sfepy.terms.terms_constraints module¶
- class sfepy.terms.terms_constraints.NonPenetrationPenaltyTerm(name, arg_str, integral, region, **kwargs)[source]¶
Non-penetration condition in the weak sense using a penalty.
- Definition
\int_{\Gamma} c (\ul{n} \cdot \ul{v}) (\ul{n} \cdot \ul{u})
- Call signature
dw_non_penetration_p
(material, virtual, state)
- Arguments
material : c
virtual : \ul{v}
state : \ul{u}
- arg_shapes = {'material': '1, 1', 'state': 'D', 'virtual': ('D', 'state')}¶
- arg_types = ('material', 'virtual', 'state')¶
- integration = 'surface'¶
- name = 'dw_non_penetration_p'¶
- class sfepy.terms.terms_constraints.NonPenetrationTerm(name, arg_str, integral, region, **kwargs)[source]¶
Non-penetration condition in the weak sense.
- Definition
\int_{\Gamma} c \lambda \ul{n} \cdot \ul{v} \mbox{ , } \int_{\Gamma} c \hat\lambda \ul{n} \cdot \ul{u} \\ \int_{\Gamma} \lambda \ul{n} \cdot \ul{v} \mbox{ , } \int_{\Gamma} \hat\lambda \ul{n} \cdot \ul{u}
- Call signature
dw_non_penetration
(opt_material, virtual, state)
(opt_material, state, virtual)
- Arguments 1
material : c (optional)
virtual : \ul{v}
state : \lambda
- Arguments 2
material : c (optional)
state : \ul{u}
virtual : \hat\lambda
- arg_shapes = [{'opt_material': '1, 1', 'virtual/grad': ('D', None), 'state/grad': 1, 'virtual/div': (1, None), 'state/div': 'D'}, {'opt_material': None}]¶
- arg_types = (('opt_material', 'virtual', 'state'), ('opt_material', 'state', 'virtual'))¶
- static function(out, val_qp, ebf, bf, mat, sg, diff_var, mode)[source]¶
ebf belongs to vector variable, bf to scalar variable.
- integration = 'surface'¶
- modes = ('grad', 'div')¶
- name = 'dw_non_penetration'¶