VTK  9.0.1
vtkStreamTracer.h
Go to the documentation of this file.
1 /*=========================================================================
2 
3  Program: Visualization Toolkit
4  Module: vtkStreamTracer.h
5 
6  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
7  All rights reserved.
8  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
9 
10  This software is distributed WITHOUT ANY WARRANTY; without even
11  the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
12  PURPOSE. See the above copyright notice for more information.
13 
14 =========================================================================*/
81 #ifndef vtkStreamTracer_h
82 #define vtkStreamTracer_h
83 
84 #include "vtkFiltersFlowPathsModule.h" // For export macro
85 #include "vtkPolyDataAlgorithm.h"
86 
87 #include "vtkInitialValueProblemSolver.h" // Needed for constants
88 
91 class vtkDataArray;
93 class vtkDoubleArray;
94 class vtkExecutive;
95 class vtkGenericCell;
96 class vtkIdList;
97 class vtkIntArray;
98 class vtkPoints;
99 
100 #include <vector>
101 
102 class VTKFILTERSFLOWPATHS_EXPORT vtkStreamTracer : public vtkPolyDataAlgorithm
103 {
104 public:
106  void PrintSelf(ostream& os, vtkIndent indent) override;
107 
115  static vtkStreamTracer* New();
116 
118 
123  vtkSetVector3Macro(StartPosition, double);
124  vtkGetVector3Macro(StartPosition, double);
126 
128 
137 
143 
144  // The previously-supported TIME_UNIT is excluded in this current
145  // enumeration definition because the underlying step size is ALWAYS in
146  // arc length unit (LENGTH_UNIT) while the 'real' time interval (virtual
147  // for steady flows) that a particle actually takes to trave in a single
148  // step is obtained by dividing the arc length by the LOCAL speed. The
149  // overall elapsed time (i.e., the life span) of the particle is the sum
150  // of those individual step-wise time intervals. The arc-length-to-time
151  // conversion only occurs for vorticity computation and for generating a
152  // point data array named 'IntegrationTime'.
153  enum Units
154  {
155  LENGTH_UNIT = 1,
156  CELL_LENGTH_UNIT = 2
157  };
158 
159  enum Solvers
160  {
165  UNKNOWN
166  };
167 
169  {
173  OUT_OF_LENGTH = 4,
174  OUT_OF_STEPS = 5,
175  STAGNATION = 6,
176  FIXED_REASONS_FOR_TERMINATION_COUNT
177  };
178 
180 
191  vtkGetObjectMacro(Integrator, vtkInitialValueProblemSolver);
194  void SetIntegratorTypeToRungeKutta2() { this->SetIntegratorType(RUNGE_KUTTA2); }
195  void SetIntegratorTypeToRungeKutta4() { this->SetIntegratorType(RUNGE_KUTTA4); }
196  void SetIntegratorTypeToRungeKutta45() { this->SetIntegratorType(RUNGE_KUTTA45); }
198 
204 
210 
212 
215  vtkSetMacro(MaximumPropagation, double);
216  vtkGetMacro(MaximumPropagation, double);
218 
225  void SetIntegrationStepUnit(int unit);
226  int GetIntegrationStepUnit() { return this->IntegrationStepUnit; }
227 
229 
236  vtkSetMacro(InitialIntegrationStep, double);
237  vtkGetMacro(InitialIntegrationStep, double);
239 
241 
247  vtkSetMacro(MinimumIntegrationStep, double);
248  vtkGetMacro(MinimumIntegrationStep, double);
250 
252 
258  vtkSetMacro(MaximumIntegrationStep, double);
259  vtkGetMacro(MaximumIntegrationStep, double);
261 
263 
266  vtkSetMacro(MaximumError, double);
267  vtkGetMacro(MaximumError, double);
269 
271 
274  vtkSetMacro(MaximumNumberOfSteps, vtkIdType);
275  vtkGetMacro(MaximumNumberOfSteps, vtkIdType);
277 
279 
282  vtkSetMacro(TerminalSpeed, double);
283  vtkGetMacro(TerminalSpeed, double);
285 
287 
290  vtkGetMacro(SurfaceStreamlines, bool);
291  vtkSetMacro(SurfaceStreamlines, bool);
292  vtkBooleanMacro(SurfaceStreamlines, bool);
294 
295  enum
296  {
299  BOTH
300  };
301 
302  enum
303  {
305  INTERPOLATOR_WITH_CELL_LOCATOR
306  };
307 
309 
313  vtkSetClampMacro(IntegrationDirection, int, FORWARD, BOTH);
314  vtkGetMacro(IntegrationDirection, int);
315  void SetIntegrationDirectionToForward() { this->SetIntegrationDirection(FORWARD); }
316  void SetIntegrationDirectionToBackward() { this->SetIntegrationDirection(BACKWARD); }
317  void SetIntegrationDirectionToBoth() { this->SetIntegrationDirection(BOTH); }
319 
321 
326  vtkSetMacro(ComputeVorticity, bool);
327  vtkGetMacro(ComputeVorticity, bool);
329 
331 
335  vtkSetMacro(RotationScale, double);
336  vtkGetMacro(RotationScale, double);
338 
344 
354  void SetInterpolatorType(int interpType);
355 
365  typedef bool (*CustomTerminationCallbackType)(
366  void* clientdata, vtkPoints* points, vtkDataArray* velocity, int integrationDirection);
376  CustomTerminationCallbackType callback, void* clientdata, int reasonForTermination);
377 
378 protected:
380  ~vtkStreamTracer() override;
381 
382  // Create a default executive.
384 
385  // hide the superclass' AddInput() from the user and the compiler
387  {
388  vtkErrorMacro(<< "AddInput() must be called with a vtkDataSet not a vtkDataObject.");
389  }
390 
393 
395  vtkGenericCell* cell, double pcoords[3], vtkDoubleArray* cellVectors, double vorticity[3]);
396  void Integrate(vtkPointData* inputData, vtkPolyData* output, vtkDataArray* seedSource,
397  vtkIdList* seedIds, vtkIntArray* integrationDirections, double lastPoint[3],
398  vtkAbstractInterpolatedVelocityField* func, int maxCellSize, int vecType,
399  const char* vecFieldName, double& propagation, vtkIdType& numSteps, double& integrationTime);
400  double SimpleIntegrate(double seed[3], double lastPoint[3], double stepSize,
402  int CheckInputs(vtkAbstractInterpolatedVelocityField*& func, int* maxCellSize);
403  void GenerateNormals(vtkPolyData* output, double* firstNormal, const char* vecName);
404 
406 
407  // starting from global x-y-z position
408  double StartPosition[3];
409 
410  static const double EPSILON;
412 
414 
416  {
417  double Interval;
418  int Unit;
419  };
420 
425 
427  double& step, double& minStep, double& maxStep, int direction, double cellLength);
428  static double ConvertToLength(double interval, int unit, double cellLength);
429  static double ConvertToLength(IntervalInformation& interval, double cellLength);
430 
431  int SetupOutput(vtkInformation* inInfo, vtkInformation* outInfo);
432  void InitializeSeeds(vtkDataArray*& seeds, vtkIdList*& seedIds,
433  vtkIntArray*& integrationDirections, vtkDataSet* source);
434 
437 
438  // Prototype showing the integrator type to be set by the user.
440 
441  double MaximumError;
443 
446 
447  // Compute streamlines only on surface.
449 
451 
453  bool
454  HasMatchingPointAttributes; // does the point data in the multiblocks have the same attributes?
455  std::vector<CustomTerminationCallbackType> CustomTerminationCallback;
456  std::vector<void*> CustomTerminationClientData;
457  std::vector<int> CustomReasonForTermination;
458 
459  friend class PStreamTracerUtils;
460 
461 private:
462  vtkStreamTracer(const vtkStreamTracer&) = delete;
463  void operator=(const vtkStreamTracer&) = delete;
464 };
465 
466 #endif
467 // VTK-HeaderTest-Exclude: vtkStreamTracer.h
An abstract class for obtaining the interpolated velocity values at a point.
Proxy object to connect input/output ports.
abstract superclass for composite (multi-block or AMR) datasets
abstract superclass for arrays of numeric data
Definition: vtkDataArray.h:50
general representation of visualization data
Definition: vtkDataObject.h:60
represent and manipulate attribute data in a dataset
abstract class to specify dataset behavior
Definition: vtkDataSet.h:57
dynamic, self-adjusting array of double
Superclass for all pipeline executives in VTK.
Definition: vtkExecutive.h:47
provides thread-safe access to cells
list of point or cell ids
Definition: vtkIdList.h:31
a simple class to control print indentation
Definition: vtkIndent.h:34
Store zero or more vtkInformation instances.
Store vtkAlgorithm input/output information.
Integrate a set of ordinary differential equations (initial value problem) in time.
dynamic, self-adjusting array of int
Definition: vtkIntArray.h:40
represent and manipulate point attribute data
Definition: vtkPointData.h:32
represent and manipulate 3D points
Definition: vtkPoints.h:34
Superclass for algorithms that produce only polydata as output.
concrete dataset represents vertices, lines, polygons, and triangle strips
Definition: vtkPolyData.h:85
Streamline generator.
void SetIntegratorTypeToRungeKutta45()
int FillInputPortInformation(int, vtkInformation *) override
Fill the input port information objects for this algorithm.
int SetupOutput(vtkInformation *inInfo, vtkInformation *outInfo)
std::vector< void * > CustomTerminationClientData
void Integrate(vtkPointData *inputData, vtkPolyData *output, vtkDataArray *seedSource, vtkIdList *seedIds, vtkIntArray *integrationDirections, double lastPoint[3], vtkAbstractInterpolatedVelocityField *func, int maxCellSize, int vecType, const char *vecFieldName, double &propagation, vtkIdType &numSteps, double &integrationTime)
void SetSourceData(vtkDataSet *source)
Specify the source object used to generate starting points (seeds).
double InitialIntegrationStep
vtkAbstractInterpolatedVelocityField * InterpolatorPrototype
void SetInterpolatorTypeToCellLocator()
Set the velocity field interpolator type to the one involving a cell locator.
void PrintSelf(ostream &os, vtkIndent indent) override
Methods invoked by print to print information about the object including superclasses.
void CalculateVorticity(vtkGenericCell *cell, double pcoords[3], vtkDoubleArray *cellVectors, double vorticity[3])
@ INTERPOLATOR_WITH_DATASET_POINT_LOCATOR
double MinimumIntegrationStep
void SetIntegratorTypeToRungeKutta4()
vtkDataSet * GetSource()
static double ConvertToLength(double interval, int unit, double cellLength)
void SetIntegrator(vtkInitialValueProblemSolver *)
Set/get the integrator type to be used for streamline generation.
void SetSourceConnection(vtkAlgorithmOutput *algOutput)
Specify the source object used to generate starting points (seeds).
std::vector< int > CustomReasonForTermination
static double ConvertToLength(IntervalInformation &interval, double cellLength)
int CheckInputs(vtkAbstractInterpolatedVelocityField *&func, int *maxCellSize)
void ConvertIntervals(double &step, double &minStep, double &maxStep, int direction, double cellLength)
void GenerateNormals(vtkPolyData *output, double *firstNormal, const char *vecName)
static const double EPSILON
vtkIdType MaximumNumberOfSteps
void SetIntegrationDirectionToForward()
std::vector< CustomTerminationCallbackType > CustomTerminationCallback
bool HasMatchingPointAttributes
vtkCompositeDataSet * InputData
vtkExecutive * CreateDefaultExecutive() override
Create a default executive.
void SetInterpolatorType(int interpType)
Set the type of the velocity field interpolator to determine whether vtkInterpolatedVelocityField (IN...
double MaximumIntegrationStep
int RequestData(vtkInformation *, vtkInformationVector **, vtkInformationVector *) override
This is called by the superclass.
bool GenerateNormalsInIntegrate
void SetIntegrationDirectionToBackward()
void SetInterpolatorTypeToDataSetPointLocator()
Set the velocity field interpolator type to the one involving a dataset point locator.
int GetIntegratorType()
void AddCustomTerminationCallback(CustomTerminationCallbackType callback, void *clientdata, int reasonForTermination)
Adds a custom termination callback.
void InitializeSeeds(vtkDataArray *&seeds, vtkIdList *&seedIds, vtkIntArray *&integrationDirections, vtkDataSet *source)
void SetIntegratorTypeToRungeKutta2()
static vtkStreamTracer * New()
Construct object to start from position (0,0,0), with forward integration, terminal speed 1....
void SetIntegrationDirectionToBoth()
double SimpleIntegrate(double seed[3], double lastPoint[3], double stepSize, vtkAbstractInterpolatedVelocityField *func)
~vtkStreamTracer() override
void AddInput(vtkDataObject *)
vtkInitialValueProblemSolver * Integrator
void SetInterpolatorPrototype(vtkAbstractInterpolatedVelocityField *ivf)
The object used to interpolate the velocity field during integration is of the same class as this pro...
void SetIntegrationStepUnit(int unit)
Specify a uniform integration step unit for MinimumIntegrationStep, InitialIntegrationStep,...
void SetIntegratorType(int type)
int GetIntegrationStepUnit()
@ points
Definition: vtkX3D.h:452
@ direction
Definition: vtkX3D.h:266
@ type
Definition: vtkX3D.h:522
boost::graph_traits< vtkGraph * >::vertex_descriptor source(boost::graph_traits< vtkGraph * >::edge_descriptor e, vtkGraph *)
int vtkIdType
Definition: vtkType.h:338