Actual source code: fegeom.c
1: #include <petsc/private/petscfeimpl.h>
3: /*@C
4: PetscFEGeomCreate - Create a PetscFEGeom object to manage geometry for a group of cells
6: Input Parameters:
7: + quad - A PetscQuadrature determining the tabulation
8: . numCells - The number of cells in the group
9: . dimEmbed - The coordinate dimension
10: - faceData - Flag to construct geometry data for the faces
12: Output Parameter:
13: . geom - The PetscFEGeom object
15: Level: beginner
17: .seealso: `PetscFEGeomDestroy()`, `PetscFEGeomComplete()`
18: @*/
19: PetscErrorCode PetscFEGeomCreate(PetscQuadrature quad, PetscInt numCells, PetscInt dimEmbed, PetscBool faceData, PetscFEGeom **geom)
20: {
21: PetscFEGeom *g;
22: PetscInt dim, Nq, N;
23: const PetscReal *p;
25: PetscQuadratureGetData(quad, &dim, NULL, &Nq, &p, NULL);
26: PetscNew(&g);
27: g->xi = p;
28: g->numCells = numCells;
29: g->numPoints = Nq;
30: g->dim = dim;
31: g->dimEmbed = dimEmbed;
32: g->isCohesive = PETSC_FALSE;
33: N = numCells * Nq;
34: PetscCalloc3(N * dimEmbed, &g->v, N * dimEmbed * dimEmbed, &g->J, N, &g->detJ);
35: if (faceData) {
36: PetscCalloc2(numCells, &g->face, N * dimEmbed, &g->n);
37: PetscCalloc6(N * dimEmbed * dimEmbed, &(g->suppJ[0]), N * dimEmbed * dimEmbed, &(g->suppJ[1]), N * dimEmbed * dimEmbed, &(g->suppInvJ[0]), N * dimEmbed * dimEmbed, &(g->suppInvJ[1]), N, &(g->suppDetJ[0]), N, &(g->suppDetJ[1]));
38: }
39: PetscCalloc1(N * dimEmbed * dimEmbed, &g->invJ);
40: *geom = g;
41: return 0;
42: }
44: /*@C
45: PetscFEGeomDestroy - Destroy a PetscFEGeom object
47: Input Parameter:
48: . geom - PetscFEGeom object
50: Level: beginner
52: .seealso: `PetscFEGeomCreate()`
53: @*/
54: PetscErrorCode PetscFEGeomDestroy(PetscFEGeom **geom)
55: {
56: if (!*geom) return 0;
57: PetscFree3((*geom)->v, (*geom)->J, (*geom)->detJ);
58: PetscFree((*geom)->invJ);
59: PetscFree2((*geom)->face, (*geom)->n);
60: PetscFree6((*geom)->suppJ[0], (*geom)->suppJ[1], (*geom)->suppInvJ[0], (*geom)->suppInvJ[1], (*geom)->suppDetJ[0], (*geom)->suppDetJ[1]);
61: PetscFree(*geom);
62: return 0;
63: }
65: /*@C
66: PetscFEGeomGetChunk - Get a chunk of cells in the group as a PetscFEGeom
68: Input Parameters:
69: + geom - PetscFEGeom object
70: . cStart - The first cell in the chunk
71: - cEnd - The first cell not in the chunk
73: Output Parameter:
74: . chunkGeom - The chunk of cells
76: Level: intermediate
78: .seealso: `PetscFEGeomRestoreChunk()`, `PetscFEGeomCreate()`
79: @*/
80: PetscErrorCode PetscFEGeomGetChunk(PetscFEGeom *geom, PetscInt cStart, PetscInt cEnd, PetscFEGeom **chunkGeom)
81: {
82: PetscInt Nq;
83: PetscInt dE;
87: if (!(*chunkGeom)) PetscNew(chunkGeom);
88: Nq = geom->numPoints;
89: dE = geom->dimEmbed;
90: (*chunkGeom)->dim = geom->dim;
91: (*chunkGeom)->dimEmbed = geom->dimEmbed;
92: (*chunkGeom)->numPoints = geom->numPoints;
93: (*chunkGeom)->numCells = cEnd - cStart;
94: (*chunkGeom)->xi = geom->xi;
95: (*chunkGeom)->v = &geom->v[Nq * dE * cStart];
96: (*chunkGeom)->J = &geom->J[Nq * dE * dE * cStart];
97: (*chunkGeom)->invJ = (geom->invJ) ? &geom->invJ[Nq * dE * dE * cStart] : NULL;
98: (*chunkGeom)->detJ = &geom->detJ[Nq * cStart];
99: (*chunkGeom)->n = geom->n ? &geom->n[Nq * dE * cStart] : NULL;
100: (*chunkGeom)->face = geom->face ? &geom->face[cStart] : NULL;
101: (*chunkGeom)->suppJ[0] = geom->suppJ[0] ? &geom->suppJ[0][Nq * dE * dE * cStart] : NULL;
102: (*chunkGeom)->suppJ[1] = geom->suppJ[1] ? &geom->suppJ[1][Nq * dE * dE * cStart] : NULL;
103: (*chunkGeom)->suppInvJ[0] = geom->suppInvJ[0] ? &geom->suppInvJ[0][Nq * dE * dE * cStart] : NULL;
104: (*chunkGeom)->suppInvJ[1] = geom->suppInvJ[1] ? &geom->suppInvJ[1][Nq * dE * dE * cStart] : NULL;
105: (*chunkGeom)->suppDetJ[0] = geom->suppDetJ[0] ? &geom->suppDetJ[0][Nq * cStart] : NULL;
106: (*chunkGeom)->suppDetJ[1] = geom->suppDetJ[1] ? &geom->suppDetJ[1][Nq * cStart] : NULL;
107: (*chunkGeom)->isAffine = geom->isAffine;
108: return 0;
109: }
111: /*@C
112: PetscFEGeomRestoreChunk - Restore the chunk
114: Input Parameters:
115: + geom - PetscFEGeom object
116: . cStart - The first cell in the chunk
117: . cEnd - The first cell not in the chunk
118: - chunkGeom - The chunk of cells
120: Level: intermediate
122: .seealso: `PetscFEGeomGetChunk()`, `PetscFEGeomCreate()`
123: @*/
124: PetscErrorCode PetscFEGeomRestoreChunk(PetscFEGeom *geom, PetscInt cStart, PetscInt cEnd, PetscFEGeom **chunkGeom)
125: {
126: PetscFree(*chunkGeom);
127: return 0;
128: }
130: /*@C
131: PetscFEGeomGetPoint - Get the geometry for cell c at point p as a PetscFEGeom
133: Input Parameters:
134: + geom - PetscFEGeom object
135: . c - The cell
136: . p - The point
137: - pcoords - The reference coordinates of point p, or NULL
139: Output Parameter:
140: . pgeom - The geometry of cell c at point p
142: Note: For affine geometries, this only copies to pgeom at point 0. Since we copy pointers into pgeom,
143: nothing needs to be done with it afterwards.
145: In the affine case, pgeom must have storage for the integration point coordinates in pgeom->v if pcoords is passed in.
147: Level: intermediate
149: .seealso: `PetscFEGeomRestoreChunk()`, `PetscFEGeomCreate()`
150: @*/
151: PetscErrorCode PetscFEGeomGetPoint(PetscFEGeom *geom, PetscInt c, PetscInt p, const PetscReal pcoords[], PetscFEGeom *pgeom)
152: {
153: const PetscInt dim = geom->dim;
154: const PetscInt dE = geom->dimEmbed;
155: const PetscInt Np = geom->numPoints;
158: pgeom->dim = dim;
159: pgeom->dimEmbed = dE;
160: //pgeom->isAffine = geom->isAffine;
161: if (geom->isAffine) {
162: if (!p) {
163: pgeom->xi = geom->xi;
164: pgeom->J = &geom->J[c * Np * dE * dE];
165: pgeom->invJ = &geom->invJ[c * Np * dE * dE];
166: pgeom->detJ = &geom->detJ[c * Np];
167: pgeom->n = geom->n ? &geom->n[c * Np * dE] : NULL;
168: }
169: if (pcoords) CoordinatesRefToReal(dE, dim, pgeom->xi, &geom->v[c * Np * dE], pgeom->J, pcoords, pgeom->v);
170: } else {
171: pgeom->v = &geom->v[(c * Np + p) * dE];
172: pgeom->J = &geom->J[(c * Np + p) * dE * dE];
173: pgeom->invJ = &geom->invJ[(c * Np + p) * dE * dE];
174: pgeom->detJ = &geom->detJ[c * Np + p];
175: pgeom->n = geom->n ? &geom->n[(c * Np + p) * dE] : NULL;
176: }
177: return 0;
178: }
180: /*@C
181: PetscFEGeomGetCellPoint - Get the cell geometry for face f at point p as a PetscFEGeom
183: Input Parameters:
184: + geom - PetscFEGeom object
185: . f - The face
186: - p - The point
188: Output Parameter:
189: . pgeom - The cell geometry of face f at point p
191: Note: For affine geometries, this only copies to pgeom at point 0. Since we copy pointers into pgeom,
192: nothing needs to be done with it afterwards.
194: Level: intermediate
196: .seealso: `PetscFEGeomRestoreChunk()`, `PetscFEGeomCreate()`
197: @*/
198: PetscErrorCode PetscFEGeomGetCellPoint(PetscFEGeom *geom, PetscInt c, PetscInt p, PetscFEGeom *pgeom)
199: {
200: const PetscBool bd = geom->dimEmbed > geom->dim && !geom->isCohesive ? PETSC_TRUE : PETSC_FALSE;
201: const PetscInt dim = bd ? geom->dimEmbed : geom->dim;
202: const PetscInt dE = geom->dimEmbed;
203: const PetscInt Np = geom->numPoints;
206: pgeom->dim = dim;
207: pgeom->dimEmbed = dE;
208: //pgeom->isAffine = geom->isAffine;
209: if (geom->isAffine) {
210: if (!p) {
211: if (bd) {
212: pgeom->J = &geom->suppJ[0][c * Np * dE * dE];
213: pgeom->invJ = &geom->suppInvJ[0][c * Np * dE * dE];
214: pgeom->detJ = &geom->suppDetJ[0][c * Np];
215: } else {
216: pgeom->J = &geom->J[c * Np * dE * dE];
217: pgeom->invJ = &geom->invJ[c * Np * dE * dE];
218: pgeom->detJ = &geom->detJ[c * Np];
219: }
220: }
221: } else {
222: if (bd) {
223: pgeom->J = &geom->suppJ[0][(c * Np + p) * dE * dE];
224: pgeom->invJ = &geom->suppInvJ[0][(c * Np + p) * dE * dE];
225: pgeom->detJ = &geom->suppDetJ[0][c * Np + p];
226: } else {
227: pgeom->J = &geom->J[(c * Np + p) * dE * dE];
228: pgeom->invJ = &geom->invJ[(c * Np + p) * dE * dE];
229: pgeom->detJ = &geom->detJ[c * Np + p];
230: }
231: }
232: return 0;
233: }
235: /*@
236: PetscFEGeomComplete - Calculate derived quntites from base geometry specification
238: Input Parameter:
239: . geom - PetscFEGeom object
241: Level: intermediate
243: .seealso: `PetscFEGeomCreate()`
244: @*/
245: PetscErrorCode PetscFEGeomComplete(PetscFEGeom *geom)
246: {
247: PetscInt i, j, N, dE;
250: N = geom->numPoints * geom->numCells;
251: dE = geom->dimEmbed;
252: switch (dE) {
253: case 3:
254: for (i = 0; i < N; i++) {
255: DMPlex_Det3D_Internal(&geom->detJ[i], &geom->J[dE * dE * i]);
256: if (geom->invJ) DMPlex_Invert3D_Internal(&geom->invJ[dE * dE * i], &geom->J[dE * dE * i], geom->detJ[i]);
257: }
258: break;
259: case 2:
260: for (i = 0; i < N; i++) {
261: DMPlex_Det2D_Internal(&geom->detJ[i], &geom->J[dE * dE * i]);
262: if (geom->invJ) DMPlex_Invert2D_Internal(&geom->invJ[dE * dE * i], &geom->J[dE * dE * i], geom->detJ[i]);
263: }
264: break;
265: case 1:
266: for (i = 0; i < N; i++) {
267: geom->detJ[i] = PetscAbsReal(geom->J[i]);
268: if (geom->invJ) geom->invJ[i] = 1. / geom->J[i];
269: }
270: break;
271: }
272: if (geom->n) {
273: for (i = 0; i < N; i++) {
274: for (j = 0; j < dE; j++) geom->n[dE * i + j] = geom->J[dE * dE * i + dE * j + dE - 1] * ((dE == 2) ? -1. : 1.);
275: }
276: }
277: return 0;
278: }