Actual source code: plexorient.c
1: #include <petsc/private/dmpleximpl.h>
2: #include <petscsf.h>
4: /*@
5: DMPlexOrientPoint - Act with the given orientation on the cone points of this mesh point, and update its use in the mesh.
7: Not Collective
9: Input Parameters:
10: + dm - The DM
11: . p - The mesh point
12: - o - The orientation
14: Level: intermediate
16: .seealso: `DMPlexOrient()`, `DMPlexGetCone()`, `DMPlexGetConeOrientation()`, `DMPlexInterpolate()`, `DMPlexGetChart()`
17: @*/
18: PetscErrorCode DMPlexOrientPoint(DM dm, PetscInt p, PetscInt o)
19: {
20: DMPolytopeType ct;
21: const PetscInt *arr, *cone, *ornt, *support;
22: PetscInt *newcone, *newornt;
23: PetscInt coneSize, c, supportSize, s;
26: DMPlexGetCellType(dm, p, &ct);
27: arr = DMPolytopeTypeGetArrangment(ct, o);
28: DMPlexGetConeSize(dm, p, &coneSize);
29: DMPlexGetCone(dm, p, &cone);
30: DMPlexGetConeOrientation(dm, p, &ornt);
31: DMGetWorkArray(dm, coneSize, MPIU_INT, &newcone);
32: DMGetWorkArray(dm, coneSize, MPIU_INT, &newornt);
33: for (c = 0; c < coneSize; ++c) {
34: DMPolytopeType ft;
35: PetscInt nO;
37: DMPlexGetCellType(dm, cone[c], &ft);
38: nO = DMPolytopeTypeGetNumArrangments(ft) / 2;
39: newcone[c] = cone[arr[c * 2 + 0]];
40: newornt[c] = DMPolytopeTypeComposeOrientation(ft, arr[c * 2 + 1], ornt[arr[c * 2 + 0]]);
42: }
43: DMPlexSetCone(dm, p, newcone);
44: DMPlexSetConeOrientation(dm, p, newornt);
45: DMRestoreWorkArray(dm, coneSize, MPIU_INT, &newcone);
46: DMRestoreWorkArray(dm, coneSize, MPIU_INT, &newornt);
47: /* Update orientation of this point in the support points */
48: DMPlexGetSupportSize(dm, p, &supportSize);
49: DMPlexGetSupport(dm, p, &support);
50: for (s = 0; s < supportSize; ++s) {
51: DMPlexGetConeSize(dm, support[s], &coneSize);
52: DMPlexGetCone(dm, support[s], &cone);
53: DMPlexGetConeOrientation(dm, support[s], &ornt);
54: for (c = 0; c < coneSize; ++c) {
55: PetscInt po;
57: if (cone[c] != p) continue;
58: /* ornt[c] * 0 = target = po * o so that po = ornt[c] * o^{-1} */
59: po = DMPolytopeTypeComposeOrientationInv(ct, ornt[c], o);
60: DMPlexInsertConeOrientation(dm, support[s], c, po);
61: }
62: }
63: return 0;
64: }
66: /*
67: - Checks face match
68: - Flips non-matching
69: - Inserts faces of support cells in FIFO
70: */
71: static PetscErrorCode DMPlexCheckFace_Internal(DM dm, PetscInt *faceFIFO, PetscInt *fTop, PetscInt *fBottom, PetscInt cStart, PetscInt fStart, PetscInt fEnd, PetscBT seenCells, PetscBT flippedCells, PetscBT seenFaces)
72: {
73: const PetscInt *support, *coneA, *coneB, *coneOA, *coneOB;
74: PetscInt supportSize, coneSizeA, coneSizeB, posA = -1, posB = -1;
75: PetscInt face, dim, seenA, flippedA, seenB, flippedB, mismatch, c;
77: face = faceFIFO[(*fTop)++];
78: DMGetDimension(dm, &dim);
79: DMPlexGetSupportSize(dm, face, &supportSize);
80: DMPlexGetSupport(dm, face, &support);
81: if (supportSize < 2) return 0;
83: seenA = PetscBTLookup(seenCells, support[0] - cStart);
84: flippedA = PetscBTLookup(flippedCells, support[0] - cStart) ? 1 : 0;
85: seenB = PetscBTLookup(seenCells, support[1] - cStart);
86: flippedB = PetscBTLookup(flippedCells, support[1] - cStart) ? 1 : 0;
88: DMPlexGetConeSize(dm, support[0], &coneSizeA);
89: DMPlexGetConeSize(dm, support[1], &coneSizeB);
90: DMPlexGetCone(dm, support[0], &coneA);
91: DMPlexGetCone(dm, support[1], &coneB);
92: DMPlexGetConeOrientation(dm, support[0], &coneOA);
93: DMPlexGetConeOrientation(dm, support[1], &coneOB);
94: for (c = 0; c < coneSizeA; ++c) {
95: if (!PetscBTLookup(seenFaces, coneA[c] - fStart)) {
96: faceFIFO[(*fBottom)++] = coneA[c];
97: PetscBTSet(seenFaces, coneA[c] - fStart);
98: }
99: if (coneA[c] == face) posA = c;
101: }
103: for (c = 0; c < coneSizeB; ++c) {
104: if (!PetscBTLookup(seenFaces, coneB[c] - fStart)) {
105: faceFIFO[(*fBottom)++] = coneB[c];
106: PetscBTSet(seenFaces, coneB[c] - fStart);
107: }
108: if (coneB[c] == face) posB = c;
110: }
113: if (dim == 1) {
114: mismatch = posA == posB;
115: } else {
116: mismatch = coneOA[posA] == coneOB[posB];
117: }
119: if (mismatch ^ (flippedA ^ flippedB)) {
121: if (!seenA && !flippedA) {
122: PetscBTSet(flippedCells, support[0] - cStart);
123: } else if (!seenB && !flippedB) {
124: PetscBTSet(flippedCells, support[1] - cStart);
125: } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Inconsistent mesh orientation: Fault mesh is non-orientable");
127: PetscBTSet(seenCells, support[0] - cStart);
128: PetscBTSet(seenCells, support[1] - cStart);
129: return 0;
130: }
132: /*@
133: DMPlexOrient - Give a consistent orientation to the input mesh
135: Input Parameters:
136: . dm - The DM
138: Note: The orientation data for the DM are change in-place.
139: $ This routine will fail for non-orientable surfaces, such as the Moebius strip.
141: Level: advanced
143: .seealso: `DMCreate()`, `DMPLEX`
144: @*/
145: PetscErrorCode DMPlexOrient(DM dm)
146: {
147: MPI_Comm comm;
148: PetscSF sf;
149: const PetscInt *lpoints;
150: const PetscSFNode *rpoints;
151: PetscSFNode *rorntComp = NULL, *lorntComp = NULL;
152: PetscInt *numNeighbors, **neighbors, *locSupport = NULL;
153: PetscSFNode *nrankComp;
154: PetscBool *match, *flipped;
155: PetscBT seenCells, flippedCells, seenFaces;
156: PetscInt *faceFIFO, fTop, fBottom, *cellComp, *faceComp;
157: PetscInt numLeaves, numRoots, dim, h, cStart, cEnd, c, cell, fStart, fEnd, face, off, totNeighbors = 0;
158: PetscMPIInt rank, size, numComponents, comp = 0;
159: PetscBool flg, flg2;
160: PetscViewer viewer = NULL, selfviewer = NULL;
162: PetscObjectGetComm((PetscObject)dm, &comm);
163: MPI_Comm_rank(comm, &rank);
164: MPI_Comm_size(comm, &size);
165: PetscOptionsHasName(((PetscObject)dm)->options, ((PetscObject)dm)->prefix, "-orientation_view", &flg);
166: PetscOptionsHasName(((PetscObject)dm)->options, ((PetscObject)dm)->prefix, "-orientation_view_synchronized", &flg2);
167: DMGetPointSF(dm, &sf);
168: PetscSFGetGraph(sf, &numRoots, &numLeaves, &lpoints, &rpoints);
169: /* Truth Table
170: mismatch flips do action mismatch flipA ^ flipB action
171: F 0 flips no F F F
172: F 1 flip yes F T T
173: F 2 flips no T F T
174: T 0 flips yes T T F
175: T 1 flip no
176: T 2 flips yes
177: */
178: DMGetDimension(dm, &dim);
179: DMPlexGetVTKCellHeight(dm, &h);
180: DMPlexGetHeightStratum(dm, h, &cStart, &cEnd);
181: DMPlexGetHeightStratum(dm, h + 1, &fStart, &fEnd);
182: PetscBTCreate(cEnd - cStart, &seenCells);
183: PetscBTMemzero(cEnd - cStart, seenCells);
184: PetscBTCreate(cEnd - cStart, &flippedCells);
185: PetscBTMemzero(cEnd - cStart, flippedCells);
186: PetscBTCreate(fEnd - fStart, &seenFaces);
187: PetscBTMemzero(fEnd - fStart, seenFaces);
188: PetscCalloc3(fEnd - fStart, &faceFIFO, cEnd - cStart, &cellComp, fEnd - fStart, &faceComp);
189: /*
190: OLD STYLE
191: - Add an integer array over cells and faces (component) for connected component number
192: Foreach component
193: - Mark the initial cell as seen
194: - Process component as usual
195: - Set component for all seenCells
196: - Wipe seenCells and seenFaces (flippedCells can stay)
197: - Generate parallel adjacency for component using SF and seenFaces
198: - Collect numComponents adj data from each proc to 0
199: - Build same serial graph
200: - Use same solver
201: - Use Scatterv to to send back flipped flags for each component
202: - Negate flippedCells by component
204: NEW STYLE
205: - Create the adj on each process
206: - Bootstrap to complete graph on proc 0
207: */
208: /* Loop over components */
209: for (cell = cStart; cell < cEnd; ++cell) cellComp[cell - cStart] = -1;
210: do {
211: /* Look for first unmarked cell */
212: for (cell = cStart; cell < cEnd; ++cell)
213: if (cellComp[cell - cStart] < 0) break;
214: if (cell >= cEnd) break;
215: /* Initialize FIFO with first cell in component */
216: {
217: const PetscInt *cone;
218: PetscInt coneSize;
220: fTop = fBottom = 0;
221: DMPlexGetConeSize(dm, cell, &coneSize);
222: DMPlexGetCone(dm, cell, &cone);
223: for (c = 0; c < coneSize; ++c) {
224: faceFIFO[fBottom++] = cone[c];
225: PetscBTSet(seenFaces, cone[c] - fStart);
226: }
227: PetscBTSet(seenCells, cell - cStart);
228: }
229: /* Consider each face in FIFO */
230: while (fTop < fBottom) DMPlexCheckFace_Internal(dm, faceFIFO, &fTop, &fBottom, cStart, fStart, fEnd, seenCells, flippedCells, seenFaces);
231: /* Set component for cells and faces */
232: for (cell = 0; cell < cEnd - cStart; ++cell) {
233: if (PetscBTLookup(seenCells, cell)) cellComp[cell] = comp;
234: }
235: for (face = 0; face < fEnd - fStart; ++face) {
236: if (PetscBTLookup(seenFaces, face)) faceComp[face] = comp;
237: }
238: /* Wipe seenCells and seenFaces for next component */
239: PetscBTMemzero(fEnd - fStart, seenFaces);
240: PetscBTMemzero(cEnd - cStart, seenCells);
241: ++comp;
242: } while (1);
243: numComponents = comp;
244: if (flg) {
245: PetscViewer v;
247: PetscViewerASCIIGetStdout(comm, &v);
248: PetscViewerASCIIPushSynchronized(v);
249: PetscViewerASCIISynchronizedPrintf(v, "[%d]BT for serial flipped cells:\n", rank);
250: PetscBTView(cEnd - cStart, flippedCells, v);
251: PetscViewerFlush(v);
252: PetscViewerASCIIPopSynchronized(v);
253: }
254: /* Now all subdomains are oriented, but we need a consistent parallel orientation */
255: if (numLeaves >= 0) {
256: PetscInt maxSupportSize, neighbor;
258: /* Store orientations of boundary faces*/
259: DMPlexGetMaxSizes(dm, NULL, &maxSupportSize);
260: PetscCalloc3(numRoots, &rorntComp, numRoots, &lorntComp, maxSupportSize, &locSupport);
261: for (face = fStart; face < fEnd; ++face) {
262: const PetscInt *cone, *support, *ornt;
263: PetscInt coneSize, supportSize, Ns = 0, s, l;
265: DMPlexGetSupportSize(dm, face, &supportSize);
266: /* Ignore overlapping cells */
267: DMPlexGetSupport(dm, face, &support);
268: for (s = 0; s < supportSize; ++s) {
269: PetscFindInt(support[s], numLeaves, lpoints, &l);
270: if (l >= 0) continue;
271: locSupport[Ns++] = support[s];
272: }
273: if (Ns != 1) continue;
274: neighbor = locSupport[0];
275: DMPlexGetCone(dm, neighbor, &cone);
276: DMPlexGetConeSize(dm, neighbor, &coneSize);
277: DMPlexGetConeOrientation(dm, neighbor, &ornt);
278: for (c = 0; c < coneSize; ++c)
279: if (cone[c] == face) break;
280: if (dim == 1) {
281: /* Use cone position instead, shifted to -1 or 1 */
282: if (PetscBTLookup(flippedCells, neighbor - cStart)) rorntComp[face].rank = 1 - c * 2;
283: else rorntComp[face].rank = c * 2 - 1;
284: } else {
285: if (PetscBTLookup(flippedCells, neighbor - cStart)) rorntComp[face].rank = ornt[c] < 0 ? -1 : 1;
286: else rorntComp[face].rank = ornt[c] < 0 ? 1 : -1;
287: }
288: rorntComp[face].index = faceComp[face - fStart];
289: }
290: /* Communicate boundary edge orientations */
291: PetscSFBcastBegin(sf, MPIU_2INT, rorntComp, lorntComp, MPI_REPLACE);
292: PetscSFBcastEnd(sf, MPIU_2INT, rorntComp, lorntComp, MPI_REPLACE);
293: }
294: /* Get process adjacency */
295: PetscMalloc2(numComponents, &numNeighbors, numComponents, &neighbors);
296: viewer = PETSC_VIEWER_STDOUT_(PetscObjectComm((PetscObject)dm));
297: if (flg2) PetscViewerASCIIPushSynchronized(viewer);
298: PetscViewerGetSubViewer(viewer, PETSC_COMM_SELF, &selfviewer);
299: for (comp = 0; comp < numComponents; ++comp) {
300: PetscInt l, n;
302: numNeighbors[comp] = 0;
303: PetscMalloc1(PetscMax(numLeaves, 0), &neighbors[comp]);
304: /* I know this is p^2 time in general, but for bounded degree its alright */
305: for (l = 0; l < numLeaves; ++l) {
306: const PetscInt face = lpoints[l];
308: /* Find a representative face (edge) separating pairs of procs */
309: if ((face >= fStart) && (face < fEnd) && (faceComp[face - fStart] == comp) && rorntComp[face].rank) {
310: const PetscInt rrank = rpoints[l].rank;
311: const PetscInt rcomp = lorntComp[face].index;
313: for (n = 0; n < numNeighbors[comp]; ++n)
314: if ((rrank == rpoints[neighbors[comp][n]].rank) && (rcomp == lorntComp[lpoints[neighbors[comp][n]]].index)) break;
315: if (n >= numNeighbors[comp]) {
316: PetscInt supportSize;
318: DMPlexGetSupportSize(dm, face, &supportSize);
320: if (flg)
321: PetscCall(PetscViewerASCIIPrintf(selfviewer, "[%d]: component %d, Found representative leaf %" PetscInt_FMT " (face %" PetscInt_FMT ") connecting to face %" PetscInt_FMT " on (%" PetscInt_FMT ", %" PetscInt_FMT ") with orientation %" PetscInt_FMT "\n", rank, comp, l, face,
322: rpoints[l].index, rrank, rcomp, lorntComp[face].rank));
323: neighbors[comp][numNeighbors[comp]++] = l;
324: }
325: }
326: }
327: totNeighbors += numNeighbors[comp];
328: }
329: PetscViewerRestoreSubViewer(viewer, PETSC_COMM_SELF, &selfviewer);
330: PetscViewerFlush(viewer);
331: if (flg2) PetscViewerASCIIPopSynchronized(viewer);
332: PetscMalloc2(totNeighbors, &nrankComp, totNeighbors, &match);
333: for (comp = 0, off = 0; comp < numComponents; ++comp) {
334: PetscInt n;
336: for (n = 0; n < numNeighbors[comp]; ++n, ++off) {
337: const PetscInt face = lpoints[neighbors[comp][n]];
338: const PetscInt o = rorntComp[face].rank * lorntComp[face].rank;
340: if (o < 0) match[off] = PETSC_TRUE;
341: else if (o > 0) match[off] = PETSC_FALSE;
342: else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Invalid face %" PetscInt_FMT " (%" PetscInt_FMT ", %" PetscInt_FMT ") neighbor: %" PetscInt_FMT " comp: %d", face, rorntComp[face].rank, lorntComp[face].rank, neighbors[comp][n], comp);
343: nrankComp[off].rank = rpoints[neighbors[comp][n]].rank;
344: nrankComp[off].index = lorntComp[lpoints[neighbors[comp][n]]].index;
345: }
346: PetscFree(neighbors[comp]);
347: }
348: /* Collect the graph on 0 */
349: if (numLeaves >= 0) {
350: Mat G;
351: PetscBT seenProcs, flippedProcs;
352: PetscInt *procFIFO, pTop, pBottom;
353: PetscInt *N = NULL, *Noff;
354: PetscSFNode *adj = NULL;
355: PetscBool *val = NULL;
356: PetscMPIInt *recvcounts = NULL, *displs = NULL, *Nc, p, o;
357: PetscMPIInt size = 0;
359: PetscCalloc1(numComponents, &flipped);
360: if (rank == 0) MPI_Comm_size(comm, &size);
361: PetscCalloc4(size, &recvcounts, size + 1, &displs, size, &Nc, size + 1, &Noff);
362: MPI_Gather(&numComponents, 1, MPI_INT, Nc, 1, MPI_INT, 0, comm);
363: for (p = 0; p < size; ++p) displs[p + 1] = displs[p] + Nc[p];
364: if (rank == 0) PetscMalloc1(displs[size], &N);
365: MPI_Gatherv(numNeighbors, numComponents, MPIU_INT, N, Nc, displs, MPIU_INT, 0, comm);
366: for (p = 0, o = 0; p < size; ++p) {
367: recvcounts[p] = 0;
368: for (c = 0; c < Nc[p]; ++c, ++o) recvcounts[p] += N[o];
369: displs[p + 1] = displs[p] + recvcounts[p];
370: }
371: if (rank == 0) PetscMalloc2(displs[size], &adj, displs[size], &val);
372: MPI_Gatherv(nrankComp, totNeighbors, MPIU_2INT, adj, recvcounts, displs, MPIU_2INT, 0, comm);
373: MPI_Gatherv(match, totNeighbors, MPIU_BOOL, val, recvcounts, displs, MPIU_BOOL, 0, comm);
374: PetscFree2(numNeighbors, neighbors);
375: if (rank == 0) {
376: for (p = 1; p <= size; ++p) Noff[p] = Noff[p - 1] + Nc[p - 1];
377: if (flg) {
378: PetscInt n;
380: for (p = 0, off = 0; p < size; ++p) {
381: for (c = 0; c < Nc[p]; ++c) {
382: PetscPrintf(PETSC_COMM_SELF, "Proc %d Comp %" PetscInt_FMT ":\n", p, c);
383: for (n = 0; n < N[Noff[p] + c]; ++n, ++off) PetscPrintf(PETSC_COMM_SELF, " edge (%" PetscInt_FMT ", %" PetscInt_FMT ") (%s):\n", adj[off].rank, adj[off].index, PetscBools[val[off]]);
384: }
385: }
386: }
387: /* Symmetrize the graph */
388: MatCreate(PETSC_COMM_SELF, &G);
389: MatSetSizes(G, Noff[size], Noff[size], Noff[size], Noff[size]);
390: MatSetUp(G);
391: for (p = 0, off = 0; p < size; ++p) {
392: for (c = 0; c < Nc[p]; ++c) {
393: const PetscInt r = Noff[p] + c;
394: PetscInt n;
396: for (n = 0; n < N[r]; ++n, ++off) {
397: const PetscInt q = Noff[adj[off].rank] + adj[off].index;
398: const PetscScalar o = val[off] ? 1.0 : 0.0;
400: MatSetValues(G, 1, &r, 1, &q, &o, INSERT_VALUES);
401: MatSetValues(G, 1, &q, 1, &r, &o, INSERT_VALUES);
402: }
403: }
404: }
405: MatAssemblyBegin(G, MAT_FINAL_ASSEMBLY);
406: MatAssemblyEnd(G, MAT_FINAL_ASSEMBLY);
408: PetscBTCreate(Noff[size], &seenProcs);
409: PetscBTMemzero(Noff[size], seenProcs);
410: PetscBTCreate(Noff[size], &flippedProcs);
411: PetscBTMemzero(Noff[size], flippedProcs);
412: PetscMalloc1(Noff[size], &procFIFO);
413: pTop = pBottom = 0;
414: for (p = 0; p < Noff[size]; ++p) {
415: if (PetscBTLookup(seenProcs, p)) continue;
416: /* Initialize FIFO with next proc */
417: procFIFO[pBottom++] = p;
418: PetscBTSet(seenProcs, p);
419: /* Consider each proc in FIFO */
420: while (pTop < pBottom) {
421: const PetscScalar *ornt;
422: const PetscInt *neighbors;
423: PetscInt proc, nproc, seen, flippedA, flippedB, mismatch, numNeighbors, n;
425: proc = procFIFO[pTop++];
426: flippedA = PetscBTLookup(flippedProcs, proc) ? 1 : 0;
427: MatGetRow(G, proc, &numNeighbors, &neighbors, &ornt);
428: /* Loop over neighboring procs */
429: for (n = 0; n < numNeighbors; ++n) {
430: nproc = neighbors[n];
431: mismatch = PetscRealPart(ornt[n]) > 0.5 ? 0 : 1;
432: seen = PetscBTLookup(seenProcs, nproc);
433: flippedB = PetscBTLookup(flippedProcs, nproc) ? 1 : 0;
435: if (mismatch ^ (flippedA ^ flippedB)) {
437: if (!flippedB) {
438: PetscBTSet(flippedProcs, nproc);
439: } else SETERRQ(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Inconsistent mesh orientation: Fault mesh is non-orientable");
441: if (!seen) {
442: procFIFO[pBottom++] = nproc;
443: PetscBTSet(seenProcs, nproc);
444: }
445: }
446: }
447: }
448: PetscFree(procFIFO);
449: MatDestroy(&G);
450: PetscFree2(adj, val);
451: PetscBTDestroy(&seenProcs);
452: }
453: /* Scatter flip flags */
454: {
455: PetscBool *flips = NULL;
457: if (rank == 0) {
458: PetscMalloc1(Noff[size], &flips);
459: for (p = 0; p < Noff[size]; ++p) {
460: flips[p] = PetscBTLookup(flippedProcs, p) ? PETSC_TRUE : PETSC_FALSE;
461: if (flg && flips[p]) PetscPrintf(comm, "Flipping Proc+Comp %d:\n", p);
462: }
463: for (p = 0; p < size; ++p) displs[p + 1] = displs[p] + Nc[p];
464: }
465: MPI_Scatterv(flips, Nc, displs, MPIU_BOOL, flipped, numComponents, MPIU_BOOL, 0, comm);
466: PetscFree(flips);
467: }
468: if (rank == 0) PetscBTDestroy(&flippedProcs);
469: PetscFree(N);
470: PetscFree4(recvcounts, displs, Nc, Noff);
471: PetscFree2(nrankComp, match);
473: /* Decide whether to flip cells in each component */
474: for (c = 0; c < cEnd - cStart; ++c) {
475: if (flipped[cellComp[c]]) PetscBTNegate(flippedCells, c);
476: }
477: PetscFree(flipped);
478: }
479: if (flg) {
480: PetscViewer v;
482: PetscViewerASCIIGetStdout(comm, &v);
483: PetscViewerASCIIPushSynchronized(v);
484: PetscViewerASCIISynchronizedPrintf(v, "[%d]BT for parallel flipped cells:\n", rank);
485: PetscBTView(cEnd - cStart, flippedCells, v);
486: PetscViewerFlush(v);
487: PetscViewerASCIIPopSynchronized(v);
488: }
489: /* Reverse flipped cells in the mesh */
490: for (c = cStart; c < cEnd; ++c) {
491: if (PetscBTLookup(flippedCells, c - cStart)) DMPlexOrientPoint(dm, c, -1);
492: }
493: PetscBTDestroy(&seenCells);
494: PetscBTDestroy(&flippedCells);
495: PetscBTDestroy(&seenFaces);
496: PetscFree2(numNeighbors, neighbors);
497: PetscFree3(rorntComp, lorntComp, locSupport);
498: PetscFree3(faceFIFO, cellComp, faceComp);
499: return 0;
500: }