/documentation.html

Commands for reading and elaborating the design:

read_rtlil # read modules from RTLIL file
read_verilog # read modules from Verilog file
hierarchy # check, expand and clean up design hierarchy

Commands for high-level synthesis:

proc # translate processes to netlists

fsm # extract and optimize finite state machines
memory # translate memories to basic cells

opt # perform simple optimizations

Commands for technology mapping:

techmap # generic technology mapper

abc # use ABC for technology mapping

dfflibmap # technology mapping of flip-flops

hilomap # technology mapping of constant hi- and/or lo-drivers
iopadmap # technology mapping of i/o pads (or buffers)

flatten # flatten design

T T NS GEEE VAT November 13,2022 21150

Commands for writing the results:

write_blif
write_btor

write design to BLIF file
write design to BTOR file
write_edif write design to EDIF netlist file
write design to RTLIL file

write design to SPICE netlist file

write_rtlil

write_spice

H O H H H H R

write_verilog write design to Verilog file

Script-Commands for standard synthesis tasks:

synth # generic synthesis script
synth_xilinx # synthesis for Xilinx FPGAs

Commands for model checking:

sat # solve a SAT problem in the circuit
miter # automatically create a miter circuit
scc # detect strongly connected components (logic loops)

and many many more.
Claire Xenia Wolf (https://yosyshq.net/yosys ~ Yosys Open SYnthesis Suite November 13, 2022 22 /150

module detectprime(a, y);
input [4:0] a;
output y;

integer i, j;
reg [31:0] 1lut;

initial begin

for (i = 0; 1 < 32; i =

lut[il = 1 > 1;

i+1) begin

for (j = 2; jxj <= i; j = j+1)

if (i % j == 0)
lutlil = o;
end
end

assign y = lutlal;
endmodule

November 13, 2022

23/150

module carryadd(a, b, y);
parameter WIDTH = 8;
input [WIDTH-1:0] a, b;
output [WIDTH-1:0] y;

genvar i;
generate
for (i = 0; i < WIDTH; i = i+1) begin:STAGE
wire INT = a[il, IN2 = b[il;
wire C, Y;
if (i == o)
assign C = INT & IN2, Y = IN1 * IN2;
else
assign C = (INT & IN2) | ((IN1 | IN2) & STAGE[i-11.C),
Y INT ~ IN2 * STAGE[i-1].C;
assign y[i]l = VY;

end
endgenerate
endmodule

B NS GEEE VAT November 13,2022 24150

module cam(clk, wr_enable, wr_addr, wr_data, rd_data, rd_addr, rd_match);

parameter WIDTH = 8;
parameter DEPTH = 16;
localparam ADDR_BITS = $clog2(DEPTH-1);

input clk, wr_enable;

input [ADDR_BITS-1:0] wr_addr;
input [WIDTH-1:0] wr_data, rd_data;
output reg [ADDR_BITS-1:0] rd_addr;
output reg rd_match;

integer i;
reg [WIDTH-1:0] mem [@:DEPTH-11;

always @(posedge clk) begin
rd_addr <= 'bx;
rd_match <= 0;
for (i = 0; i < DEPTH; i = i+1)
if (mem[i] == rd_data) begin
rd_addr <= i;
rd_match <= 1;
end
if (wr_enable)
mem[wr_addr] <= wr_data;
end

endmodule

November 13, 2022

25 /150

o Tri-state logic
@ The wor/wand wire types (maybe for 0.5)
o Latched logic (is synthesized as logic with feedback loops)

@ Some non-synthesizable features that should be ignored in synthesis
are not supported by the parser and cause a parser error (file a bug
report if you encounter this problem)

B NS GEEE VAT November 13,2022 26150

Continuously checking the correctness of Yosys and making sure that new
features do not break old ones is a high priority in Yosys.

Two external test suites have been built for Yosys: VlogHammer and
yosys-bigsim (see next slides)

In addition to that, yosys comes with =200 test cases used in “make test”.

A debug build of Yosys also contains a lot of asserts and checks the
integrity of the internal state after each command.

_ Yosys Open SYnthesis Suite November 13, 2022 27 /150

VlogHammer is a Verilog regression test suite developed to test the
different subsystems in Yosys by comparing them to each other and to the
output created by some other tools (Xilinx Vivado, Xilinx XST, Altera
Quartus 11, ...).

Yosys Subsystems tested: Verilog frontend, const folding, const eval,
technology mapping, simulation models, SAT models.

Thousands of auto-generated test cases containing code such as:

assign y9 = $signed (((+$signed((*(6'd2 ** a2))))<s$unsigned($unsigned(((+a3))))));
assign y10 = (-((+((+{2{(~"p13)3})))*~(!1{{b5,b1,a0},(al&p12),(a4+a3)})));
assign y11 = (~&(-{(-3"'sd3),($unsigned($signed($unsigned({p@,b4,b13))))}));

Some bugs in Yosys where found and fixed thanks to VlogHammer. Over
50 bugs in the other tools used as external reference where found and
reported so far.

_ Yosys Open SYnthesis Suite November 13, 2022 28 /150

yosys-bigsim is a collection of real-world open-source Verilog designs and
test benches. yosys-bigsim compares the testbench outputs of simulations
of the original Verilog code and synthesis results.

The following designs are included in yosys-bigsim (excerpt):
@ openmsp430 — an MSP430 compatible 16 bit CPU

aes_5cycle_2stage — an AES encryption core

softusb_navre — an AVR compatible 8 bit CPU

amber23 — an ARMv2 compatible 32 bit CPU

1m32 — another 32 bit CPU from Lattice Semiconductor

verilog-pong — a hardware pong game with VGA output

elliptic_curve_group — ECG point-add and point-scalar-mul core

reed_solomon_decoder — a Reed-Solomon Error Correction Decoder

_ Yosys Open SYnthesis Suite November 13, 2022 29 /150

o Cost (also applies to “free as in free beer” solutions)
@ Availability and Reproducibility
@ Framework- and all-in-one-aspects

@ Educational Tool

Yosys is open source under the ISC license.

S GEEE VAT November 13,2022 30150

o Cost (also applies to “free as in free beer” solutions):

Today the cost for a mask set in 180 nm technology is far less than
the cost for the design tools needed to design the mask layouts. Open
Source ASIC flows are an important enabler for ASIC-level Open
Source Hardware.

@ Availability and Reproducibility:
If you are a researcher who is publishing, you want to use tools that
everyone else can also use. Even if most universities have access to all
major commercial tools, you usually do not have easy access to the
version that was used in a research project a couple of years ago.
With Open Source tools you can even release the source code of the
tool you have used alongside your data.

_ Yosys Open SYnthesis Suite November 13, 2022 31/150

@ Framework:

Yosys is not only a tool. It is a framework that can be used as basis
for other developments, so researchers and hackers alike do not need
to re-invent the basic functionality. Extensibility was one of Yosys'
design goals.

o All-in-one:
Because of the framework characteristics of Yosys, an increasing
number of features become available in one tool. Yosys not only can
be used for circuit synthesis but also for formal equivalence checking,
SAT solving, and for circuit analysis, to name just a few other
application domains. With proprietary software one needs to learn a
new tool for each of these applications.

_ Yosys Open SYnthesis Suite November 13, 2022 32/150

@ Educational Tool:

Proprietary synthesis tools are at times very secretive about their inner
workings. They often are “black boxes". Yosys is very open about its
internals and it is easy to observe the different steps of synthesis.

Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.

_ Yosys Open SYnthesis Suite November 13, 2022 33/150

Synthesis of final production designs

Pre-production synthesis (trial runs before investing in other tools)
Conversion of full-featured Verilog to simple Verilog

Conversion of Verilog to other formats (BLIF, BTOR, etc)
Demonstrating synthesis algorithms (e.g. for educational purposes)

Framework for experimenting with new algorithms

Framework for building custom flows3

3Not limited to synthesis but also formal verification, reverse engineering, ...

_ Yosys Open SYnthesis Suite November 13, 2022 34 /150

@ Ongoing PhD project on coarse grain synthesis
Johann Glaser and C. Wolf. Methodology and Example-Driven Interconnect
Synthesis for Designing Heterogeneous Coarse-Grain Reconfigurable Architectures.
In Jan Haase, editor, Models, Methods, and Tools for Complex Chip Design.
Lecture Notes in Electrical Engineering. Volume 265, 2014, pp 201-221. Springer,
2013.

o | know several people that use Yosys simply as Verilog frontend for
other flows (using either the BLIF and BTOR backends).

@ | know some analog chip designers that use Yosys for small digital
control logic because it is simpler than setting up a commercial flow.

_ Yosys Open SYnthesis Suite November 13, 2022 35/150

o Efabless

o Not much information on the website (http://efabless.com) yet.

Very cheap 180nm prototyping process (partnering with various fabs)

A semiconductor company, NOT an EDA company
Web-based design environment

o HDL Synthesis using Yosys
Custom place&route tool

o efabless is building an Open Source IC as reference design.
(to be announced soon: http://www.openic.io)

T T NS GEEEV AT November 13,2022 36150

http://efabless.com
http://www.openic.io

Main development OS: Kubuntu 14.04
There is a PPA for ubuntu (not maintained by me)
Any current Debian-based system should work out of the box

When building on other Linux distributions:

o Needs compiler with some C++11 support
o See README file for build instructions
o Post to the subreddit if you get stuck

Ported to OS X (Darwin) and OpenBSD
Native win32 build with VisualStudio
Cross win32 build with MXE

_ Yosys Open SYnthesis Suite November 13, 2022 37 /150

o Icarus Verilog
Verilog Simulation (and also a good syntax checker)

http://iverilog.icarus.com/

o Qflow (incl. TimberWolf, grouter and Magic)
A complete ASIC synthesis flow, using Yosys and ABC

http://opencircuitdesign.com/qgflow/

e ABC
Logic optimization, technology mapping, and more

http://www.eecs.berkeley.edu/~alanmi/abc/

T SR E VAT November 13,2022 38150

http://iverilog.icarus.com/
http://opencircuitdesign.com/qflow/
http://www.eecs.berkeley.edu/~alanmi/abc/

...as an active user:
Use Yosys for on your own projects
. even if you are not using it as final synthesis tool

Join the discussion on the Subreddit

Report bugs and send in feature requests

.. as a developer:
@ Use Yosys as environment for your (research) work
@ .. you might also want to look into ABC for logic-level stuff
o Fork the project on github or create loadable plugins
@ We need a VHDL frontend or a good VHDL-to-Verilog converter

_ Yosys Open SYnthesis Suite November 13, 2022 39 /150

o Website:
https://yosyshq.net/yosys/

@ Manual, Command Reference, Application Notes:

https://yosyshq.net/yosys/documentation.html

@ Instead of a mailing list we have a SubReddit:

http://www.reddit.com/r/yosys/

@ Direct link to the source code:

https://github.com/YosysHQ/yosys

T T SRR E VAT November 13,2022 40150

https://yosyshq.net/yosys/
https://yosyshq.net/yosys/documentation.html
http://www.reddit.com/r/yosys/
https://github.com/YosysHQ/yosys

o Yosys is a powerful tool and framework for Verilog synthesis.
@ It uses a command-based interface and can be controlled by scripts.

@ By combining existing commands and implementing new commands
Yosys can be used in a wide range of application far beyond simple
synthesis.

Questions?

https://yosyshqg.net/yosys/

T S S GEEE VAT November 13,2022 417150

https://yosyshq.net/yosys/

Section 2

Reading and elaborating the design

Higher-level synthesis and optimization

Converting always-blocks to logic and registers

o Perform coarse-grain optimizations (resource sharing, const folding, ...)
e Handling of memories and other coarse-grain blocks

o Extracting and optimizing finite state machines

Convert remaining logic to bit-level logic functions
Perform optimizations on bit-level logic functions

Map bit-level logic gates and registers to cell library

Write results to output file

_ Yosys Open SYnthesis Suite November 13, 2022 43 /150

read_verilog filel.v
read_verilog -I include_dir -D enable_foo -D WIDTH=12 file2.v

read_verilog -lib cell_library.v

verilog_defaults -add -I include_dir
read_verilog file3.v

read_verilog file4.v
verilog_defaults -clear

verilog_defaults -push
verilog_defaults -add -I include_dir
read_verilog file5.v

read_verilog file6.v
verilog_defaults -pop

November 13, 2022

44/150

During design elaboration Yosys figures out how the modules are
hierarchically connected. It also re-runs the AST parts of the Verilog
frontend to create all needed variations of parametric modules.

simplest form. at least this version should be used after reading all input files
#

hierarchy

recommended form. fails if parts of the design hierarchy are missing, removes

everything that is unreachable from the top module, and marks the top module.
#

hierarchy -check -top top_module

T SR E VAT November 13,2022 45150

The Verilog frontend converts always-blocks to RTL netlists for the
expressions and “processes” for the control- and memory elements.

The proc command transforms this “processes” to netlists of RTL
multiplexer and register cells.

The proc command is actually a macro-command that calls the following
other commands:

proc_clean # remove empty branches and processes
proc_rmdead # remove unreachable branches
proc_init # special handling of "initial” blocks
proc_arst # identify modeling of async resets
proc_mux # convert decision trees to multiplexer networks
proc_dff # extract registers from processes

#

proc_clean if all went fine, this should remove all the processes

Many commands can not operate on modules with “processes” in them.
Usually a call to proc is the first command in the actual synthesis
procedure after design elaboration.

_ Yosys Open SYnthesis Suite November 13, 2022 46 /150

module test(input D, C, R, output reg Q); read_verilog proc_01.v

always @(posedge C, posedge R) hierarchy -check -top test
if (R) proc;;
Q <= 0;
else
Q <= D;
endmodule

ARST

$2
CLK | gadtr | Q @

A0

November 13, 2022 47 /150

module test(input D, C, R, RV, read_verilog proc_02.v

output reg Q); hierarchy -check -top test
always @(posedge C, posedge R) proc;;
if (R)
Q <= RV;
else
Q <= D;
endmodule

AD

ALOAD $2
Cik | salatf | ©

* November 13,2022 48150

read_verilog proc_03.v
hierarchy -check -top test

proc;;

A
$2
B $mux
S

module test(input A, B, C, D, E,
output reg Y);

always @* begin

Y <= A;
if (B)
Y <= C;
if (D)
Y <= E;
end
endmodule
A
$4
B $mux Y
S

November 13, 2022 49 /150

The opt command implements a series of simple optimizations. It also is a
macro command that calls other commands:

opt_expr #
opt_merge -nomux #

do
opt_muxtree
opt_reduce
opt_merge
opt_rmdff

opt_clean

H O H H H H R

opt_expr

while [changed design]

The command clean can

const folding and simple expression rewriting

merging identical cells

remove never-active branches from multiplexer tree
consolidate trees of boolean ops to reduce functions
merging identical cells

remove/simplify registers with constant inputs
remove unused objects (cells, wires) from design

const folding and simple expression rewriting

be used as alias for opt_clean. And ;; can be used

as shortcut for clean. For example:

proc; opt; memory; opt_expr;; fsm;;

T NS GEEE VAT November 13,2022 50150

read_verilog opt_01.v
hierarchy -check -top test
opt

module test(input A, B, output Y);
assign Y = A? A?2B : 1'bl : B;
endmodule

BUF

November 13, 2022 51 /150

read_verilog opt_02.v module test(input A, output Y, Z);
hierarchy -check -top test assign Y = A == A, Z = A != A;
opt endmodule

BUF

BUF

November 13, 2022 52 /150

read_verilog opt_03.v
hierarchy -check -top test

opt

$2
$add

module test(input [3:0] A, B,
output [3:0] Y, Z);
assign Y = A + B, Z = B + A;

endmodule

November 13, 2022 53 /150

module test(input CLK, ARST, read_verilog opt_04.v
output [7:0] Q1, Q2, Q3); hierarchy -check -top test
proc; opt

wire NO_CLK = 0;

always @(posedge CLK, posedge ARST) @
if (ARST)

always @(posedge NO_CLK, posedge ARST) 8'00101010 o

if (ARST)
02 <= 42; 0 BUF @
else
Q2 <= 23; [:::::]
always @(posedge CLK)
Q3 <= 42;
endmodule

November 13, 2022 54 /150

Usually it does not hurt to call opt after each regular command in the
synthesis script. But it increases the synthesis time, so it is favourable to
only call opt when an improvement can be achieved.

The designs in yosys-bigsim are a good playground for experimenting with
the effects of calling opt in various places of the flow.

It generally is a good idea to call opt before inherently expensive
commands such as sat or freduce, as the possible gain is much higher in
this cases as the possible loss.

The clean command on the other hand is very fast and many commands
leave a mess (dangling signal wires, etc). For example, most commands do
not remove any wires or cells. They just change the connections and
depend on a later call to clean to get rid of the now unused objects. So
the occasional ;; is a good idea in every synthesis script.

_ Yosys Open SYnthesis Suite November 13, 2022 55 /150

In the RTL netlist, memory reads and writes are individual cells. This
makes consolidating the number of ports for a memory easier. The memory
transforms memories to an implementation. Per default that is logic for
address decoders and registers. It also is a macro command that calls
other commands:

this merges registers into the memory read- and write cells.

memory_dff

this collects all read and write cells for a memory and transforms them
into one multi-port memory cell.

memory_collect

this takes the multi-port memory cell and transforms it to address decoder
logic and registers. This step is skipped if "memory"” is called with -nomap.

memory_map

Usually it is preferred to use architecture-specific RAM resources for
memory. For example:

memory -nomap; techmap -map my_memory_map.v; memory_map

_ Yosys Open SYnthesis Suite November 13, 2022 56 /150

read_verilog memory_01.v module test(input
input

hierarchy -check -top test
memory; opt

reg [7:0] mem [0

always @(posedge

mem[ADDR] <=

DOUT <= mem[

proc;;

end
endmodule

{ CLK [srdregl0]
s [|- o)

CLK, ADDR,
[7:0] DIN,
output reg [7:0] DOUT);
0115

CLK) begin
DIN;

ADDRT;

November 13, 2022

57 /150

module test(

input WR1_CLK, WR2_CLK,
input WRT_WEN, WR2_MWEN,
input [7:0] WR1_ADDR, WR2_ADDR,
input [7:0] WR1_DATA, WR2_DATA,
input RD1_CLK, RD2_CLK,
input [7:0] RD1_ADDR, RD2_ADDR,

output reg [7:6] RDI_DATA, RD2_DATA
);

reg [7:0] memory [0:255];
always @(posedge WR1_CLK)
if (WRT_WEN)
memory [WRT_ADDR] <= WR1_DATA;
always @(posedge WR2_CLK)
if (WR2_WEN)

memory [WR2_ADDR] <= WR2_DATA;

always @(posedge RD1_CLK)
RD1_DATA <= memory[RD1_ADDRI; WR2_DATA

always @(posedge RD2_CLK)
RD2_DATA <= memory[RD2_ADDR];

endmodule

read_verilog memory_02.v
hierarchy -check -top test
proc;; memory -nomap

opt -mux_undef -mux_bool

memory

smem_v2 | RD-DATA 10

November 13, 2022

RD1_DATA
RD2_ DATA

58 /150

The fsm command identifies, extracts, optimizes (re-encodes), and
re-synthesizes finite state machines. It again is a macro that calls a series
of other commands:

fsm_detect

fsm_extract
fsm_opt
clean
fsm_opt
fsm_expand
clean
fsm_opt
fsm_recode

fsm_info

fsm_export

fsm_map

unless

if got
if got
if got

unless

if got
unless

got option -nodetect

option -expand
option -expand

option -expand

got option -norecode

option -export

got option -nomap

T SRR E VAT November 13,2022 50/150

Some details on the most important commands from the fsm_x group:

The fsm_detect command identifies FSM state registers and marks them
with the (» fsm_encoding = "auto” =) attribute, if they do not have the
fsm_encoding set already. Mark registers with (x fsm_encoding = "none” *) to
disable FSM optimization for a register.

The fsm_extract command replaces the entire FSM (logic and state
registers) with a sfsm cell.

The commands fsm_opt and fsm_recode can be used to optimize the FSM.

Finally the fsm_map command can be used to convert the (optimized) $fsm
cell back to logic and registers.

_ Yosys Open SYnthesis Suite November 13, 2022 60 /150

The techmap command replaces cells with implementations given as verilog
source. For example implementing a 32 bit adder using 16 bit adders:

module \$add (A, B, Y);
module test(input [31:0] a, b,

output [31:0] y);
assign y = a + b;

parameter A_SIGNED = @
parameter B_SIGNED = 0;
parameter A_WIDTH = 1;
parameter B_WIDTH
parameter Y_WIDTH = 1;

endmodule

input [A_WIDTH-1:0] A;

input [B_WIDTH-1:0] B; read_verilog techmap_01.v

output [Y_WIDTH-1:0] Y; hierarchy -check -top test
techmap -map techmap_01_map.v;;
generate
if ((A_WIDTH == 32) && (B_WIDTH == 32))
begin

wire [16:0] S1 = A[15:0] + BLYSA]
wire [15:0] S2 = A[31:16] R
assign Y = {S2[15:0],
end

else
wire _TECHMAP_FAIL_ = 1;
endgenerate

endmodule

T NS GEEE VAT November 13,2022 617150

When techmap is used without a map file, it uses a built-in map file to map
all RTL cell types to a generic library of built-in logic gates and registers.

$_NOT_ $_AND_ $_OR_ $_XOR_ $_MUX_

$_SR_NN_ $_SR_NP_ $_SR_PN_ $_SR_PP_

$_DFF_N_ $_DFF_P_

$_DFF_NNO_ $_DFF_NN1_ $_DFF_NPQ_ $_DFF_NP1_
$_DFF_PNO_ $_DFF_PN1_ $_DFF_PPQ_ $_DFF_PP1_
$_DFFSR_NNN_ $_DFFSR_NNP_ $_DFFSR_NPN_ $_DFFSR_NPP_
$_DFFSR_PNN_ $_DFFSR_PNP_ $_DFFSR_PPN_ $_DFFSR_PPP_
$_DLATCH_N_ $_DLATCH_P_

_ Yosys Open SYnthesis Suite November 13, 2022 62 /150

The abc command provides an interface to ABC#, an open source tool for
low-level logic synthesis.

The abc command processes a netlist of internal gate types and can
perform:

@ logic minimization (optimization)

e mapping of logic to standard cell library (liberty format)

e mapping of logic to k-LUTs (for FPGA synthesis)

Optionally abc can process registers from one clock domain and perform
sequential optimization (such as register balancing).

ABC is also controlled using scripts. An ABC script can be specified to use
more advanced ABC features. It is also possible to write the design with
write_blif and load the output file into ABC outside of Yosys.

4http://www.eecs.berkeley.edu/~a1anmi/abc/

_ Yosys Open SYnthesis Suite November 13, 2022 63 /150

http://www.eecs.berkeley.edu/~alanmi/abc/

module test(input clk, a, b, c,

output reg y);

reg [2:0] q1, q2;

always @(posedge clk) begin
ql <= { a, b, ¢ };
a2 <= ql;
y <= "q2;

end
endmodule

read_verilog abc_01.v

read_verilog -lib abc_01_cells.v
hierarchy -check -top test

proc; opt; techmap

abc -dff -liberty abc_01_cells.lib;;

{ATs105
s
@

o
s90 ATsios [
EE ot
T[]
*nsm]

é‘.

November 13, 2022

64 /150

This command maps the internal register cell types to the register types
described in a liberty file.

Some architectures require special driver cells for driving a constant hi or
lo value. This command replaces simple constants with instances of such
driver cells.

Top-level input/outputs must usually be implemented using special
I/O-pad cells. This command inserts this cells to the design.

_ Yosys Open SYnthesis Suite November 13, 2022 65 /150

read and elaborate design

read_verilog cpu_top.v cpu_ctrl.v cpu_regs.v
read_verilog -D WITH_MULT cpu_alu.v
hierarchy -check -top cpu_top

high-level synthesis
proc; opt; fsm;; memory -nomap; opt

substitute block rams
techmap -map map_rams.v

map remaining memories
memory_map

low-level synthesis
techmap; opt; flatten;; abc -lut6

techmap -map map_xl_cells.v

add clock buffers

The weird select expressions at the end of
this script are discussed in the next part
(Section 3, “Advanced Synthesis") of this
presentation.

select -set xl_clocks t:FDRE %x:+FDRELC] t:FDRE %d

iopadmap -inpad BUFGP 0:I @xl_clocks

add io buffers

select -set xl_nonclocks w:* t:BUFGP %x:+BUFGP[I] %d
iopadmap -outpad OBUF I:0 -inpad IBUF 0:I @xl_nonclocks

write synthesis results
write_edif synth.edif

T NS GEEE VAT November 13,2022 66150

@ Yosys provides commands for each phase of the synthesis.
e Each command solves a (more or less) simple problem.
o Complex commands are often only front-ends to simple commands.

@ proc; opt; fsm; opt; memory; opt; techmap; opt; abc;;

Questions?

https://yosyshqg.net/yosys/

T NS GEEE VAT November 13,2022 67150

https://yosyshq.net/yosys/

Section 3

This section contains 4 subsections:
@ Using selections
@ Advanced uses of techmap
o Coarse-grain synthesis

@ Automatic design changes

T SRR E VAT November 13,2022 69150

Subsection 1

of Section 3

T SRRV November 13,2022 70150

Most Yosys commands make use of the “selection framework” of Yosys. It
can be used to apply commands only to part of the design. For example:

delete # will delete the whole design, but

delete foobar # will only delete the module foobar.

The select command can be used to create a selection for subsequent
commands. For example:

select foobar # select the module foobar
delete # delete selected objects
select -clear # reset selection (select whole design)

T NS GEEE VAT November 13,2022 717150

The easiest way to select objects is by object name. This is usually only
done in synthesis scripts that are hand-tailored for a specific design.

select
select
select
select

foobar
foox
foox/barx*
*/clk

H H B

select
select
select

select

module foobar
all modules whose names start with foo
all objects matching barx from modules matching foox

objects named clk from all modules

T T S GEEE VAT November 13,2022 72/150

Commands can be executed in module or design context. Until now all
commands have been executed in design context. The cd command can be
used to switch to module context.

In module context all commands only effect the active module. Objects in
the module are selected without the <module_name>/ prefix. For example:

cd foo # switch to module foo

delete bar # delete object foo/bar

cd mycpu # switch to module mycpu

dump reg_x* # print details on all objects whose names start with reg_
cd .. # switch back to design

Note: Most synthesis scripts never switch to module context. But it is a
very powerful tool for interactive design investigation.

_ Yosys Open SYnthesis Suite November 13, 2022 73 /150

Special patterns can be used to
example:

select
select
select
select

select

wireg_x*
a:foobar
a:foobar=42
A:blabla
foo/t:$add

A complete list of this
reference to the select

select
select
select
select

select

all
all
all
all
all

select by object property or type. For

wires whose names start with reg_

objects with the attribute
objects with the attribute
modules with the attribute
$add cells from the module

foobar set
foobar set to 42
blabla set

foo

pattern expressions can be found in the command
command.

November 13, 2022 74 /150

When more than one selection expression is used in one statement, then
they are pushed on a stack. The final elements on the stack are combined
into a union:

select t:$dff r:WIDTH>1 # all cells of type $dff and/or with a parameter WIDTH > 1

Special %-commands can be used to combine the elements on the stack:

select t:$dff r:WIDTH>1 %i # all cells of type $dff *AND* with a parameter WIDTH > 1

................... union of top two elements on stack — pop 2,

% difference of top two elements on stack — pop 2, push 1
2 intersection of top two elements on stack — pop 2, push 1
/2 inverse of top element on stack — pop 1, push 1

_ Yosys Open SYnthesis Suite November 13, 2022 75 /150

Selections of cells and wires can be expanded along connections using
%-codes for selecting input cones (%ci), output cones (%co), or both (%x).

select all wires that are inputs to $add cells
select t:$add %ci w:* %i

Additional constraints such as port names can be specified.

select all wires that connect a "Q" output with a "D" input

select c:* %co:+[Q] w:* %i c:x %ci:+[D] w:x %i %i

select the multiplexer tree that drives the signal 'state'
select state %cix:+$mux, $pmux[A,B,Y]

See help select for full documentation of this expressions.

B T NS GEEEV AT November 13,2022 76150

Sometimes a selection can most easily be described by a series of
add/delete operations. The commands select -add and select -del
respectively add or remove objects from the current selection instead of
overwriting it.

select
select
select
select

Within a
selection

select
select

-none # start with an empty selection

-add reg_x # select a bunch of objects

-del reg_42 # but not this one

-add state %ci # and add mor stuff

select expression the token % can be used to push the previous
on the stack.

t:$add t:$sub # select all $add and $sub cells

% %ci % %d # select only the input wires to those cells

T T NS GRS November 13, 2022 77/150

Selections can be stored under a name with the select -set <name>
command. The stored selections can be used in later select expressions
using the syntax e<name>.

select -set cone_a state_a %cix:-$dff # set @cone_a to the input cone of state_a
select -set cone_b state_b %cix:-$dff # set @cone_b to the input cone of state_b

select @cone_a @cone_b %i # select the objects that are in both cones

Remember that select expressions can also be used directly as arguments
to most commands. Some commands also except a single select argument
to some options. In those cases selection variables must be used to
capture more complex selections.

dump @cone_a @cone_b

select -set cone_ab @cone_a @cone_b %i

show -color red @cone_ab -color magenta @cone_a -color blue @cone_b

_ Yosys Open SYnthesis Suite November 13, 2022 78 /150

module test(clk, s, a, y);
input clk, s;
input [15:0] a;
output [15:0] vy;
reg [15:0]1 b, c;

always @(posedge clk) begin
b <= a;
c <= b;

end

wire [15:0] state_a = (a * b) + c;

wire [15:0] state_b = (a * b) - c;

assign y = !s ? state_a : state_b;
endmodule

read_verilog select.v

hierarchy -check -top test

-color blue @cone_b

-set cone_a state_a %cix*:-$dff
-set cone_b state_b %cix:-$dff
-set cone_ab @cone_a @cone_b %i
show -prefix select -format pdf -notitle \

-color red @cone_ab -color magenta @cone_a \

$7
$mux

o[=[>

3

November 13, 2022

79/150

Subsection 2

of Section 3

T SRR E VAT November 13,2022 80150

@ The techmap command replaces cells in the design with
implementations given as Verilog code (called “map files”). It can
replace Yosys' internal cell types (such as sor) as well as user-defined
cell types.

o Verilog parameters are used extensively to customize the internal cell
types.

o Additional special parameters are used by techmap to communicate
meta-data to the map files.

@ Special wires are used to instruct techmap how to handle a module in
the map file.

o Generate blocks and recursion are powerful tools for writing map files.

_ Yosys Open SYnthesis Suite November 13, 2022 81 /150

To map the Verilog OR-reduction operator to 3-input OR gates:

module \$reduce_or (A, Y);

parameter A_SIGNED = 0;
parameter A_WIDTH = 0;
parameter Y_WIDTH = 0;

input [A_WIDTH-1:0] A;
output [Y_WIDTH-1:01 Y;

function integer min;
input integer a, b;

begin
if (a < b)
min = a;
else
min = b;
end
endfunction
genvar i;

generate begin

if (A_WIDTH == @) begin

assign Y = 0;
end

if (A_WIDTH == 1) begin
assign Y = A;

end

if (A_WIDTH == 2) begin
wire ybuf;
OR3X1 g (.A(AL@]), .B(A[11), .C(1'b@), .Y(ybuf));
assign Y = ybuf;

end

if (A_WIDTH == 3) begin
wire ybuf;
OR3X1 g (.A(AL@]), .B(AL[11), .C(AL21), .Y(ybuf));
assign Y = ybuf;

end

if (A_WIDTH > 3) begin
localparam next_stage_sz = (A_WIDTH+2) / 3;
wire [next_stage_sz-1:0] next_stage;

for (i = @; i < next_stage_sz; i = i+1) begin
localparam bits = min(A_WIDTH - 3%i, 3);
assign next_stagel[i] = |A[3*xi +: bits];

end

assign Y = |next_stage;

end

end endgenerate
endmodule

T S GEEE VAT November 13,2022 82/150

5.genblk0.genblkd.
SoaenRR | v

A A
$6.genbIk0.genblkd. $8.genblk0.genblkd.
B] SO0MgRaRT | ¥ e B SO | Y
c c
el (Sl

techmap -map red_or3xl_map.v;;

module test (A, Y);
input [6:0] A;
output Y;

assign Y = |A;

endmodule
$1.genblk0.genblk5.next_stage[2]

November 13, 2022 83 /150

@ In some cases only cells with certain properties should be substituted.

@ The special wire _TECHMAP_FAIL_ can be used to disable a module in the
map file for a certain set of parameters.

@ The wire _TECHMAP_FAIL_ must be set to a constant value. If it is
non-zero then the module is disabled for this set of parameters.

o Example use-cases:

e coarse-grain cell types that only operate on certain bit widths
e memory resources for different memory geometries (width, depth,
ports, etc.)

_ Yosys Open SYnthesis Suite November 13, 2022 84 /150

module \$mul (A, B, Y);

parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 1;

() V=)
parameter B_WIDTH = 1; ° A
parameter Y_WIDTH = 1; (2 82 1y _@

B | $mul
input [A_WIDTH-1:0] A; ®/

input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;

A1 $lg
5 | MYMUL

wire _TECHMAP_FAIL_ = A_WIDTH != B_WIDTH || B_WIDTH != Y_WIDTH;

MYMUL #(.WIDTH(Y_WIDTH)) g (.A(A), .B(B), .Y(Y));

endmodule
module test(A, B, C, Y1, Y2); read_verilog sym_mul_test.v
input [7:0]1 A, B, C; hierarchy -check -top test
output [7:0] Y1 = A * B;
output [15:0] Y2 = A x C; techmap -map sym_mul_map.v;;
endmodule

T SR E VAT November 13,2022 85150

@ The special wires _TECHMAP_DO_x can be used to run Yosys scripts in the
context of the replacement module.

@ The wire that comes first in alphabetical oder is interpreted as string
(must be connected to constants) that is executed as script. Then
the wire is removed. Repeat.

@ You can even call techmap recursively!

o Example use-cases:
o Using always blocks in map module: call proc
o Perform expensive optimizations (such as freduce) on cells where this is
known to work well.
o Interacting with custom commands.

PROTIP: Commands such as shell, show -pause, and dump can be use in the _TECHMAP_DO_* scripts for
debugging map modules.

_ Yosys Open SYnthesis Suite November 13, 2022 86 /150

module MYMUL(A, B, Y);
parameter WIDTH = 1;
input [WIDTH-1:0] A, B;
output reg [WIDTH-1:0] Y;

wire [1023:0] _TECHMAP_DO_ =

integer i;
always @x begin
Y = 0;
for (i = 0; i < WIDTH; i=i+1)
if (A[i])
Y =Y + (B << i);
end
endmodule

"proc;._.clean”;

FAT s8 [y |\
ﬂ $add

module test(A, B, Y);
input [1:0] A, B;
output [1:0] Y = A x B;

endmodule

read_verilog mymul_test.v
hierarchy -check -top test

techmap -map sym_mul_map.v \

-map mymul_map.v;;

rename test test_mapped
read_verilog mymul_test.v

miter -equiv test test_mapped miter
flatten miter

sat -verify -prove trigger @ miter

A

51 $12

AN ED)
S

November 13, 2022

87 /150

@ The special parameters _TECHMAP_CONSTMSK_<<port-name>>_ and
_TECHMAP_CONSTVAL_<port-name>>_ can be used to handle constant input
values to cells.

@ The former contains 1-bits for all constant input bits on the port.

@ The latter contains the constant bits or undef (x) for non-constant
bits.

o Example use-cases:

o Converting arithmetic (for example multiply to shift)
o Identify constant addresses or enable bits in memory interfaces.

S GEEE VAT November 13,2022 88/150

module MYMUL(A, B, Y);
parameter WIDTH = 1;
input [WIDTH-1:0] A, B;
output reg [WIDTH-1:0] V;

parameter _TECHMAP_CONSTVAL_A_ = WIDTH'bx;
parameter _TECHMAP_CONSTVAL_B_ = WIDTH 'bx;

reg _TECHMAP_FAIL_;
wire [1023:0] _TECHMAP_DO_ = "proc;._clean”;

integer i;
always @x begin
_TECHMAP_FAIL_ <= 1;
for (i = @; i < WIDTH; i=i+1) begin
if (_TECHMAP_CONSTVAL_A_ === WIDTH'd1
_TECHMAP_FAIL_ <= 0;
Y <= B << i;

end

if (_TECHMAP_CONSTVAL_B_ === WIDTH'd1
_TECHMAP_FAIL_ <= 0;
Y <= A << i;

end

end
end
endmodule

module test (A, X, Y);
input [7:0] A;

output [7:0] X = A * 8'd 6;
output [7:0] Y = A % 8'd 8;
endmodule

read_verilog mulshift_test.v

hierarchy -check -top test

techmap -map sym_mul_map.v \
-map mulshift_map.v;;

8'00000110

<< i) begin

<< i) begin

November 13, 2022

89 /150

@ The special parameters _TECHMAP_BITS_CONNMAP_ and
_TECHMAP_CONNMAP_ <port-name>_ can be used to handle shorted inputs.

@ Each bit of the port correlates to an _TECHMAP_BITS_CONNMAP_ bits wide
number in _TECHMAP_CONNMAP_ <<port-name>_.

@ Each unique signal bit is assigned its own number. ldentical fields in
the _TECHMAP_CONNMAP_<port-name>>_ parameters mean shorted signal
bits.

@ The numbers 0-3 are reserved for o, 1, x, and z respectively.

o Example use-cases:

o Detecting shared clock or control signals in memory interfaces.
o In some cases this can be used for for optimization.

_ Yosys Open SYnthesis Suite November 13, 2022 90 /150

module \$add (A, B, Y);
parameter A_SIGNED =
parameter B_SIGNED = 0
parameter A_WIDTH = 1;
parameter B_WIDTH = 1;
parameter Y_WIDTH = 1;

input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;

0

output [Y_WIDTH-1:0] Y;

parameter _TECHMAP_BITS_CONNMAP_ = 0;
parameter _TECHMAP_CONNMAP_A_ = 0;
parameter _TECHMAP_CONNMAP_B_ = 0;

wire _TECHMAP_FAIL_ =

assign Y = A << 1;

endmodule

A_WIDTH != B_WIDTH
_TECHMAP_CONNMAP_A_

module test (A,
input [7:0] A,
output [7:0] X
output [7:0] Y

A + B;
A + A;

X, Y);

read_verilog addshift_test.v

hierarchy -check -top test

techmap -map addshift_map.v;;

B_WIDTH < Y_WIDTH
!= _TECHMAP_CONNMAP_B_;

—(x)

November 13, 2022 91 /150

@ Don't use positional cell parameters in map modules.

@ Don't try to implement basic logic optimization with techmap.
(So the OR-reduce using OR3X1 cells map was actually a bad example.)

@ You can use the s__-prefix for internal cell types to avoid collisions
with the user-namespace. But always use two underscores or the
internal consistency checker will trigger on this cells.

@ Techmap has two major use cases:

o Creating good logic-level representation of arithmetic functions.
This also means using dedicated hardware resources such as half- and
full-adder cells in ASICS or dedicated carry logic in FPGAs.

e Mapping of coarse-grain resources such as block memory or DSP cells.

_ Yosys Open SYnthesis Suite November 13, 2022 92 /150

Subsection 3

of Section 3

T S GEEE VAT November 13,2022 93150

In coarse-grain synthesis the target architecture has cells of the same
complexity or larger complexity than the internal RTL representation.
For example:

wire [15:0] a, b;

wire [31:0] c, y;

assign y = a x b + c;
This circuit contains two cells in the RTL representation: one multiplier
and one adder. In some architectures this circuit can be implemented
using a single circuit element, for example an FPGA DSP core. Coarse
grain synthesis is this mapping of groups of circuit elements to larger
components.

Fine-grain synthesis would be matching the circuit elements to smaller
components, such as LUTs, gates, or half- and full-adders.

_ Yosys Open SYnthesis Suite November 13, 2022 94 /150

@ Like the techmap pass, the extract pass is called with a map file. It
compares the circuits inside the modules of the map file with the
design and looks for sub-circuits in the design that match any of the
modules in the map file.

o If a match is found, the extract pass will replace the matching
subcircuit with an instance of the module from the map file.

@ In a way the extract pass is the inverse of the techmap pass.

T S GEEE VAT November 13,2022 95150

module test(a, b, c, d, y);
input [15:0] a, b;

input [31:0] c, d
output [31:0] y;
assign y = a x b + ¢ + d;

B

endmodule

module macc_16_16_32(a, b, c, y);
input [15:0] a, b;

input [31:0] c;

output [31:0] y;

assign y = a*b + c;

endmodule

read_verilog macc_simple_test.v
hierarchy -check -top test

extract -map macc_simple_xmap.v;;

b | $8
[— | macc 16 16 32

!

3
5] sadd | ¥ —'®

November 13, 2022

96 /150

module test(a,
input [15:0] a,
input [31:0] x;
output [31:0] y;

axb + c*d + x;

assign y
endmodule

module test(a,

b,

input [15:0] a, b, c, d;

input [31:0] x;
output [31:0] y;
assign y = a*b +
endmodule

(c*xd + x);

“ $31
macc 16 16 32 | ¥

15 | mace 56
macc 16 16 32 |V

November 13, 2022

Often a coarse-grain element has a constant bit-width, but can be used to implement operations
with a smaller bit-width. For example, a 18x25-bit multiplier can also be used to implement
16x20-bit multiplication.

A way of mapping such elements in coarse grain synthesis is the wrap-extract-unwrap method:

@ wrap
Identify candidate-cells in the circuit and wrap them in a cell with a constant wider
bit-width using techmap. The wrappers use the same parameters as the original cell, so the
information about the original width of the ports is preserved.
Then use the connwrappers command to connect up the bit-extended in- and outputs of the
wrapper cells.

@ extract
Now all operations are encoded using the same bit-width as the coarse grain element. The
extract command can be used to replace circuits with cells of the target architecture.

@ unwrap
The remaining wrapper cell can be unwrapped using techmap.

The following sides detail an example that shows how to map MACC operations of arbitrary size
to MACC cells with a 18x25-bit multiplier and a 48-bit adder (such as the Xilinx DSP48 cells).

_ Yosys Open SYnthesis Suite November 13, 2022 98 /150

Preconditioning: macc_xilinx_swap_map.v
Make sure A is the smaller port on all multipliers

(* techmap_celltype

module mul_swap_ports (A, B,

parameter A_SIGNED
parameter B_SIGNED
parameter A_WIDTH =
parameter B_WIDTH =
parameter Y_WIDTH =

input [A_WIDTH-1:0]
input [B_WIDTH-1:0]

®

"$mul” %)

output [Y_WIDTH-1:0] Y

wire _TECHMAP_FAIL_

A_WIDTH

Y);

<= B_WIDTH;

\$mul #(
.A_SIGNED (B_SIGNED),
.B_SIGNED (A_SIGNED),
. A_WIDTH (B_WIDTH),
.B_WIDTH(A_WIDTH),
LY_WIDTH(Y_WIDTH)

) _TECHMAP_REPLACE_ (

-A(B),
-B(A),
YY)
)5
endmodule

November 13, 2022 99 /150

(x techmap_celltype = "$mul"” x)
module mul_wrap (A, B, Y);

parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 1
parameter B_WIDTH = 1;
parameter Y_WIDTH = 1

input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;

wire [17:0] A_18 = A;
wire [24:0] B_25 = B;
wire [47:0] Y_48;
assign Y = Y_48;

wire [1023:0] _TECHMAP_DO_ = "proc;._clean”;

reg _TECHMAP_FAIL_;
initial begin
_TECHMAP_FAIL_ <= 0;

Wrapping multipliers: macc_xilinx_wrap_map.v

-

f (A_SIGNED || B_SIGNED)
_TECHMAP_FAIL_ <= 1;

f (ALWIDTH < 4 || B_WIDTH < 4)
_TECHMAP_FAIL_ <= 1;

f (ALWIDTH > 18 || B_WIDTH > 25)
_TECHMAP_FAIL_ <= 1;

f (A_WIDTH*B_WIDTH < 10@)
_TECHMAP_FAIL_ <= 1;

I

-

-

end

\$__mul_wrapper #(
. A_SIGNED (A_SIGNED),
.B_SIGNED (B_SIGNED),
_A_WIDTH(A_WIDTH),
_B_WIDTH(B_WIDTH),
.Y_WIDTH(Y_WIDTH)

) _TECHMAP_REPLACE_ (

LA(A_18),
.B(B_25),
LY (Y_48)
)5
endmodule

B NS CEEE VAT November 13,2022 100150

Wra pping adders: macc_xilinx_wrap_map.v

(x techmap_celltype = "$add" x)
module add_wrap (A, B, Y);

parameter A_SIGNED = 0;
parameter B_SIGNED = 0;
parameter A_WIDTH = 1;
parameter B_WIDTH = 1;
parameter Y_WIDTH = 1;

input [A_WIDTH-1:0] A;
input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y;

wire [47:0] A_48 = A;
wire [47:0] B_48 = B;
wire [47:0] Y_48;
assign Y = Y_48;

wire [1023:0] _TECHMAP_DO_ = "proc;._clean”;

reg _TECHMAP_FAIL_;
initial begin
_TECHMAP_FAIL_ <= 0;
if (A_SIGNED || B_SIGNED)
_TECHMAP_FAIL_ <= 1;
if (A_WIDTH < 10 && B_WIDTH < 10)
_TECHMAP_FAIL_ <= 1;
end

\$__add_wrapper #(
. A_SIGNED (A_SIGNED),
.B_SIGNED (B_SIGNED),
.A_WIDTH(A_WIDTH),
_B_WIDTH(B_WIDTH),
_Y_WIDTH(Y_WIDTH)

) _TECHMAP_REPLACE_ (

.A(A_48),
.B(B_48),
LY (Y_48)
);
endmodule

B T NS GEEE VAT November 13,2022 101150

Extract: macc_xilinx_xmap.v

module DSP48_MACC (a, b, c, y);

input [17:0] a;

input [24:0] b;

input [47:0] c;

output [47:0] y;

assign y = a*b + c;

endmodule
. simply use the same wrapping commands on this module as on the
design to create a template for the extract command.

TS X WOTE (R [YoSeRaEE/yos Yesys Open SYnthesisSuite November 13, 2022

102 /150

Unwrapping multipliers: macc_xilinx_unwrap_map.v

module \$__mul_wrapper (A,

parameter A_SIGNED = 0;
parameter B_SIGNED = @
parameter A_WIDTH = 1;
parameter B_WIDTH = 1;
parameter Y_WIDTH = 1;

input [17:0] A;
input [24:0] B;
output [47:0] Y;

wire [A_WIDTH-1:0] A_ORIG
wire [B_WIDTH-1:0] B_ORIG
wire [Y_WIDTH-1:0] Y_ORIG;
assign Y = Y_ORIG;

B,

Y);

\$mul #(
.A_SIGNED (A_SIGNED),
.B_SIGNED (B_SIGNED),
_A_WIDTH(A_WIDTH),
_B_WIDTH (B_WIDTH),
_Y_WIDTH(Y_WIDTH)

) _TECHMAP_REPLACE_ (

.A(A_ORIG),
.B(B_ORIG),
_Y(Y_ORIG)
)5
endmodule

B e NS GEEE VAT November 13,2022 103150

Unwrappi ng adders: macc_xilinx_unwrap_map.v

module \$__add_wrapper (A,

parameter A_SIGNED = 0;
parameter B_SIGNED = @
parameter A_WIDTH = 1;
parameter B_WIDTH = 1;
parameter Y_WIDTH = 1;

input [47:0] A;
input [47:0] B;
output [47:0] Y;

wire [A_WIDTH-1:0] A_ORIG
wire [B_WIDTH-1:0] B_ORIG
wire [Y_WIDTH-1:0] Y_ORIG;
assign Y = Y_ORIG;

B,

Y);

\$add #(
. A_SIGNED (A_SIGNED),
.B_SIGNED (B_SIGNED),
. A_WIDTH (A_WIDTH),
.B_WIDTH (B_WIDTH),

. Y_WIDTH(Y_WIDTH)

) _TECHMAP_REPLACE_ (

.A(A_ORIG),
.B(B_ORIG),
_Y(Y_ORIG)
)5
endmodule

B T NS GEEE VAT November 13,2022 104150

testl test2
module testli(a, b, ¢, d, e, f, y); module test2(a, b, ¢, d, e, f, y);
input [19:0] a, b, c; input [19:0] a, b, c;
input [15:0] d, e, f; input [15:0] d, e, f;
output [41:0] y; output [41:0] y;
assign y = axb + cxd + exf; assign y = axb + (c*xd + exf);
endmodule endmodule
J’ read_verilog macc_xilinx_test.v \L
~l/ hierarchy -check

November 13, 2022

105 / 150

techmap -map macc_xilinx_swap_map.v ;;

November 13, 2022 106 / 150

Wrapping in test1:

techmap -map macc_xilinx_wrap_map.v

connwrappers -unsigned $__mul_wrapper \
Y Y_WIDTH \

-unsigned $__add_wrapper \

Y Y_WIDTH ;;

B SIS GEEE VAT November 13,2022 107150

Wrapping in test2:

techmap -map macc_xilinx_wrap_map.v

connwrappers -unsigned $__mul_wrapper \
Y Y_WIDTH \

-unsigned $__add_wrapper \

Y Y_WIDTH ;;

N—_

BT SIS CEEE VAT November 13,2022 108150

Extract in test1:

design -push
read_verilog
techmap -map
techmap -map
design -save

design -pop

macc_xilinx_xmap.v
macc_xilinx_swap_map.v
macc_xilinx_wrap_map.v;;
__macc_xilinx_xmap

extract -constports -ignore_parameters \

-map %__macc_xilinx_xmap
-swap $__add_wrapper A,B ;;

\

TS X WOTE (R [YoSeRaEE/yos Yesys Open SYnthesiSuite November 13, 2022

109 /150

Extract in test2:

design -push
read_verilog
techmap -map
techmap -map
design -save

design -pop

macc_xilinx_xmap.v
macc_xilinx_swap_map.v
macc_xilinx_wrap_map.v;;
__macc_xilinx_xmap

extract -constports -ignore_parameters \

-map %__macc_xilinx_xmap
-swap $__add_wrapper A,B ;;

\

TS X WOTE (R [YoSeRaEE/yos Yesys Open SYnthesiSuite November 13, 2022

110/150

Unwrap in test2:

techmap -map macc_xilinx_unwrap_map.v ;;

A ar0-110

150150
¥+ 37
° E Dsp4g_Macc | ¥ 2

B T NS GEEE VAT November 13,2022 111150

Subsection 4

of Section 3

B T NS GEEE VAT November 13,2022 112/150

Yosys commands can be used to change the design in memory. Examples
of this are:

@ Changes in design hierarchy
Commands such as flatten and submod can be used to change the
design hierarchy, i.e. flatten the hierarchy or moving parts of a
module to a submodule. This has applications in synthesis scripts as
well as in reverse engineering and analysis.

o Behavioral changes
Commands such as techmap can be used to make behavioral changes
to the design, for example changing asynchronous resets to
synchronous resets. This has applications in design space exploration
(evaluation of various architectures for one circuit).

_ Yosys Open SYnthesis Suite November 13, 2022 113 /150

The following techmap map file replaces all positive-edge async reset
flip-flops with positive-edge sync reset flip-flops. The code is taken from
the example Yosys script for ASIC synthesis of the Amber ARMv2 CPU.

(* techmap_celltype = "$adff"” x) /7

..continued..

module adff2dff (CLK, ARST, D, Q);

parameter WIDTH = 1; always @(posedge CLK)
parameter CLK_POLARITY = 1; if (ARST)
parameter ARST_POLARITY = 1; Q <= ARST_VALUE;
parameter ARST_VALUE = 0; else

<= D;

input CLK, ARST;
input [WIDTH-1:0]1 D; endmodule
output reg [WIDTH-1:0] Q;

wire [1023:0] _TECHMAP_DO_ = "proc”;

wire _TECHMAP_FAIL_ = !CLK_POLARITY || !ARST_POLARITY;

B NS GEEE VAT November 13,2022 114150

@ A lot can be achieved in Yosys just with the standard set of
commands.

@ The commands techmap and extract can be used to prototype many
complex synthesis tasks.

Questions?

https://yosyshqg.net/yosys/

B NS GEEE VAT November 13,2022 115150

https://yosyshq.net/yosys/

Section 4

This section contains 2 subsections:
@ Interactive Design Investigation

@ Symbolic Model Checking

B NS GEEE VAT November 13,2022 117150

Subsection 1

of Section 4

B T NSRS November 13,2022 118150

Yosys can also be used to investigate designs (or netlists created from
other tools).

@ The selection mechanism (see slides “Using Selections”), especially
patterns such as %ci and %co, can be used to figure out how parts of
the design are connected.

@ Commands such as submod, expose, splice, ...can be used to transform
the design into an equivalent design that is easier to analyse.

@ Commands such as eval and sat can be used to investigate the
behavior of the circuit.

_ Yosys Open SYnthesis Suite November 13, 2022 119 /150

module scrambler (
input clk, rst, in_bit,
output reg out_bit

)
reg [31:0] xs;

always @(posedge clk) begin

if (rst)

xs = 1;
Xs = xs * (xs
Xs = xs * (xs

xs = xs * (xs
out_bit <= in
end
endmodule

<< 13);
>> 17);
<< 5);
bit » xs[e];

read_verilog scrambler.v

hierarchy; proc;;

cd scrambler

submod -name xorshift32 \
xs %c %ci %D %c %ei:+[D] %D \
%cix:-$dff xs %co %ci %d

(315315
(0->420
November 13, 2022

Vv

read_verilog scrambler.v

> hierarchy; proc;; cd scrambler
submod -name xorshift32 xs %c %ci %D %c %ci:+[D] %D %ci*:-$dff xs %co %ci %d

Vv

Vv

cd xorshift32
rename n2 in

v Vv

rename nl out

> eval -set in 1 -show out
Eval result: \out = 270369.

> eval -set in 270369 -show out
Eval result: \out = 67634689.

> sat -set out 632435482

Signal Name Dec Hex Bin
\in 745495504 2c6f5bdo 00101100011011110101101111010000
\out 632435482 25b2331a 00100101101100100011001100017010

B NS GEEE VAT November 13, 2022 121150

Subsection 2

of Section 4

B NS GEEE VAT November 13, 2022 122/150

Symbolic Model Checking (SMC) is used to formally prove that a circuit
has (or has not) a given property.

One application is Formal Equivalence Checking: Proving that two circuits
are identical. For example this is a very useful feature when debugging

custom passes in Yosys.

Other applications include checking if a module conforms to interface
standards.

The sat command in Yosys can be used to perform Symbolic Model
Checking.

_ Yosys Open SYnthesis Suite November 13, 2022 123 /150

Remember the following example?

module \$add (A, B, Y);
module test(input [31:0] a, b,
parameter A_SIGNED
parameter B_SIGNED output £31:0] y);
parameter A_WIDTH = 1; assign y = a + b;
parameter B_WIDTH = 1;
parameter Y_WIDTH = 1;

endmodule

input [A_WIDTH-1:0] A; .
P read_verilog techmap_01.v

input [B_WIDTH-1:0] B;
output [Y_WIDTH-1:0] Y; hierarchy -check -top test
techmap -map techmap_01_map.v;;
generate
if ((A_WIDTH == 32) && (B_WIDTH == 32))
begin

wire [16:0] S1 = A[15:0] + B[15:0];
wire [15:0] S2 = A[31:16] + B[31:16] + S1[16];
assign Y = {S2[15:0]1, S1[15:0]};
end
else
wire _TECHMAP_FAIL_ = 1;
endgenerate

endmodule

Lets see if it is correct..

TS X WOTE (R [YoSeRaEE/yos Yesys Open SYnthesisSuite November 13, 2022

124 /150

read test design
read_verilog techmap_01.v
hierarchy -top test

create two version of the design: test_orig and test_mapped
copy test test_orig
rename test test_mapped

apply the techmap only to test_mapped

techmap -map techmap_@1_map.v test_mapped
create a miter circuit to test equivalence
miter -equiv -make_assert -make_outputs test_orig test_mapped miter

flatten miter

run equivalence check

sat -verify -prove-asserts -show-inputs -show-outputs miter

Solving problem with 945 variables and 2505 clauses..
SAT proof finished - no model found: SUCCESS!

TS X WOTE (R [YoSeRaEE/yos Yesys Open SYnthesisSuite November 13, 2022

125 /150

The following AXI4 Stream Master has a bug. But the bug is not exposed if the
slave keeps tready asserted all the time. (Something a test bench might do.)

Symbolic Model Checking can be used to expose the bug and find a sequence of
values for tready that yield the incorrect behavior.

module axis_master(aclk, aresetn, tvalid, tready,

input aclk, aresetn, tready;
output reg tvalid;
output reg [7:0] tdata;

reg [31:0] state;
always @(posedge aclk) begin
if (laresetn) begin
state <= 314159265;
tvalid <= 0;
tdata <= 'bx;
end else begin

tdata); module axis_test(aclk, tready);
input aclk, tready;
wire aresetn, tvalid;
wire [7:0] tdata;

integer counter = @;
reg aresetn = 0;

axis_master uut (aclk, aresetn, tvalid, tready,

always @(posedge aclk) begin
if (aresetn & tready && tvalid) begin

if (tvalid 8& tready) if (counter == 0) assert(tdata == 19)
tvalid <= 0; if (counter == 1) assert(tdata

if (ltvalid || !tready) begin if (counter == 2) assert(tdata

% "~ should not be inverted! if (counter == 3) assert(tdata
state = state " state << 13; if (counter == 4) assert(tdata
state = state " state > 7; if (counter == 5) assert(tdata

state = state * state << 17;
if (state[9:8] == @) begin
tvalid <= 1;
tdata <= state;
end

end
end
endmodule

if (counter == 6) assert(tdata
7) assert(tdata
8) assert(tdata
9) assert(tdata
counter <= counter + 1;

if (counter
if (counter

if (counter

end
aresetn <= 1;
end
endmodule

Yosys Open SYnthesis Suite November 13, 2022

tdata);

126 /150

read_verilog -sv axis_master.v axis_test.v

hierarchy -top axis_test

proc; flatten;;
sat -seq 50 -prove-asserts

... with unmodified axis_master.v:

Solving problem with 159344 variables and 442126 clauses..
SAT proof finished - model found: FAIL!

... with fixed axis_master.v:

Solving problem with 159144 variables and 441626 clauses..
SAT proof finished - no model found: SUCCESS!

TS X WOTE (R [YoSeRaEE/yos Yesys Open SYnthesisSuite November 13, 2022

127 /150

@ Yosys provides useful features beyond synthesis.

@ The commands sat and eval can be used to analyse the behavior of a
circuit.

@ The sat command can also be used for symbolic model checking.

@ This can be useful for debugging and testing designs and Yosys
extensions alike.

Questions?

https://yosyshqg.net/yosys/

B NS GEEE VAT November 13, 2022 128150

https://yosyshq.net/yosys/

Section 5

Verilog Frontend : VHDL Frontend ! Other Frontends

AST Frontend

Passes

Verilog Backend RTLIL Backend Other Backends

November 13, 2022 130/ 150

Between passses and frontends/backends the design is stored in Yosys'
internal RTLIL (RTL Intermediate Language) format. For writing Yosys
extensions it is key to understand this format.

RTLIL::Cell

RTLIL::Wire

RTLIL::SyncRule

.

RTLIL::Design

RTLIL::Module

RTLIL::Process

RTLIL::CaseRule

f

RTLIL: :Memory

RTLIL::SwitchRule

November 13, 2022 131 /150

After the commands proc and memory (or memory -nomap), we are left with a

much simpler version of RTLIL:

RTLIL::Cell

e

RTLIL::Design

RTLIL::Module

RTLIL::Wire

Many commands simply choose to only work on this simpler version:

for (RTLIL::Module #*module :

design->selected_modules () {

if (module->has_memories_warn() || module->has_processes_warn())

continue;

}

For simplicity we only discuss this version of RTLIL in this presentation.

BT T NS GEEE VAT November 13,2022 132/150

@ The dump command prints the design (or parts of it) in the text
representation of RTLIL.

@ The show command visualizes how the components in the design are
connected.

When trying to understand what a command does, create a small test case
and look at the output of dump and show before and after the command has
been executed.

B NS GEEE VAT November 13,2022 133150

The RTLIL data structures are simple structs utilizing pool<> and dict<>

containers (drop-in replacements for std: :unordered_set<> and
std: :unordered_map<>).

@ Most operations are performed directly on the RTLIL structs without
setter or getter functions.

@ In debug builds a consistency checker is run over the in-memory
design between commands to make sure that the RTLIL
representation is intact.

@ Most RTLIL structs have helper methods that perform the most
common operations.

See yosys/kernel/rtlil.h for details.

_ Yosys Open SYnthesis Suite November 13, 2022 134 /150

RTLIL::IdString in many ways behave like a std::string. It is used for names
of RTLIL objects. Internally a RTLIL::1dString object is only a single
integer.

The first character of a RTLIL::IdString specifies if the name is public or
private:

@ RTLIL::IdString[@] == ’\\’:
This is a public name. Usually this means it is a name that was
declared in a Verilog file.

© RTLIL::IdString[@] == ’$’:
This is a private name. It was assigned by Yosys.

Use the NEW_ID macro to create a new unique private name.

_ Yosys Open SYnthesis Suite November 13, 2022 135 /150

The RTLIL::Design and RTLIL::Module structs are the top-level RTLIL data
structures. Yosys always operates on one active design, but can hold many
designs in memory.

struct RTLIL::Design {
dict<RTLIL::IdString, RTLIL::Module*> modules_;

3

struct RTLIL::Module {
RTLIL::IdString name;
dict<RTLIL::IdString, RTLIL::Wirex> wires_;
dict<RTLIL::IdString, RTLIL::Cellx> cells_;
std::vector<RTLIL::SigSig> connections_;

¥

(Use the various accessor functions instead of directly working with the x_
members.)

B NS GEEE VAT November 13,2022 136150

Each wire in the design is represented by a RTLIL::Wire struct:

struct RTLIL::Wire {
RTLIL::IdString name;
int width, start_offset, port_id;
bool port_input, port_output;

};
width The total number of bits. E.g. 10 for [9:0].
start_offset The lowest bit index. E.g. 3 for [5:31.
port_id Zero for non-ports. Positive index for ports.
port_input True for input and inout ports.
port_output True for output and inout ports.

B T NS GEEE VAT November 13, 2022 137150

The RTLIL::State enum represents a simple 1-bit logic level:

enum RTLIL::State {

N
S1
Sx
Sz
Sa
Sm

[
1
2
3
4
5

B

)

B

)

//
//
//
//

undefined value or conflict
high-impedance / not-connected
don't care (used only in cases)

marker (used internally by some passes)

The RTLIL::Const struct represents a constant multi-bit value:

struct RTLIL::Const {
std::vector<RTLIL::State> bits;

Notice that Yosys is not using special vcc or 6Np driver cells to represent
constants. Instead constants are part of the RTLIL representation itself.
Claire Xenia Wolf (https://yosyshq.net/yosys ~ Yosys Open SYnthesis Suite November 13, 2022 138150

The RTLIL::SigSpec struct represents a signal vector. Each bit can either be
a bit from a wire or a constant value.

struct RTLIL::SigBit

{
RTLIL::Wire xwire;
union {
RTLIL::State data; // used if wire == NULL
int offset; // used if wire != NULL
};
};

struct RTLIL::SigSpec {
std::vector<RTLIL::SigBit> bits_; // LSB at index 0

¥
The RTLIL::SigSpec struct has a ton of additional helper methods to

compare, analyze, and manipulate instances of RTLIL::SigSpec.

BT e SIS CEEE VAT November 13,2022 139150

The RTLIL::Cell struct represents an instance of a module or library cell.

The ports of the cell are associated with RTLIL::SigSpec instances and the
parameters are associated with RTLIL::Const instances:

struct RTLIL::Cell {
RTLIL::IdString name, type;
dict<RTLIL::IdString, RTLIL::SigSpec> connections_;
dict<RTLIL::IdString, RTLIL::Const> parameters;

3

The type may refer to another module in the same design, a cell name
from a cell library, or a cell name from the internal cell library:

$not $pos $neg $and S$or $xor $xnor $reduce_and $reduce_or $reduce_xor $reduce_xnor

$reduce_bool $shl $shr $sshl $sshr $1t $le S$eq $ne $eqx $nex $ge $gt $add $sub $mul $div $mod

$divfloor $modfloor $pow $logic_not $logic_and $logic_or $mux $pmux $slice $concat $lut $assert $sr $dff
$dffsr s$adff $dlatch $dlatchsr $memrd $memwr $mem $fsm $_NOT_ $_AND_ $_OR_ $_XOR_ $_MUX_ $_SR_NN_
$_SR_NP_ $_SR_PN_ $_SR_PP_ $_DFF_N_ $_DFF_P_ $_DFF_NNe_ $_DFF_NN1_ $_DFF_NP@_ $_DFF_NP1_ $_DFF_PNo_
$_DFF_PN1_ $_DFF_PP@_ $_DFF_PP1_ $_DFFSR_NNN_ $_DFFSR_NNP_ $_DFFSR_NPN_ $_DFFSR_NPP_ $_DFFSR_PNN_
$_DFFSR_PNP_ $_DFFSR_PPN_ $_DFFSR_PPP_ $_DLATCH_N_ $_DLATCH_P_ $_DLATCHSR_NNN_ $_DLATCHSR_NNP_
$_DLATCHSR_NPN_ $_DLATCHSR_NPP_ $_DLATCHSR_PNN_ $_DLATCHSR_PNP_ $_DLATCHSR_PPN_ $_DLATCHSR_PPP_

_ Yosys Open SYnthesis Suite November 13, 2022 140 /150

Simulation models (i.e. documentation :-) for the internal cell library:

yosys/techlibs/common/simlib.v and
yosys/techlibs/common/simcells.v

The lower-case cell types (such as $and) are parameterized cells of variable
width. This so-called RTL Cells are the cells described in simlib.v.

The upper-case cell types (such as $_aND_) are single-bit cells that are not
parameterized. This so-called Internal Logic Gates are the cells described
in simcells.v.

The consistency checker also checks the interfaces to the internal cell

library. If you want to use private cell types for your own purposes, use the
$__-prefix to avoid name collisions.

_ Yosys Open SYnthesis Suite November 13, 2022 141 /150

Additional connections between wires or between wires and constants are
modelled using RTLIL: :Module: :connections:

typedef std::pair<RTLIL::SigSpec, RTLIL::SigSpec> RTLIL::SigSig;
struct RTLIL::Module {

std::vector<RTLIL::SigSig> connections_;

RTLIL::SigSig::first is the driven signal and RTLIL::SigSig: :second is the
driving signal. Example usage (setting wire foo to value 42):

module->connect (module->wire("\\foo"),
RTLIL::SigSpec (42, module->wire("\\foo")->width));

B NS GEEE VAT November 13, 2022 142150

Let's create the following module using the RTLIL API:

module absval(input signed [3:0] a, output [3:0] y);
assign y = a[3] ? -a : a;
endmodule

RTLIL::Module *module = new RTLIL::Module;

module->name = "\\absval”;

RTLIL::Wire *a = module->addWire("\\a", 4);
a->port_input = true;

a->port_id = 1;

RTLIL::Wire *y = module->addWire("\\y", 4);
y->port_output = true;
y->port_id = 2;

RTLIL::Wire xa_inv = module->addWire (NEW_ID, 4);
module->addNeg (NEW_ID, a, a_inv, true);

module ->addMux (NEW_ID, a, a_inv, RTLIL::SigSpec(a, 1, 3), y);

module->fixup_ports();

B NS GEEE VAT November 13,2022 143150

Most commands modify existing modules, not create new ones.
When modifying existing modules, stick to the following DOs and DON'Ts:

@ Do not remove wires. Simply disconnect them and let a successive
clean command worry about removing it.

@ Use module->fixup_ports() after changing the port_x properties of wires.

@ You can safely remove cells or change the connections property of a
cell, but be careful when changing the size of the sigSpec connected to
a cell port.

@ Use the sigMap helper class (see next slide) when you need a unique
handle for each signal bit.

_ Yosys Open SYnthesis Suite November 13, 2022 144 /150

Consider the following module:

module test(input a, output x, y);
assign x = a, y = a;
endmodule

In this case a, x, and y are all different names for the same signal. However:

RTLIL::SigSpec a(module->wire(”\\a")), x(module->wire("\\x")),
y(module->wire("\\y"));
log("%d_%d_%d\n", a == x, x ==y, y == a); // will print "0 0 0"
The sigMap helper class can be used to map all such aliasing signals to a
unique signal from the group (usually the wire that is directly driven by a
cell or port).
SigMap sigmap(module);

log("%d_%d_%d\n", sigmap(a) == sigmap(x), sigmap(x) == sigmap(y),
sigmap(y) == sigmap(a)); // will print "1 1 1"

B T NS GEEE VAT November 13,2022 145150

The 1og() function is a printf()-like function that can be used to create log
messages.

Use log_signal() to create a C-string for a SigSpec object®:

log("Mapped._signal_x:_%s\n", log_signal(sigmap(x)));

Use log_id() to create a C-string for an RTLIL::IdString:

log ("Name_of_this_module:_%s\n", log_id(module->name));

Use log_header () and log_push()/log_pop() to structure log messages:

log_header (design, "Doing.important_stuff!\n");

log_push();

for (int i = 0; i < 10; i++)
log("Log_message_#%d.\n", 1i);

log_pop();

5The pointer returned by log_signal() is automatically freed by the log framework at a
later time.

T T NSRRI November 13,2022 146150

Use log_error() to report a non-recoverable error:

if (design->modules.count(module->name) != @)
log_error("A_module_with_the_name_%s_already_exists!\n",
RTLIL::id2cstr (module->name));

Use log_cmd_error() to report a recoverable error:

if (design->selection_stack.back().empty())
log_cmd_error("This_command_.can't_operator_on_an_empty_selection!\n");

Use log_assert() and log_abort() instead of assert() and abort().

B T NS GEEE VAT November 13, 2022 147150

Simply create a global instance of a class derived from Pass to create a
new yosys command:

#include "kernel/yosys.h”
USING_YOSYS_NAMESPACE

struct MyPass : public Pass {

MyPass () : Pass("my_cmd”, "just_a_simple_test”) { }
virtual void execute(std::vector<std::string> args, RTLIL::Design *design)
{
log ("Arguments_to_my_cmd:\n");
for (auto &arg : args)
log("_._%s\n", arg.c_str());
log("Modules_in_current_design:\n");
for (auto mod : design->modules())
log("._%s_(%d_wires,_%d_cells)\n", log_id(mod),
GetSize(mod->wires()), GetSize(mod->cells()));
}
} MyPass;

B T NS GEEE VAT November 13,2022 148150

Yosys can be extended by adding additional C++ code to the Yosys code
base, or by loading plugins into Yosys.

Use the following command to compile a Yosys plugin:

yosys-config --exec --cxx --cxxflags --1ldflags \

-0 my_cmd.so -shared my_cmd.cc --1dlibs

Or shorter:

yosys-config --build my_cmd.so my_cmd.cc

Load the plugin using the yosys -m option:

yosys -m ./my_cmd.so -p 'my_cmd foo bar'

B eSS GEEE VAT November 13, 2022 149150

o Writing Yosys extensions is very straight-forward.

@ ...and even simpler if you don’t need RTLIL::Memory or
RTLIL::Process objects.

@ Writing synthesis software? Consider learning the Yosys API and
make your work part of the Yosys framework.

Questions?

https://yosyshqg.net/yosys/

B NS GEEE VAT November 13,2022 150150

https://yosyshq.net/yosys/

	Abstract
	About me
	Outline
	Introduction to Yosys
	Levels of Abstraction for Digital Circuits
	Digital Circuit Synthesis
	What Yosys can and can't do
	Yosys Data- and Control-Flow
	Program Components and Data Formats
	Example Project
	Running the Synthesis Script
	The synth command
	Yosys Commands
	More Verilog Examples
	Currently unsupported Verilog-2005 language features
	Verification of Yosys
	Benefits of Open Source HDL Synthesis
	Typical Applications for Yosys
	Projects (that I know of) using Yosys
	Supported Platforms
	Other Open Source Tools
	Yosys needs you
	Documentation, Downloads, Contacts
	Summary

	Yosys by example – Synthesis
	Typical Phases of a Synthesis Flow
	Reading the design
	Design elaboration
	The proc command
	The opt command
	When to use opt or clean
	The memory command
	The fsm command
	The techmap command
	The abc command
	Other special-purpose mapping commands
	Example Synthesis Script
	Summary

	Yosys by example – Advanced Synthesis
	Using selections
	Simple selections
	Selection by object name
	Module and design context
	Selecting by object property or type
	Combining selection
	Expanding selections
	Incremental selection
	Creating selection variables

	Advanced uses of techmap
	Introduction to techmap
	Conditional techmap
	Scripting in map modules
	Handling constant inputs
	Handling shorted inputs
	Notes on using techmap

	Coarse-grain synthesis
	Intro to coarse-grain synthesis
	The extract pass
	The wrap-extract-unwrap method
	Example: DSP48_MACC

	Automatic design changes
	Changing the design from Yosys
	Example: Async reset to sync reset

	Summary

	Yosys by example – Beyond Synthesis
	Interactive Design Investigation
	Symbolic Model Checking
	Summary

	Writing Yosys extensions in C++
	Program Components and Data Formats
	Simplified RTLIL Entity-Relationship Diagram
	RTLIL without memories and processes
	Using dump and show commands
	The RTLIL Data Structures
	RTLIL::IdString
	RTLIL::Design and RTLIL::Module
	The RTLIL::Wire Structure
	RTLIL::State and RTLIL::Const
	The RTLIL::SigSpec Structure
	The RTLIL::Cell Structure
	Connecting wires or constant drivers

	Creating modules from scratch
	Modifying modules
	Using the SigMap helper class
	Printing log messages
	Error handling
	Creating a command
	Creating a plugin
	Summary

