Actual source code: rvector.c
1: /*
2: Provides the interface functions for vector operations that have PetscScalar/PetscReal in the signature
3: These are the vector functions the user calls.
4: */
5: #include "petsc/private/sfimpl.h"
6: #include "petscsystypes.h"
7: #include <petsc/private/vecimpl.h>
8: #if defined(PETSC_HAVE_CUDA)
9: #include <../src/vec/vec/impls/dvecimpl.h>
10: #include <petsc/private/cudavecimpl.h>
11: #endif
12: #if defined(PETSC_HAVE_HIP)
13: #include <../src/vec/vec/impls/dvecimpl.h>
14: #include <petsc/private/hipvecimpl.h>
15: #endif
16: PetscInt VecGetSubVectorSavedStateId = -1;
18: #if PetscDefined(USE_DEBUG)
19: // this is a no-op '0' macro in optimized builds
20: PetscErrorCode VecValidValues_Internal(Vec vec, PetscInt argnum, PetscBool begin)
21: {
22: if (vec->petscnative || vec->ops->getarray) {
23: PetscInt n;
24: const PetscScalar *x;
25: PetscOffloadMask mask;
27: VecGetOffloadMask(vec, &mask);
28: if (!PetscOffloadHost(mask)) return 0;
29: VecGetLocalSize(vec, &n);
30: VecGetArrayRead(vec, &x);
31: for (PetscInt i = 0; i < n; i++) {
32: if (begin) {
34: } else {
36: }
37: }
38: VecRestoreArrayRead(vec, &x);
39: }
40: return 0;
41: }
42: #endif
44: /*@
45: VecMaxPointwiseDivide - Computes the maximum of the componentwise division max = max_i abs(x_i/y_i).
47: Logically Collective on Vec
49: Input Parameters:
50: . x, y - the vectors
52: Output Parameter:
53: . max - the result
55: Level: advanced
57: Notes:
58: x and y may be the same vector
59: if a particular y_i is zero, it is treated as 1 in the above formula
61: .seealso: `VecPointwiseDivide()`, `VecPointwiseMult()`, `VecPointwiseMax()`, `VecPointwiseMin()`, `VecPointwiseMaxAbs()`
62: @*/
63: PetscErrorCode VecMaxPointwiseDivide(Vec x, Vec y, PetscReal *max)
64: {
71: VecCheckSameSize(x, 1, y, 2);
72: VecLockReadPush(x);
73: VecLockReadPush(y);
74: PetscUseTypeMethod(x, maxpointwisedivide, y, max);
75: VecLockReadPop(x);
76: VecLockReadPop(y);
77: return 0;
78: }
80: /*@
81: VecDot - Computes the vector dot product.
83: Collective on Vec
85: Input Parameters:
86: . x, y - the vectors
88: Output Parameter:
89: . val - the dot product
91: Performance Issues:
92: $ per-processor memory bandwidth
93: $ interprocessor latency
94: $ work load imbalance that causes certain processes to arrive much earlier than others
96: Notes for Users of Complex Numbers:
97: For complex vectors, VecDot() computes
98: $ val = (x,y) = y^H x,
99: where y^H denotes the conjugate transpose of y. Note that this corresponds to the usual "mathematicians" complex
100: inner product where the SECOND argument gets the complex conjugate. Since the BLASdot() complex conjugates the first
101: first argument we call the BLASdot() with the arguments reversed.
103: Use VecTDot() for the indefinite form
104: $ val = (x,y) = y^T x,
105: where y^T denotes the transpose of y.
107: Level: intermediate
109: .seealso: `VecMDot()`, `VecTDot()`, `VecNorm()`, `VecDotBegin()`, `VecDotEnd()`, `VecDotRealPart()`
110: @*/
111: PetscErrorCode VecDot(Vec x, Vec y, PetscScalar *val)
112: {
119: VecCheckSameSize(x, 1, y, 2);
121: VecLockReadPush(x);
122: VecLockReadPush(y);
123: PetscLogEventBegin(VEC_Dot, x, y, 0, 0);
124: PetscUseTypeMethod(x, dot, y, val);
125: PetscLogEventEnd(VEC_Dot, x, y, 0, 0);
126: VecLockReadPop(x);
127: VecLockReadPop(y);
128: return 0;
129: }
131: /*@
132: VecDotRealPart - Computes the real part of the vector dot product.
134: Collective on Vec
136: Input Parameters:
137: . x, y - the vectors
139: Output Parameter:
140: . val - the real part of the dot product;
142: Performance Issues:
143: $ per-processor memory bandwidth
144: $ interprocessor latency
145: $ work load imbalance that causes certain processes to arrive much earlier than others
147: Notes for Users of Complex Numbers:
148: See VecDot() for more details on the definition of the dot product for complex numbers
150: For real numbers this returns the same value as VecDot()
152: For complex numbers in C^n (that is a vector of n components with a complex number for each component) this is equal to the usual real dot product on the
153: the space R^{2n} (that is a vector of 2n components with the real or imaginary part of the complex numbers for components)
155: Developer Note: This is not currently optimized to compute only the real part of the dot product.
157: Level: intermediate
159: .seealso: `VecMDot()`, `VecTDot()`, `VecNorm()`, `VecDotBegin()`, `VecDotEnd()`, `VecDot()`, `VecDotNorm2()`
160: @*/
161: PetscErrorCode VecDotRealPart(Vec x, Vec y, PetscReal *val)
162: {
163: PetscScalar fdot;
165: VecDot(x, y, &fdot);
166: *val = PetscRealPart(fdot);
167: return 0;
168: }
170: /*@
171: VecNorm - Computes the vector norm.
173: Collective on Vec
175: Input Parameters:
176: + x - the vector
177: - type - the type of the norm requested
179: Output Parameter:
180: . val - the norm
182: Values of NormType:
183: + NORM_1 - sum_i |x_i|
184: . NORM_2 - sqrt(sum_i |x_i|^2)
185: . NORM_INFINITY - max_i |x_i|
186: - NORM_1_AND_2 - computes efficiently both NORM_1 and NORM_2 and stores them each in an output array
188: Notes:
189: For complex numbers NORM_1 will return the traditional 1 norm of the 2 norm of the complex numbers; that is the 1
190: norm of the absolute values of the complex entries. In PETSc 3.6 and earlier releases it returned the 1 norm of
191: the 1 norm of the complex entries (what is returned by the BLAS routine asum()). Both are valid norms but most
192: people expect the former.
194: This routine stashes the computed norm value, repeated calls before the vector entries are changed are then rapid since the
195: precomputed value is immediately available. Certain vector operations such as VecSet() store the norms so the value is
196: immediately available and does not need to be explicitly computed. VecScale() updates any stashed norm values, thus calls after VecScale()
197: do not need to explicitly recompute the norm.
199: Level: intermediate
201: Performance Issues:
202: + per-processor memory bandwidth - limits the speed of the computation of local portion of the norm
203: . interprocessor latency - limits the accumulation of the result across ranks, .i.e. MPI_Allreduce() time
204: . number of ranks - the time for the result will grow with the log base 2 of the number of ranks sharing the vector
205: - work load imbalance - the rank with the largest number of vector entries will limit the speed up
207: .seealso: `VecDot()`, `VecTDot()`, `VecNorm()`, `VecDotBegin()`, `VecDotEnd()`, `VecNormAvailable()`,
208: `VecNormBegin()`, `VecNormEnd()`, `NormType()`
210: @*/
211: PetscErrorCode VecNorm(Vec x, NormType type, PetscReal *val)
212: {
217: /* Cached data? */
218: if (type != NORM_1_AND_2) {
219: PetscBool flg;
221: PetscObjectComposedDataGetReal((PetscObject)x, NormIds[type], *val, flg);
222: if (flg) return 0;
223: }
225: VecLockReadPush(x);
226: PetscLogEventBegin(VEC_Norm, x, 0, 0, 0);
227: PetscUseTypeMethod(x, norm, type, val);
228: PetscLogEventEnd(VEC_Norm, x, 0, 0, 0);
229: VecLockReadPop(x);
231: if (type != NORM_1_AND_2) PetscObjectComposedDataSetReal((PetscObject)x, NormIds[type], *val);
232: return 0;
233: }
235: /*@
236: VecNormAvailable - Returns the vector norm if it is already known.
238: Not Collective
240: Input Parameters:
241: + x - the vector
242: - type - one of NORM_1, NORM_2, NORM_INFINITY. Also available
243: NORM_1_AND_2, which computes both norms and stores them
244: in a two element array.
246: Output Parameters:
247: + available - PETSC_TRUE if the val returned is valid
248: - val - the norm
250: Notes:
251: $ NORM_1 denotes sum_i |x_i|
252: $ NORM_2 denotes sqrt(sum_i (x_i)^2)
253: $ NORM_INFINITY denotes max_i |x_i|
255: Level: intermediate
257: Performance Issues:
258: $ per-processor memory bandwidth
259: $ interprocessor latency
260: $ work load imbalance that causes certain processes to arrive much earlier than others
262: Compile Option:
263: PETSC_HAVE_SLOW_BLAS_NORM2 will cause a C (loop unrolled) version of the norm to be used, rather
264: than the BLAS. This should probably only be used when one is using the FORTRAN BLAS routines
265: (as opposed to vendor provided) because the FORTRAN BLAS NRM2() routine is very slow.
267: .seealso: `VecDot()`, `VecTDot()`, `VecNorm()`, `VecDotBegin()`, `VecDotEnd()`, `VecNorm()`
268: `VecNormBegin()`, `VecNormEnd()`
270: @*/
271: PetscErrorCode VecNormAvailable(Vec x, NormType type, PetscBool *available, PetscReal *val)
272: {
278: if (type == NORM_1_AND_2) {
279: *available = PETSC_FALSE;
280: } else {
281: PetscObjectComposedDataGetReal((PetscObject)x, NormIds[type], *val, *available);
282: }
283: return 0;
284: }
286: /*@
287: VecNormalize - Normalizes a vector by 2-norm.
289: Collective on Vec
291: Input Parameter:
292: . x - the vector
294: Output Parameter:
295: . val - the vector norm before normalization. May be `NULL` if the value is not needed.
297: Level: intermediate
299: @*/
300: PetscErrorCode VecNormalize(Vec x, PetscReal *val)
301: {
302: PetscReal norm;
306: VecSetErrorIfLocked(x, 1);
308: PetscLogEventBegin(VEC_Normalize, x, 0, 0, 0);
309: VecNorm(x, NORM_2, &norm);
310: if (norm == 0.0) {
311: PetscInfo(x, "Vector of zero norm can not be normalized; Returning only the zero norm\n");
312: } else if (norm != 1.0) {
313: VecScale(x, 1.0 / norm);
314: }
315: PetscLogEventEnd(VEC_Normalize, x, 0, 0, 0);
316: if (val) *val = norm;
317: return 0;
318: }
320: /*@C
321: VecMax - Determines the vector component with maximum real part and its location.
323: Collective on Vec
325: Input Parameter:
326: . x - the vector
328: Output Parameters:
329: + p - the location of val (pass NULL if you don't want this)
330: - val - the maximum component
332: Notes:
333: Returns the value PETSC_MIN_REAL and negative p if the vector is of length 0.
335: Returns the smallest index with the maximum value
336: Level: intermediate
338: .seealso: `VecNorm()`, `VecMin()`
339: @*/
340: PetscErrorCode VecMax(Vec x, PetscInt *p, PetscReal *val)
341: {
346: VecLockReadPush(x);
347: PetscLogEventBegin(VEC_Max, x, 0, 0, 0);
348: PetscUseTypeMethod(x, max, p, val);
349: PetscLogEventEnd(VEC_Max, x, 0, 0, 0);
350: VecLockReadPop(x);
351: return 0;
352: }
354: /*@C
355: VecMin - Determines the vector component with minimum real part and its location.
357: Collective on Vec
359: Input Parameter:
360: . x - the vector
362: Output Parameters:
363: + p - the location of val (pass NULL if you don't want this location)
364: - val - the minimum component
366: Level: intermediate
368: Notes:
369: Returns the value PETSC_MAX_REAL and negative p if the vector is of length 0.
371: This returns the smallest index with the minumum value
373: .seealso: `VecMax()`
374: @*/
375: PetscErrorCode VecMin(Vec x, PetscInt *p, PetscReal *val)
376: {
381: VecLockReadPush(x);
382: PetscLogEventBegin(VEC_Min, x, 0, 0, 0);
383: PetscUseTypeMethod(x, min, p, val);
384: PetscLogEventEnd(VEC_Min, x, 0, 0, 0);
385: VecLockReadPop(x);
386: return 0;
387: }
389: /*@
390: VecTDot - Computes an indefinite vector dot product. That is, this
391: routine does NOT use the complex conjugate.
393: Collective on Vec
395: Input Parameters:
396: . x, y - the vectors
398: Output Parameter:
399: . val - the dot product
401: Notes for Users of Complex Numbers:
402: For complex vectors, VecTDot() computes the indefinite form
403: $ val = (x,y) = y^T x,
404: where y^T denotes the transpose of y.
406: Use VecDot() for the inner product
407: $ val = (x,y) = y^H x,
408: where y^H denotes the conjugate transpose of y.
410: Level: intermediate
412: .seealso: `VecDot()`, `VecMTDot()`
413: @*/
414: PetscErrorCode VecTDot(Vec x, Vec y, PetscScalar *val)
415: {
422: VecCheckSameSize(x, 1, y, 2);
424: VecLockReadPush(x);
425: VecLockReadPush(y);
426: PetscLogEventBegin(VEC_TDot, x, y, 0, 0);
427: PetscUseTypeMethod(x, tdot, y, val);
428: PetscLogEventEnd(VEC_TDot, x, y, 0, 0);
429: VecLockReadPop(x);
430: VecLockReadPop(y);
431: return 0;
432: }
434: /*@
435: VecScale - Scales a vector.
437: Not collective on Vec
439: Input Parameters:
440: + x - the vector
441: - alpha - the scalar
443: Note:
444: For a vector with n components, VecScale() computes
445: $ x[i] = alpha * x[i], for i=1,...,n.
447: Level: intermediate
449: @*/
450: PetscErrorCode VecScale(Vec x, PetscScalar alpha)
451: {
452: PetscReal norms[4];
453: PetscBool flgs[4];
458: VecSetErrorIfLocked(x, 1);
459: if (alpha == (PetscScalar)1.0) return 0;
461: /* get current stashed norms */
462: for (PetscInt i = 0; i < 4; i++) PetscObjectComposedDataGetReal((PetscObject)x, NormIds[i], norms[i], flgs[i]);
464: PetscLogEventBegin(VEC_Scale, x, 0, 0, 0);
465: PetscUseTypeMethod(x, scale, alpha);
466: PetscLogEventEnd(VEC_Scale, x, 0, 0, 0);
468: PetscObjectStateIncrease((PetscObject)x);
469: /* put the scaled stashed norms back into the Vec */
470: for (PetscInt i = 0; i < 4; i++) {
471: if (flgs[i]) PetscObjectComposedDataSetReal((PetscObject)x, NormIds[i], PetscAbsScalar(alpha) * norms[i]);
472: }
473: return 0;
474: }
476: /*@
477: VecSet - Sets all components of a vector to a single scalar value.
479: Logically Collective on Vec
481: Input Parameters:
482: + x - the vector
483: - alpha - the scalar
485: Output Parameter:
486: . x - the vector
488: Note:
489: For a vector of dimension n, VecSet() computes
490: $ x[i] = alpha, for i=1,...,n,
491: so that all vector entries then equal the identical
492: scalar value, alpha. Use the more general routine
493: VecSetValues() to set different vector entries.
495: You CANNOT call this after you have called VecSetValues() but before you call
496: VecAssemblyBegin/End().
498: Level: beginner
500: .seealso `VecSetValues()`, `VecSetValuesBlocked()`, `VecSetRandom()`
502: @*/
503: PetscErrorCode VecSet(Vec x, PetscScalar alpha)
504: {
509: VecSetErrorIfLocked(x, 1);
511: PetscLogEventBegin(VEC_Set, x, 0, 0, 0);
512: PetscUseTypeMethod(x, set, alpha);
513: PetscLogEventEnd(VEC_Set, x, 0, 0, 0);
514: PetscObjectStateIncrease((PetscObject)x);
516: /* norms can be simply set (if |alpha|*N not too large) */
518: {
519: PetscReal val = PetscAbsScalar(alpha);
520: const PetscInt N = x->map->N;
522: if (N == 0) {
523: PetscObjectComposedDataSetReal((PetscObject)x, NormIds[NORM_1], 0.0l);
524: PetscObjectComposedDataSetReal((PetscObject)x, NormIds[NORM_INFINITY], 0.0);
525: PetscObjectComposedDataSetReal((PetscObject)x, NormIds[NORM_2], 0.0);
526: PetscObjectComposedDataSetReal((PetscObject)x, NormIds[NORM_FROBENIUS], 0.0);
527: } else if (val > PETSC_MAX_REAL / N) {
528: PetscObjectComposedDataSetReal((PetscObject)x, NormIds[NORM_INFINITY], val);
529: } else {
530: PetscObjectComposedDataSetReal((PetscObject)x, NormIds[NORM_1], N * val);
531: PetscObjectComposedDataSetReal((PetscObject)x, NormIds[NORM_INFINITY], val);
532: val = PetscSqrtReal((PetscReal)N) * val;
533: PetscObjectComposedDataSetReal((PetscObject)x, NormIds[NORM_2], val);
534: PetscObjectComposedDataSetReal((PetscObject)x, NormIds[NORM_FROBENIUS], val);
535: }
536: }
537: return 0;
538: }
540: /*@
541: VecAXPY - Computes y = alpha x + y.
543: Logically Collective on Vec
545: Input Parameters:
546: + alpha - the scalar
547: - x, y - the vectors
549: Output Parameter:
550: . y - output vector
552: Level: intermediate
554: Notes:
555: x and y MUST be different vectors
556: This routine is optimized for alpha of 0.0, otherwise it calls the BLAS routine
558: $ VecAXPY(y,alpha,x) y = alpha x + y
559: $ VecAYPX(y,beta,x) y = x + beta y
560: $ VecAXPBY(y,alpha,beta,x) y = alpha x + beta y
561: $ VecWAXPY(w,alpha,x,y) w = alpha x + y
562: $ VecAXPBYPCZ(w,alpha,beta,gamma,x,y) z = alpha x + beta y + gamma z
563: $ VecMAXPY(y,nv,alpha[],x[]) y = sum alpha[i] x[i] + y
565: .seealso: `VecAYPX()`, `VecMAXPY()`, `VecWAXPY()`, `VecAXPBYPCZ()`, `VecAXPBY()`
566: @*/
567: PetscErrorCode VecAXPY(Vec y, PetscScalar alpha, Vec x)
568: {
574: VecCheckSameSize(x, 3, y, 1);
577: if (alpha == (PetscScalar)0.0) return 0;
579: VecSetErrorIfLocked(y, 1);
580: VecLockReadPush(x);
581: PetscLogEventBegin(VEC_AXPY, x, y, 0, 0);
582: PetscUseTypeMethod(y, axpy, alpha, x);
583: PetscLogEventEnd(VEC_AXPY, x, y, 0, 0);
584: VecLockReadPop(x);
585: PetscObjectStateIncrease((PetscObject)y);
586: return 0;
587: }
589: /*@
590: VecAYPX - Computes y = x + beta y.
592: Logically Collective on Vec
594: Input Parameters:
595: + beta - the scalar
596: - x, y - the vectors
598: Output Parameter:
599: . y - output vector
601: Level: intermediate
603: Notes:
604: x and y MUST be different vectors
605: The implementation is optimized for beta of -1.0, 0.0, and 1.0
607: .seealso: `VecMAXPY()`, `VecWAXPY()`, `VecAXPY()`, `VecAXPBYPCZ()`, `VecAXPBY()`
608: @*/
609: PetscErrorCode VecAYPX(Vec y, PetscScalar beta, Vec x)
610: {
616: VecCheckSameSize(x, 1, y, 3);
619: VecSetErrorIfLocked(y, 1);
620: VecLockReadPush(x);
621: if (beta == (PetscScalar)0.0) {
622: VecCopy(x, y);
623: } else {
624: PetscLogEventBegin(VEC_AYPX, x, y, 0, 0);
625: PetscUseTypeMethod(y, aypx, beta, x);
626: PetscLogEventEnd(VEC_AYPX, x, y, 0, 0);
627: PetscObjectStateIncrease((PetscObject)y);
628: }
629: VecLockReadPop(x);
630: return 0;
631: }
633: /*@
634: VecAXPBY - Computes y = alpha x + beta y.
636: Logically Collective on Vec
638: Input Parameters:
639: + alpha,beta - the scalars
640: - x, y - the vectors
642: Output Parameter:
643: . y - output vector
645: Level: intermediate
647: Notes:
648: x and y MUST be different vectors
649: The implementation is optimized for alpha and/or beta values of 0.0 and 1.0
651: .seealso: `VecAYPX()`, `VecMAXPY()`, `VecWAXPY()`, `VecAXPY()`, `VecAXPBYPCZ()`
652: @*/
653: PetscErrorCode VecAXPBY(Vec y, PetscScalar alpha, PetscScalar beta, Vec x)
654: {
660: VecCheckSameSize(y, 1, x, 4);
664: if (alpha == (PetscScalar)0.0 && beta == (PetscScalar)1.0) return 0;
666: VecSetErrorIfLocked(y, 1);
667: VecLockReadPush(x);
668: PetscLogEventBegin(VEC_AXPY, y, x, 0, 0);
669: PetscUseTypeMethod(y, axpby, alpha, beta, x);
670: PetscLogEventEnd(VEC_AXPY, y, x, 0, 0);
671: PetscObjectStateIncrease((PetscObject)y);
672: VecLockReadPop(x);
673: return 0;
674: }
676: /*@
677: VecAXPBYPCZ - Computes z = alpha x + beta y + gamma z
679: Logically Collective on Vec
681: Input Parameters:
682: + alpha,beta, gamma - the scalars
683: - x, y, z - the vectors
685: Output Parameter:
686: . z - output vector
688: Level: intermediate
690: Notes:
691: x, y and z must be different vectors
692: The implementation is optimized for alpha of 1.0 and gamma of 1.0 or 0.0
694: .seealso: `VecAYPX()`, `VecMAXPY()`, `VecWAXPY()`, `VecAXPY()`, `VecAXPBY()`
695: @*/
696: PetscErrorCode VecAXPBYPCZ(Vec z, PetscScalar alpha, PetscScalar beta, PetscScalar gamma, Vec x, Vec y)
697: {
706: VecCheckSameSize(x, 1, y, 5);
707: VecCheckSameSize(x, 1, z, 6);
713: if (alpha == (PetscScalar)0.0 && beta == (PetscScalar)0.0 && gamma == (PetscScalar)1.0) return 0;
715: VecSetErrorIfLocked(z, 1);
716: VecLockReadPush(x);
717: VecLockReadPush(y);
718: PetscLogEventBegin(VEC_AXPBYPCZ, x, y, z, 0);
719: PetscUseTypeMethod(z, axpbypcz, alpha, beta, gamma, x, y);
720: PetscLogEventEnd(VEC_AXPBYPCZ, x, y, z, 0);
721: PetscObjectStateIncrease((PetscObject)z);
722: VecLockReadPop(x);
723: VecLockReadPop(y);
724: return 0;
725: }
727: /*@
728: VecWAXPY - Computes w = alpha x + y.
730: Logically Collective on Vec
732: Input Parameters:
733: + alpha - the scalar
734: - x, y - the vectors
736: Output Parameter:
737: . w - the result
739: Level: intermediate
741: Notes:
742: w cannot be either x or y, but x and y can be the same
743: The implementation is optimzed for alpha of -1.0, 0.0, and 1.0
745: .seealso: `VecAXPY()`, `VecAYPX()`, `VecAXPBY()`, `VecMAXPY()`, `VecAXPBYPCZ()`
746: @*/
747: PetscErrorCode VecWAXPY(Vec w, PetscScalar alpha, Vec x, Vec y)
748: {
757: VecCheckSameSize(x, 3, y, 4);
758: VecCheckSameSize(x, 3, w, 1);
762: VecSetErrorIfLocked(w, 1);
764: VecLockReadPush(x);
765: VecLockReadPush(y);
766: if (alpha == (PetscScalar)0.0) {
767: VecCopy(y, w);
768: } else {
769: PetscLogEventBegin(VEC_WAXPY, x, y, w, 0);
770: PetscUseTypeMethod(w, waxpy, alpha, x, y);
771: PetscLogEventEnd(VEC_WAXPY, x, y, w, 0);
772: PetscObjectStateIncrease((PetscObject)w);
773: }
774: VecLockReadPop(x);
775: VecLockReadPop(y);
776: return 0;
777: }
779: /*@C
780: VecSetValues - Inserts or adds values into certain locations of a vector.
782: Not Collective
784: Input Parameters:
785: + x - vector to insert in
786: . ni - number of elements to add
787: . ix - indices where to add
788: . y - array of values
789: - iora - either INSERT_VALUES or ADD_VALUES, where
790: ADD_VALUES adds values to any existing entries, and
791: INSERT_VALUES replaces existing entries with new values
793: Notes:
794: VecSetValues() sets x[ix[i]] = y[i], for i=0,...,ni-1.
796: Calls to VecSetValues() with the INSERT_VALUES and ADD_VALUES
797: options cannot be mixed without intervening calls to the assembly
798: routines.
800: These values may be cached, so VecAssemblyBegin() and VecAssemblyEnd()
801: MUST be called after all calls to VecSetValues() have been completed.
803: VecSetValues() uses 0-based indices in Fortran as well as in C.
805: If you call VecSetOption(x, VEC_IGNORE_NEGATIVE_INDICES,PETSC_TRUE),
806: negative indices may be passed in ix. These rows are
807: simply ignored. This allows easily inserting element load matrices
808: with homogeneous Dirchlet boundary conditions that you don't want represented
809: in the vector.
811: Level: beginner
813: .seealso: `VecAssemblyBegin()`, `VecAssemblyEnd()`, `VecSetValuesLocal()`,
814: `VecSetValue()`, `VecSetValuesBlocked()`, `InsertMode`, `INSERT_VALUES`, `ADD_VALUES`, `VecGetValues()`
815: @*/
816: PetscErrorCode VecSetValues(Vec x, PetscInt ni, const PetscInt ix[], const PetscScalar y[], InsertMode iora)
817: {
820: if (!ni) return 0;
825: PetscLogEventBegin(VEC_SetValues, x, 0, 0, 0);
826: PetscUseTypeMethod(x, setvalues, ni, ix, y, iora);
827: PetscLogEventEnd(VEC_SetValues, x, 0, 0, 0);
828: PetscObjectStateIncrease((PetscObject)x);
829: return 0;
830: }
832: /*@C
833: VecGetValues - Gets values from certain locations of a vector. Currently
834: can only get values on the same processor
836: Not Collective
838: Input Parameters:
839: + x - vector to get values from
840: . ni - number of elements to get
841: - ix - indices where to get them from (in global 1d numbering)
843: Output Parameter:
844: . y - array of values
846: Notes:
847: The user provides the allocated array y; it is NOT allocated in this routine
849: VecGetValues() gets y[i] = x[ix[i]], for i=0,...,ni-1.
851: VecAssemblyBegin() and VecAssemblyEnd() MUST be called before calling this
853: VecGetValues() uses 0-based indices in Fortran as well as in C.
855: If you call VecSetOption(x, VEC_IGNORE_NEGATIVE_INDICES,PETSC_TRUE),
856: negative indices may be passed in ix. These rows are
857: simply ignored.
859: Level: beginner
861: .seealso: `VecAssemblyBegin()`, `VecAssemblyEnd()`, `VecSetValues()`
862: @*/
863: PetscErrorCode VecGetValues(Vec x, PetscInt ni, const PetscInt ix[], PetscScalar y[])
864: {
866: if (!ni) return 0;
870: PetscUseTypeMethod(x, getvalues, ni, ix, y);
871: return 0;
872: }
874: /*@C
875: VecSetValuesBlocked - Inserts or adds blocks of values into certain locations of a vector.
877: Not Collective
879: Input Parameters:
880: + x - vector to insert in
881: . ni - number of blocks to add
882: . ix - indices where to add in block count, rather than element count
883: . y - array of values
884: - iora - either INSERT_VALUES or ADD_VALUES, where
885: ADD_VALUES adds values to any existing entries, and
886: INSERT_VALUES replaces existing entries with new values
888: Notes:
889: VecSetValuesBlocked() sets x[bs*ix[i]+j] = y[bs*i+j],
890: for j=0,...,bs-1, for i=0,...,ni-1. where bs was set with VecSetBlockSize().
892: Calls to VecSetValuesBlocked() with the INSERT_VALUES and ADD_VALUES
893: options cannot be mixed without intervening calls to the assembly
894: routines.
896: These values may be cached, so VecAssemblyBegin() and VecAssemblyEnd()
897: MUST be called after all calls to VecSetValuesBlocked() have been completed.
899: VecSetValuesBlocked() uses 0-based indices in Fortran as well as in C.
901: Negative indices may be passed in ix, these rows are
902: simply ignored. This allows easily inserting element load matrices
903: with homogeneous Dirchlet boundary conditions that you don't want represented
904: in the vector.
906: Level: intermediate
908: .seealso: `VecAssemblyBegin()`, `VecAssemblyEnd()`, `VecSetValuesBlockedLocal()`,
909: `VecSetValues()`
910: @*/
911: PetscErrorCode VecSetValuesBlocked(Vec x, PetscInt ni, const PetscInt ix[], const PetscScalar y[], InsertMode iora)
912: {
915: if (!ni) return 0;
920: PetscLogEventBegin(VEC_SetValues, x, 0, 0, 0);
921: PetscUseTypeMethod(x, setvaluesblocked, ni, ix, y, iora);
922: PetscLogEventEnd(VEC_SetValues, x, 0, 0, 0);
923: PetscObjectStateIncrease((PetscObject)x);
924: return 0;
925: }
927: /*@C
928: VecSetValuesLocal - Inserts or adds values into certain locations of a vector,
929: using a local ordering of the nodes.
931: Not Collective
933: Input Parameters:
934: + x - vector to insert in
935: . ni - number of elements to add
936: . ix - indices where to add
937: . y - array of values
938: - iora - either INSERT_VALUES or ADD_VALUES, where
939: ADD_VALUES adds values to any existing entries, and
940: INSERT_VALUES replaces existing entries with new values
942: Level: intermediate
944: Notes:
945: VecSetValuesLocal() sets x[ix[i]] = y[i], for i=0,...,ni-1.
947: Calls to VecSetValues() with the INSERT_VALUES and ADD_VALUES
948: options cannot be mixed without intervening calls to the assembly
949: routines.
951: These values may be cached, so VecAssemblyBegin() and VecAssemblyEnd()
952: MUST be called after all calls to VecSetValuesLocal() have been completed.
954: VecSetValuesLocal() uses 0-based indices in Fortran as well as in C.
956: .seealso: `VecAssemblyBegin()`, `VecAssemblyEnd()`, `VecSetValues()`, `VecSetLocalToGlobalMapping()`,
957: `VecSetValuesBlockedLocal()`
958: @*/
959: PetscErrorCode VecSetValuesLocal(Vec x, PetscInt ni, const PetscInt ix[], const PetscScalar y[], InsertMode iora)
960: {
961: PetscInt lixp[128], *lix = lixp;
965: if (!ni) return 0;
970: PetscLogEventBegin(VEC_SetValues, x, 0, 0, 0);
971: if (!x->ops->setvalueslocal) {
972: if (x->map->mapping) {
973: if (ni > 128) PetscMalloc1(ni, &lix);
974: ISLocalToGlobalMappingApply(x->map->mapping, ni, (PetscInt *)ix, lix);
975: PetscUseTypeMethod(x, setvalues, ni, lix, y, iora);
976: if (ni > 128) PetscFree(lix);
977: } else PetscUseTypeMethod(x, setvalues, ni, ix, y, iora);
978: } else PetscUseTypeMethod(x, setvalueslocal, ni, ix, y, iora);
979: PetscLogEventEnd(VEC_SetValues, x, 0, 0, 0);
980: PetscObjectStateIncrease((PetscObject)x);
981: return 0;
982: }
984: /*@
985: VecSetValuesBlockedLocal - Inserts or adds values into certain locations of a vector,
986: using a local ordering of the nodes.
988: Not Collective
990: Input Parameters:
991: + x - vector to insert in
992: . ni - number of blocks to add
993: . ix - indices where to add in block count, not element count
994: . y - array of values
995: - iora - either INSERT_VALUES or ADD_VALUES, where
996: ADD_VALUES adds values to any existing entries, and
997: INSERT_VALUES replaces existing entries with new values
999: Level: intermediate
1001: Notes:
1002: VecSetValuesBlockedLocal() sets x[bs*ix[i]+j] = y[bs*i+j],
1003: for j=0,..bs-1, for i=0,...,ni-1, where bs has been set with VecSetBlockSize().
1005: Calls to VecSetValuesBlockedLocal() with the INSERT_VALUES and ADD_VALUES
1006: options cannot be mixed without intervening calls to the assembly
1007: routines.
1009: These values may be cached, so VecAssemblyBegin() and VecAssemblyEnd()
1010: MUST be called after all calls to VecSetValuesBlockedLocal() have been completed.
1012: VecSetValuesBlockedLocal() uses 0-based indices in Fortran as well as in C.
1014: .seealso: `VecAssemblyBegin()`, `VecAssemblyEnd()`, `VecSetValues()`, `VecSetValuesBlocked()`,
1015: `VecSetLocalToGlobalMapping()`
1016: @*/
1017: PetscErrorCode VecSetValuesBlockedLocal(Vec x, PetscInt ni, const PetscInt ix[], const PetscScalar y[], InsertMode iora)
1018: {
1019: PetscInt lixp[128], *lix = lixp;
1023: if (!ni) return 0;
1027: PetscLogEventBegin(VEC_SetValues, x, 0, 0, 0);
1028: if (x->map->mapping) {
1029: if (ni > 128) PetscMalloc1(ni, &lix);
1030: ISLocalToGlobalMappingApplyBlock(x->map->mapping, ni, (PetscInt *)ix, lix);
1031: PetscUseTypeMethod(x, setvaluesblocked, ni, lix, y, iora);
1032: if (ni > 128) PetscFree(lix);
1033: } else {
1034: PetscUseTypeMethod(x, setvaluesblocked, ni, ix, y, iora);
1035: }
1036: PetscLogEventEnd(VEC_SetValues, x, 0, 0, 0);
1037: PetscObjectStateIncrease((PetscObject)x);
1038: return 0;
1039: }
1041: /*@
1042: VecMTDot - Computes indefinite vector multiple dot products.
1043: That is, it does NOT use the complex conjugate.
1045: Collective on Vec
1047: Input Parameters:
1048: + x - one vector
1049: . nv - number of vectors
1050: - y - array of vectors. Note that vectors are pointers
1052: Output Parameter:
1053: . val - array of the dot products
1055: Notes for Users of Complex Numbers:
1056: For complex vectors, VecMTDot() computes the indefinite form
1057: $ val = (x,y) = y^T x,
1058: where y^T denotes the transpose of y.
1060: Use VecMDot() for the inner product
1061: $ val = (x,y) = y^H x,
1062: where y^H denotes the conjugate transpose of y.
1064: Level: intermediate
1066: .seealso: `VecMDot()`, `VecTDot()`
1067: @*/
1068: PetscErrorCode VecMTDot(Vec x, PetscInt nv, const Vec y[], PetscScalar val[])
1069: {
1073: if (!nv) return 0;
1075: for (PetscInt i = 0; i < nv; ++i) {
1079: VecCheckSameSize(x, 1, y[i], 3);
1080: VecLockReadPush(y[i]);
1081: }
1084: VecLockReadPush(x);
1085: PetscLogEventBegin(VEC_MTDot, x, *y, 0, 0);
1086: PetscUseTypeMethod(x, mtdot, nv, y, val);
1087: PetscLogEventEnd(VEC_MTDot, x, *y, 0, 0);
1088: VecLockReadPop(x);
1089: for (PetscInt i = 0; i < nv; ++i) VecLockReadPop(y[i]);
1090: return 0;
1091: }
1093: /*@
1094: VecMDot - Computes vector multiple dot products.
1096: Collective on Vec
1098: Input Parameters:
1099: + x - one vector
1100: . nv - number of vectors
1101: - y - array of vectors.
1103: Output Parameter:
1104: . val - array of the dot products (does not allocate the array)
1106: Notes for Users of Complex Numbers:
1107: For complex vectors, VecMDot() computes
1108: $ val = (x,y) = y^H x,
1109: where y^H denotes the conjugate transpose of y.
1111: Use VecMTDot() for the indefinite form
1112: $ val = (x,y) = y^T x,
1113: where y^T denotes the transpose of y.
1115: Level: intermediate
1117: .seealso: `VecMTDot()`, `VecDot()`
1118: @*/
1119: PetscErrorCode VecMDot(Vec x, PetscInt nv, const Vec y[], PetscScalar val[])
1120: {
1124: if (!nv) return 0;
1126: for (PetscInt i = 0; i < nv; ++i) {
1130: VecCheckSameSize(x, 1, y[i], 3);
1131: VecLockReadPush(y[i]);
1132: }
1135: VecLockReadPush(x);
1136: PetscLogEventBegin(VEC_MDot, x, *y, 0, 0);
1137: PetscUseTypeMethod(x, mdot, nv, y, val);
1138: PetscLogEventEnd(VEC_MDot, x, *y, 0, 0);
1139: VecLockReadPop(x);
1140: for (PetscInt i = 0; i < nv; ++i) VecLockReadPop(y[i]);
1141: return 0;
1142: }
1144: /*@
1145: VecMAXPY - Computes y = y + sum alpha[i] x[i]
1147: Logically Collective on Vec
1149: Input Parameters:
1150: + nv - number of scalars and x-vectors
1151: . alpha - array of scalars
1152: . y - one vector
1153: - x - array of vectors
1155: Level: intermediate
1157: Notes:
1158: y cannot be any of the x vectors
1160: .seealso: `VecAYPX()`, `VecWAXPY()`, `VecAXPY()`, `VecAXPBYPCZ()`, `VecAXPBY()`
1161: @*/
1162: PetscErrorCode VecMAXPY(Vec y, PetscInt nv, const PetscScalar alpha[], Vec x[])
1163: {
1166: VecSetErrorIfLocked(y, 1);
1168: if (nv) {
1169: PetscInt zeros = 0;
1173: for (PetscInt i = 0; i < nv; ++i) {
1178: VecCheckSameSize(y, 1, x[i], 4);
1180: VecLockReadPush(x[i]);
1181: zeros += alpha[i] == (PetscScalar)0.0;
1182: }
1184: if (zeros < nv) {
1185: PetscLogEventBegin(VEC_MAXPY, y, *x, 0, 0);
1186: PetscUseTypeMethod(y, maxpy, nv, alpha, x);
1187: PetscLogEventEnd(VEC_MAXPY, y, *x, 0, 0);
1188: PetscObjectStateIncrease((PetscObject)y);
1189: }
1191: for (PetscInt i = 0; i < nv; ++i) VecLockReadPop(x[i]);
1192: }
1193: return 0;
1194: }
1196: /*@
1197: VecConcatenate - Creates a new vector that is a vertical concatenation of all the given array of vectors
1198: in the order they appear in the array. The concatenated vector resides on the same
1199: communicator and is the same type as the source vectors.
1201: Collective on X
1203: Input Parameters:
1204: + nx - number of vectors to be concatenated
1205: - X - array containing the vectors to be concatenated in the order of concatenation
1207: Output Parameters:
1208: + Y - concatenated vector
1209: - x_is - array of index sets corresponding to the concatenated components of Y (NULL if not needed)
1211: Notes:
1212: Concatenation is similar to the functionality of a VecNest object; they both represent combination of
1213: different vector spaces. However, concatenated vectors do not store any information about their
1214: sub-vectors and own their own data. Consequently, this function provides index sets to enable the
1215: manipulation of data in the concatenated vector that corresponds to the original components at creation.
1217: This is a useful tool for outer loop algorithms, particularly constrained optimizers, where the solver
1218: has to operate on combined vector spaces and cannot utilize VecNest objects due to incompatibility with
1219: bound projections.
1221: Level: advanced
1223: .seealso: `VECNEST`, `VECSCATTER`, `VecScatterCreate()`
1224: @*/
1225: PetscErrorCode VecConcatenate(PetscInt nx, const Vec X[], Vec *Y, IS *x_is[])
1226: {
1227: MPI_Comm comm;
1228: VecType vec_type;
1229: Vec Ytmp, Xtmp;
1230: IS *is_tmp;
1231: PetscInt i, shift = 0, Xnl, Xng, Xbegin;
1238: if ((*X)->ops->concatenate) {
1239: /* use the dedicated concatenation function if available */
1240: (*(*X)->ops->concatenate)(nx, X, Y, x_is);
1241: } else {
1242: /* loop over vectors and start creating IS */
1243: comm = PetscObjectComm((PetscObject)(*X));
1244: VecGetType(*X, &vec_type);
1245: PetscMalloc1(nx, &is_tmp);
1246: for (i = 0; i < nx; i++) {
1247: VecGetSize(X[i], &Xng);
1248: VecGetLocalSize(X[i], &Xnl);
1249: VecGetOwnershipRange(X[i], &Xbegin, NULL);
1250: ISCreateStride(comm, Xnl, shift + Xbegin, 1, &is_tmp[i]);
1251: shift += Xng;
1252: }
1253: /* create the concatenated vector */
1254: VecCreate(comm, &Ytmp);
1255: VecSetType(Ytmp, vec_type);
1256: VecSetSizes(Ytmp, PETSC_DECIDE, shift);
1257: VecSetUp(Ytmp);
1258: /* copy data from X array to Y and return */
1259: for (i = 0; i < nx; i++) {
1260: VecGetSubVector(Ytmp, is_tmp[i], &Xtmp);
1261: VecCopy(X[i], Xtmp);
1262: VecRestoreSubVector(Ytmp, is_tmp[i], &Xtmp);
1263: }
1264: *Y = Ytmp;
1265: if (x_is) {
1266: *x_is = is_tmp;
1267: } else {
1268: for (i = 0; i < nx; i++) ISDestroy(&is_tmp[i]);
1269: PetscFree(is_tmp);
1270: }
1271: }
1272: return 0;
1273: }
1275: /* A helper function for VecGetSubVector to check if we can implement it with no-copy (i.e. the subvector shares
1276: memory with the original vector), and the block size of the subvector.
1278: Input Parameters:
1279: + X - the original vector
1280: - is - the index set of the subvector
1282: Output Parameters:
1283: + contig - PETSC_TRUE if the index set refers to contiguous entries on this process, else PETSC_FALSE
1284: . start - start of contiguous block, as an offset from the start of the ownership range of the original vector
1285: - blocksize - the block size of the subvector
1287: */
1288: PetscErrorCode VecGetSubVectorContiguityAndBS_Private(Vec X, IS is, PetscBool *contig, PetscInt *start, PetscInt *blocksize)
1289: {
1290: PetscInt gstart, gend, lstart;
1291: PetscBool red[2] = {PETSC_TRUE /*contiguous*/, PETSC_TRUE /*validVBS*/};
1292: PetscInt n, N, ibs, vbs, bs = -1;
1294: ISGetLocalSize(is, &n);
1295: ISGetSize(is, &N);
1296: ISGetBlockSize(is, &ibs);
1297: VecGetBlockSize(X, &vbs);
1298: VecGetOwnershipRange(X, &gstart, &gend);
1299: ISContiguousLocal(is, gstart, gend, &lstart, &red[0]);
1300: /* block size is given by IS if ibs > 1; otherwise, check the vector */
1301: if (ibs > 1) {
1302: MPIU_Allreduce(MPI_IN_PLACE, red, 1, MPIU_BOOL, MPI_LAND, PetscObjectComm((PetscObject)is));
1303: bs = ibs;
1304: } else {
1305: if (n % vbs || vbs == 1) red[1] = PETSC_FALSE; /* this process invalidate the collectiveness of block size */
1306: MPIU_Allreduce(MPI_IN_PLACE, red, 2, MPIU_BOOL, MPI_LAND, PetscObjectComm((PetscObject)is));
1307: if (red[0] && red[1]) bs = vbs; /* all processes have a valid block size and the access will be contiguous */
1308: }
1310: *contig = red[0];
1311: *start = lstart;
1312: *blocksize = bs;
1313: return 0;
1314: }
1316: /* A helper function for VecGetSubVector, to be used when we have to build a standalone subvector through VecScatter
1318: Input Parameters:
1319: + X - the original vector
1320: . is - the index set of the subvector
1321: - bs - the block size of the subvector, gotten from VecGetSubVectorContiguityAndBS_Private()
1323: Output Parameters:
1324: . Z - the subvector, which will compose the VecScatter context on output
1325: */
1326: PetscErrorCode VecGetSubVectorThroughVecScatter_Private(Vec X, IS is, PetscInt bs, Vec *Z)
1327: {
1328: PetscInt n, N;
1329: VecScatter vscat;
1330: Vec Y;
1332: ISGetLocalSize(is, &n);
1333: ISGetSize(is, &N);
1334: VecCreate(PetscObjectComm((PetscObject)is), &Y);
1335: VecSetSizes(Y, n, N);
1336: VecSetBlockSize(Y, bs);
1337: VecSetType(Y, ((PetscObject)X)->type_name);
1338: VecScatterCreate(X, is, Y, NULL, &vscat);
1339: VecScatterBegin(vscat, X, Y, INSERT_VALUES, SCATTER_FORWARD);
1340: VecScatterEnd(vscat, X, Y, INSERT_VALUES, SCATTER_FORWARD);
1341: PetscObjectCompose((PetscObject)Y, "VecGetSubVector_Scatter", (PetscObject)vscat);
1342: VecScatterDestroy(&vscat);
1343: *Z = Y;
1344: return 0;
1345: }
1347: /*@
1348: VecGetSubVector - Gets a vector representing part of another vector
1350: Collective on X and IS
1352: Input Parameters:
1353: + X - vector from which to extract a subvector
1354: - is - index set representing portion of X to extract
1356: Output Parameter:
1357: . Y - subvector corresponding to is
1359: Level: advanced
1361: Notes:
1362: The subvector Y should be returned with VecRestoreSubVector().
1363: X and is must be defined on the same communicator
1365: This function may return a subvector without making a copy, therefore it is not safe to use the original vector while
1366: modifying the subvector. Other non-overlapping subvectors can still be obtained from X using this function.
1367: The resulting subvector inherits the block size from the IS if greater than one. Otherwise, the block size is guessed from the block size of the original vec.
1369: .seealso: `MatCreateSubMatrix()`
1370: @*/
1371: PetscErrorCode VecGetSubVector(Vec X, IS is, Vec *Y)
1372: {
1373: Vec Z;
1379: if (X->ops->getsubvector) {
1380: PetscUseTypeMethod(X, getsubvector, is, &Z);
1381: } else { /* Default implementation currently does no caching */
1382: PetscBool contig;
1383: PetscInt n, N, start, bs;
1385: ISGetLocalSize(is, &n);
1386: ISGetSize(is, &N);
1387: VecGetSubVectorContiguityAndBS_Private(X, is, &contig, &start, &bs);
1388: if (contig) { /* We can do a no-copy implementation */
1389: const PetscScalar *x;
1390: PetscInt state = 0;
1391: PetscBool isstd, iscuda, iship;
1393: PetscObjectTypeCompareAny((PetscObject)X, &isstd, VECSEQ, VECMPI, VECSTANDARD, "");
1394: PetscObjectTypeCompareAny((PetscObject)X, &iscuda, VECSEQCUDA, VECMPICUDA, "");
1395: PetscObjectTypeCompareAny((PetscObject)X, &iship, VECSEQHIP, VECMPIHIP, "");
1396: if (iscuda) {
1397: #if defined(PETSC_HAVE_CUDA)
1398: const PetscScalar *x_d;
1399: PetscMPIInt size;
1400: PetscOffloadMask flg;
1402: VecCUDAGetArrays_Private(X, &x, &x_d, &flg);
1405: if (x) x += start;
1406: if (x_d) x_d += start;
1407: MPI_Comm_size(PetscObjectComm((PetscObject)X), &size);
1408: if (size == 1) {
1409: VecCreateSeqCUDAWithArrays(PetscObjectComm((PetscObject)X), bs, n, x, x_d, &Z);
1410: } else {
1411: VecCreateMPICUDAWithArrays(PetscObjectComm((PetscObject)X), bs, n, N, x, x_d, &Z);
1412: }
1413: Z->offloadmask = flg;
1414: #endif
1415: } else if (iship) {
1416: #if defined(PETSC_HAVE_HIP)
1417: const PetscScalar *x_d;
1418: PetscMPIInt size;
1419: PetscOffloadMask flg;
1421: VecHIPGetArrays_Private(X, &x, &x_d, &flg);
1424: if (x) x += start;
1425: if (x_d) x_d += start;
1426: MPI_Comm_size(PetscObjectComm((PetscObject)X), &size);
1427: if (size == 1) {
1428: VecCreateSeqHIPWithArrays(PetscObjectComm((PetscObject)X), bs, n, x, x_d, &Z);
1429: } else {
1430: VecCreateMPIHIPWithArrays(PetscObjectComm((PetscObject)X), bs, n, N, x, x_d, &Z);
1431: }
1432: Z->offloadmask = flg;
1433: #endif
1434: } else if (isstd) {
1435: PetscMPIInt size;
1437: MPI_Comm_size(PetscObjectComm((PetscObject)X), &size);
1438: VecGetArrayRead(X, &x);
1439: if (x) x += start;
1440: if (size == 1) {
1441: VecCreateSeqWithArray(PetscObjectComm((PetscObject)X), bs, n, x, &Z);
1442: } else {
1443: VecCreateMPIWithArray(PetscObjectComm((PetscObject)X), bs, n, N, x, &Z);
1444: }
1445: VecRestoreArrayRead(X, &x);
1446: } else { /* default implementation: use place array */
1447: VecGetArrayRead(X, &x);
1448: VecCreate(PetscObjectComm((PetscObject)X), &Z);
1449: VecSetType(Z, ((PetscObject)X)->type_name);
1450: VecSetSizes(Z, n, N);
1451: VecSetBlockSize(Z, bs);
1452: VecPlaceArray(Z, x ? x + start : NULL);
1453: VecRestoreArrayRead(X, &x);
1454: }
1456: /* this is relevant only in debug mode */
1457: VecLockGet(X, &state);
1458: if (state) VecLockReadPush(Z);
1459: Z->ops->placearray = NULL;
1460: Z->ops->replacearray = NULL;
1461: } else { /* Have to create a scatter and do a copy */
1462: VecGetSubVectorThroughVecScatter_Private(X, is, bs, &Z);
1463: }
1464: }
1465: /* Record the state when the subvector was gotten so we know whether its values need to be put back */
1466: if (VecGetSubVectorSavedStateId < 0) PetscObjectComposedDataRegister(&VecGetSubVectorSavedStateId);
1467: PetscObjectComposedDataSetInt((PetscObject)Z, VecGetSubVectorSavedStateId, 1);
1468: *Y = Z;
1469: return 0;
1470: }
1472: /*@
1473: VecRestoreSubVector - Restores a subvector extracted using VecGetSubVector()
1475: Collective on IS
1477: Input Parameters:
1478: + X - vector from which subvector was obtained
1479: . is - index set representing the subset of X
1480: - Y - subvector being restored
1482: Level: advanced
1484: .seealso: `VecGetSubVector()`
1485: @*/
1486: PetscErrorCode VecRestoreSubVector(Vec X, IS is, Vec *Y)
1487: {
1488: PETSC_UNUSED PetscObjectState dummystate = 0;
1489: PetscBool unchanged;
1497: if (X->ops->restoresubvector) PetscUseTypeMethod(X, restoresubvector, is, Y);
1498: else {
1499: PetscObjectComposedDataGetInt((PetscObject)*Y, VecGetSubVectorSavedStateId, dummystate, unchanged);
1500: if (!unchanged) { /* If Y's state has not changed since VecGetSubVector(), we only need to destroy Y */
1501: VecScatter scatter;
1502: PetscInt state;
1504: VecLockGet(X, &state);
1507: PetscObjectQuery((PetscObject)*Y, "VecGetSubVector_Scatter", (PetscObject *)&scatter);
1508: if (scatter) {
1509: VecScatterBegin(scatter, *Y, X, INSERT_VALUES, SCATTER_REVERSE);
1510: VecScatterEnd(scatter, *Y, X, INSERT_VALUES, SCATTER_REVERSE);
1511: } else {
1512: PetscBool iscuda, iship;
1513: PetscObjectTypeCompareAny((PetscObject)X, &iscuda, VECSEQCUDA, VECMPICUDA, "");
1514: PetscObjectTypeCompareAny((PetscObject)X, &iship, VECSEQHIP, VECMPIHIP, "");
1516: if (iscuda) {
1517: #if defined(PETSC_HAVE_CUDA)
1518: PetscOffloadMask ymask = (*Y)->offloadmask;
1520: /* The offloadmask of X dictates where to move memory
1521: If X GPU data is valid, then move Y data on GPU if needed
1522: Otherwise, move back to the CPU */
1523: switch (X->offloadmask) {
1524: case PETSC_OFFLOAD_BOTH:
1525: if (ymask == PETSC_OFFLOAD_CPU) {
1526: VecCUDAResetArray(*Y);
1527: } else if (ymask == PETSC_OFFLOAD_GPU) {
1528: X->offloadmask = PETSC_OFFLOAD_GPU;
1529: }
1530: break;
1531: case PETSC_OFFLOAD_GPU:
1532: if (ymask == PETSC_OFFLOAD_CPU) VecCUDAResetArray(*Y);
1533: break;
1534: case PETSC_OFFLOAD_CPU:
1535: if (ymask == PETSC_OFFLOAD_GPU) VecResetArray(*Y);
1536: break;
1537: case PETSC_OFFLOAD_UNALLOCATED:
1538: case PETSC_OFFLOAD_KOKKOS:
1539: SETERRQ(PETSC_COMM_SELF, PETSC_ERR_PLIB, "This should not happen");
1540: }
1541: #endif
1542: } else if (iship) {
1543: #if defined(PETSC_HAVE_HIP)
1544: PetscOffloadMask ymask = (*Y)->offloadmask;
1546: /* The offloadmask of X dictates where to move memory
1547: If X GPU data is valid, then move Y data on GPU if needed
1548: Otherwise, move back to the CPU */
1549: switch (X->offloadmask) {
1550: case PETSC_OFFLOAD_BOTH:
1551: if (ymask == PETSC_OFFLOAD_CPU) {
1552: VecHIPResetArray(*Y);
1553: } else if (ymask == PETSC_OFFLOAD_GPU) {
1554: X->offloadmask = PETSC_OFFLOAD_GPU;
1555: }
1556: break;
1557: case PETSC_OFFLOAD_GPU:
1558: if (ymask == PETSC_OFFLOAD_CPU) VecHIPResetArray(*Y);
1559: break;
1560: case PETSC_OFFLOAD_CPU:
1561: if (ymask == PETSC_OFFLOAD_GPU) VecResetArray(*Y);
1562: break;
1563: case PETSC_OFFLOAD_UNALLOCATED:
1564: case PETSC_OFFLOAD_KOKKOS:
1565: SETERRQ(PETSC_COMM_SELF, PETSC_ERR_PLIB, "This should not happen");
1566: }
1567: #endif
1568: } else {
1569: /* If OpenCL vecs updated the device memory, this triggers a copy on the CPU */
1570: VecResetArray(*Y);
1571: }
1572: PetscObjectStateIncrease((PetscObject)X);
1573: }
1574: }
1575: }
1576: VecDestroy(Y);
1577: return 0;
1578: }
1580: /*@
1581: VecCreateLocalVector - Creates a vector object suitable for use with VecGetLocalVector() and friends. You must call VecDestroy() when the
1582: vector is no longer needed.
1584: Not collective.
1586: Input parameter:
1587: . v - The vector for which the local vector is desired.
1589: Output parameter:
1590: . w - Upon exit this contains the local vector.
1592: Level: beginner
1594: .seealso: `VecGetLocalVectorRead()`, `VecRestoreLocalVectorRead()`, `VecGetLocalVector()`, `VecRestoreLocalVector()`
1595: @*/
1596: PetscErrorCode VecCreateLocalVector(Vec v, Vec *w)
1597: {
1598: PetscMPIInt size;
1602: MPI_Comm_size(PetscObjectComm((PetscObject)v), &size);
1603: if (size == 1) VecDuplicate(v, w);
1604: else if (v->ops->createlocalvector) PetscUseTypeMethod(v, createlocalvector, w);
1605: else {
1606: VecType type;
1607: PetscInt n;
1609: VecCreate(PETSC_COMM_SELF, w);
1610: VecGetLocalSize(v, &n);
1611: VecSetSizes(*w, n, n);
1612: VecGetBlockSize(v, &n);
1613: VecSetBlockSize(*w, n);
1614: VecGetType(v, &type);
1615: VecSetType(*w, type);
1616: }
1617: return 0;
1618: }
1620: /*@
1621: VecGetLocalVectorRead - Maps the local portion of a vector into a
1622: vector. You must call VecRestoreLocalVectorRead() when the local
1623: vector is no longer needed.
1625: Not collective.
1627: Input parameter:
1628: . v - The vector for which the local vector is desired.
1630: Output parameter:
1631: . w - Upon exit this contains the local vector.
1633: Level: beginner
1635: Notes:
1636: This function is similar to VecGetArrayRead() which maps the local
1637: portion into a raw pointer. VecGetLocalVectorRead() is usually
1638: almost as efficient as VecGetArrayRead() but in certain circumstances
1639: VecGetLocalVectorRead() can be much more efficient than
1640: VecGetArrayRead(). This is because the construction of a contiguous
1641: array representing the vector data required by VecGetArrayRead() can
1642: be an expensive operation for certain vector types. For example, for
1643: GPU vectors VecGetArrayRead() requires that the data between device
1644: and host is synchronized.
1646: Unlike VecGetLocalVector(), this routine is not collective and
1647: preserves cached information.
1649: .seealso: `VecCreateLocalVector()`, `VecRestoreLocalVectorRead()`, `VecGetLocalVector()`, `VecGetArrayRead()`, `VecGetArray()`
1650: @*/
1651: PetscErrorCode VecGetLocalVectorRead(Vec v, Vec w)
1652: {
1655: VecCheckSameLocalSize(v, 1, w, 2);
1656: if (v->ops->getlocalvectorread) {
1657: PetscUseTypeMethod(v, getlocalvectorread, w);
1658: } else {
1659: PetscScalar *a;
1661: VecGetArrayRead(v, (const PetscScalar **)&a);
1662: VecPlaceArray(w, a);
1663: }
1664: PetscObjectStateIncrease((PetscObject)w);
1665: VecLockReadPush(v);
1666: VecLockReadPush(w);
1667: return 0;
1668: }
1670: /*@
1671: VecRestoreLocalVectorRead - Unmaps the local portion of a vector
1672: previously mapped into a vector using VecGetLocalVectorRead().
1674: Not collective.
1676: Input parameter:
1677: + v - The local portion of this vector was previously mapped into w using VecGetLocalVectorRead().
1678: - w - The vector into which the local portion of v was mapped.
1680: Level: beginner
1682: .seealso: `VecCreateLocalVector()`, `VecGetLocalVectorRead()`, `VecGetLocalVector()`, `VecGetArrayRead()`, `VecGetArray()`
1683: @*/
1684: PetscErrorCode VecRestoreLocalVectorRead(Vec v, Vec w)
1685: {
1688: if (v->ops->restorelocalvectorread) {
1689: PetscUseTypeMethod(v, restorelocalvectorread, w);
1690: } else {
1691: const PetscScalar *a;
1693: VecGetArrayRead(w, &a);
1694: VecRestoreArrayRead(v, &a);
1695: VecResetArray(w);
1696: }
1697: VecLockReadPop(v);
1698: VecLockReadPop(w);
1699: PetscObjectStateIncrease((PetscObject)w);
1700: return 0;
1701: }
1703: /*@
1704: VecGetLocalVector - Maps the local portion of a vector into a
1705: vector.
1707: Collective on v, not collective on w.
1709: Input parameter:
1710: . v - The vector for which the local vector is desired.
1712: Output parameter:
1713: . w - Upon exit this contains the local vector.
1715: Level: beginner
1717: Notes:
1718: This function is similar to VecGetArray() which maps the local
1719: portion into a raw pointer. VecGetLocalVector() is usually about as
1720: efficient as VecGetArray() but in certain circumstances
1721: VecGetLocalVector() can be much more efficient than VecGetArray().
1722: This is because the construction of a contiguous array representing
1723: the vector data required by VecGetArray() can be an expensive
1724: operation for certain vector types. For example, for GPU vectors
1725: VecGetArray() requires that the data between device and host is
1726: synchronized.
1728: .seealso: `VecCreateLocalVector()`, `VecRestoreLocalVector()`, `VecGetLocalVectorRead()`, `VecGetArrayRead()`, `VecGetArray()`
1729: @*/
1730: PetscErrorCode VecGetLocalVector(Vec v, Vec w)
1731: {
1734: VecCheckSameLocalSize(v, 1, w, 2);
1735: if (v->ops->getlocalvector) {
1736: PetscUseTypeMethod(v, getlocalvector, w);
1737: } else {
1738: PetscScalar *a;
1740: VecGetArray(v, &a);
1741: VecPlaceArray(w, a);
1742: }
1743: PetscObjectStateIncrease((PetscObject)w);
1744: return 0;
1745: }
1747: /*@
1748: VecRestoreLocalVector - Unmaps the local portion of a vector
1749: previously mapped into a vector using VecGetLocalVector().
1751: Logically collective.
1753: Input parameter:
1754: + v - The local portion of this vector was previously mapped into w using VecGetLocalVector().
1755: - w - The vector into which the local portion of v was mapped.
1757: Level: beginner
1759: .seealso: `VecCreateLocalVector()`, `VecGetLocalVector()`, `VecGetLocalVectorRead()`, `VecRestoreLocalVectorRead()`, `LocalVectorRead()`, `VecGetArrayRead()`, `VecGetArray()`
1760: @*/
1761: PetscErrorCode VecRestoreLocalVector(Vec v, Vec w)
1762: {
1765: if (v->ops->restorelocalvector) {
1766: PetscUseTypeMethod(v, restorelocalvector, w);
1767: } else {
1768: PetscScalar *a;
1769: VecGetArray(w, &a);
1770: VecRestoreArray(v, &a);
1771: VecResetArray(w);
1772: }
1773: PetscObjectStateIncrease((PetscObject)w);
1774: PetscObjectStateIncrease((PetscObject)v);
1775: return 0;
1776: }
1778: /*@C
1779: VecGetArray - Returns a pointer to a contiguous array that contains this
1780: processor's portion of the vector data. For the standard PETSc
1781: vectors, VecGetArray() returns a pointer to the local data array and
1782: does not use any copies. If the underlying vector data is not stored
1783: in a contiguous array this routine will copy the data to a contiguous
1784: array and return a pointer to that. You MUST call VecRestoreArray()
1785: when you no longer need access to the array.
1787: Logically Collective on Vec
1789: Input Parameter:
1790: . x - the vector
1792: Output Parameter:
1793: . a - location to put pointer to the array
1795: Fortran Note:
1796: This routine is used differently from Fortran 77
1797: $ Vec x
1798: $ PetscScalar x_array(1)
1799: $ PetscOffset i_x
1800: $ PetscErrorCode ierr
1801: $ call VecGetArray(x,x_array,i_x,ierr)
1802: $
1803: $ Access first local entry in vector with
1804: $ value = x_array(i_x + 1)
1805: $
1806: $ ...... other code
1807: $ call VecRestoreArray(x,x_array,i_x,ierr)
1808: For Fortran 90 see VecGetArrayF90()
1810: See the Fortran chapter of the users manual and
1811: petsc/src/snes/tutorials/ex5f.F for details.
1813: Level: beginner
1815: .seealso: `VecRestoreArray()`, `VecGetArrayRead()`, `VecGetArrays()`, `VecGetArrayF90()`, `VecGetArrayReadF90()`, `VecPlaceArray()`, `VecGetArray2d()`,
1816: `VecGetArrayPair()`, `VecRestoreArrayPair()`, `VecGetArrayWrite()`, `VecRestoreArrayWrite()`
1817: @*/
1818: PetscErrorCode VecGetArray(Vec x, PetscScalar **a)
1819: {
1821: VecSetErrorIfLocked(x, 1);
1822: if (x->ops->getarray) { /* The if-else order matters! VECNEST, VECCUDA etc should have ops->getarray while VECCUDA etc are petscnative */
1823: PetscUseTypeMethod(x, getarray, a);
1824: } else if (x->petscnative) { /* VECSTANDARD */
1825: *a = *((PetscScalar **)x->data);
1826: } else SETERRQ(PetscObjectComm((PetscObject)x), PETSC_ERR_SUP, "Cannot get array for vector type \"%s\"", ((PetscObject)x)->type_name);
1827: return 0;
1828: }
1830: /*@C
1831: VecRestoreArray - Restores a vector after VecGetArray() has been called.
1833: Logically Collective on Vec
1835: Input Parameters:
1836: + x - the vector
1837: - a - location of pointer to array obtained from VecGetArray()
1839: Level: beginner
1841: .seealso: `VecGetArray()`, `VecRestoreArrayRead()`, `VecRestoreArrays()`, `VecRestoreArrayF90()`, `VecRestoreArrayReadF90()`, `VecPlaceArray()`, `VecRestoreArray2d()`,
1842: `VecGetArrayPair()`, `VecRestoreArrayPair()`
1843: @*/
1844: PetscErrorCode VecRestoreArray(Vec x, PetscScalar **a)
1845: {
1848: if (x->ops->restorearray) {
1849: PetscUseTypeMethod(x, restorearray, a);
1851: if (a) *a = NULL;
1852: PetscObjectStateIncrease((PetscObject)x);
1853: return 0;
1854: }
1855: /*@C
1856: VecGetArrayRead - Get read-only pointer to contiguous array containing this processor's portion of the vector data.
1858: Not Collective
1860: Input Parameter:
1861: . x - the vector
1863: Output Parameter:
1864: . a - the array
1866: Level: beginner
1868: Notes:
1869: The array must be returned using a matching call to VecRestoreArrayRead().
1871: Unlike VecGetArray(), this routine is not collective and preserves cached information like vector norms.
1873: Standard PETSc vectors use contiguous storage so that this routine does not perform a copy. Other vector
1874: implementations may require a copy, but must such implementations should cache the contiguous representation so that
1875: only one copy is performed when this routine is called multiple times in sequence.
1877: .seealso: `VecGetArray()`, `VecRestoreArray()`, `VecGetArrayPair()`, `VecRestoreArrayPair()`
1878: @*/
1879: PetscErrorCode VecGetArrayRead(Vec x, const PetscScalar **a)
1880: {
1883: if (x->ops->getarrayread) {
1884: PetscUseTypeMethod(x, getarrayread, a);
1885: } else if (x->ops->getarray) {
1886: /* VECNEST, VECCUDA, VECKOKKOS etc */
1887: PetscUseTypeMethod(x, getarray, (PetscScalar **)a);
1888: } else if (x->petscnative) {
1889: /* VECSTANDARD */
1890: *a = *((PetscScalar **)x->data);
1891: } else SETERRQ(PetscObjectComm((PetscObject)x), PETSC_ERR_SUP, "Cannot get array read for vector type \"%s\"", ((PetscObject)x)->type_name);
1892: return 0;
1893: }
1895: /*@C
1896: VecRestoreArrayRead - Restore array obtained with VecGetArrayRead()
1898: Not Collective
1900: Input Parameters:
1901: + vec - the vector
1902: - array - the array
1904: Level: beginner
1906: .seealso: `VecGetArray()`, `VecRestoreArray()`, `VecGetArrayPair()`, `VecRestoreArrayPair()`
1907: @*/
1908: PetscErrorCode VecRestoreArrayRead(Vec x, const PetscScalar **a)
1909: {
1912: if (x->petscnative) { /* VECSTANDARD, VECCUDA, VECKOKKOS etc */
1913: /* nothing */
1914: } else if (x->ops->restorearrayread) { /* VECNEST */
1915: PetscUseTypeMethod(x, restorearrayread, a);
1916: } else { /* No one? */
1917: PetscUseTypeMethod(x, restorearray, (PetscScalar **)a);
1918: }
1919: if (a) *a = NULL;
1920: return 0;
1921: }
1923: /*@C
1924: VecGetArrayWrite - Returns a pointer to a contiguous array that WILL contains this
1925: processor's portion of the vector data. The values in this array are NOT valid, the routine calling this
1926: routine is responsible for putting values into the array; any values it does not set will be invalid
1928: Logically Collective on Vec
1930: Input Parameter:
1931: . x - the vector
1933: Output Parameter:
1934: . a - location to put pointer to the array
1936: Level: intermediate
1938: This is for vectors associate with GPUs, the vector is not copied up before giving access. If you need correct
1939: values in the array use VecGetArray()
1941: .seealso: `VecRestoreArray()`, `VecGetArrayRead()`, `VecGetArrays()`, `VecGetArrayF90()`, `VecGetArrayReadF90()`, `VecPlaceArray()`, `VecGetArray2d()`,
1942: `VecGetArrayPair()`, `VecRestoreArrayPair()`, `VecGetArray()`, `VecRestoreArrayWrite()`
1943: @*/
1944: PetscErrorCode VecGetArrayWrite(Vec x, PetscScalar **a)
1945: {
1948: VecSetErrorIfLocked(x, 1);
1949: if (x->ops->getarraywrite) {
1950: PetscUseTypeMethod(x, getarraywrite, a);
1951: } else {
1952: VecGetArray(x, a);
1953: }
1954: return 0;
1955: }
1957: /*@C
1958: VecRestoreArrayWrite - Restores a vector after VecGetArrayWrite() has been called.
1960: Logically Collective on Vec
1962: Input Parameters:
1963: + x - the vector
1964: - a - location of pointer to array obtained from VecGetArray()
1966: Level: beginner
1968: .seealso: `VecGetArray()`, `VecRestoreArrayRead()`, `VecRestoreArrays()`, `VecRestoreArrayF90()`, `VecRestoreArrayReadF90()`, `VecPlaceArray()`, `VecRestoreArray2d()`,
1969: `VecGetArrayPair()`, `VecRestoreArrayPair()`, `VecGetArrayWrite()`
1970: @*/
1971: PetscErrorCode VecRestoreArrayWrite(Vec x, PetscScalar **a)
1972: {
1975: if (x->ops->restorearraywrite) {
1976: PetscUseTypeMethod(x, restorearraywrite, a);
1977: } else if (x->ops->restorearray) {
1978: PetscUseTypeMethod(x, restorearray, a);
1979: }
1980: if (a) *a = NULL;
1981: PetscObjectStateIncrease((PetscObject)x);
1982: return 0;
1983: }
1985: /*@C
1986: VecGetArrays - Returns a pointer to the arrays in a set of vectors
1987: that were created by a call to VecDuplicateVecs(). You MUST call
1988: VecRestoreArrays() when you no longer need access to the array.
1990: Logically Collective on Vec
1992: Input Parameters:
1993: + x - the vectors
1994: - n - the number of vectors
1996: Output Parameter:
1997: . a - location to put pointer to the array
1999: Fortran Note:
2000: This routine is not supported in Fortran.
2002: Level: intermediate
2004: .seealso: `VecGetArray()`, `VecRestoreArrays()`
2005: @*/
2006: PetscErrorCode VecGetArrays(const Vec x[], PetscInt n, PetscScalar **a[])
2007: {
2008: PetscInt i;
2009: PetscScalar **q;
2015: PetscMalloc1(n, &q);
2016: for (i = 0; i < n; ++i) VecGetArray(x[i], &q[i]);
2017: *a = q;
2018: return 0;
2019: }
2021: /*@C
2022: VecRestoreArrays - Restores a group of vectors after VecGetArrays()
2023: has been called.
2025: Logically Collective on Vec
2027: Input Parameters:
2028: + x - the vector
2029: . n - the number of vectors
2030: - a - location of pointer to arrays obtained from VecGetArrays()
2032: Notes:
2033: For regular PETSc vectors this routine does not involve any copies. For
2034: any special vectors that do not store local vector data in a contiguous
2035: array, this routine will copy the data back into the underlying
2036: vector data structure from the arrays obtained with VecGetArrays().
2038: Fortran Note:
2039: This routine is not supported in Fortran.
2041: Level: intermediate
2043: .seealso: `VecGetArrays()`, `VecRestoreArray()`
2044: @*/
2045: PetscErrorCode VecRestoreArrays(const Vec x[], PetscInt n, PetscScalar **a[])
2046: {
2047: PetscInt i;
2048: PetscScalar **q = *a;
2054: for (i = 0; i < n; ++i) VecRestoreArray(x[i], &q[i]);
2055: PetscFree(q);
2056: return 0;
2057: }
2059: /*@C
2060: VecGetArrayAndMemType - Like VecGetArray(), but if this is a standard device vector (e.g., VECCUDA), the returned pointer will be a device
2061: pointer to the device memory that contains this processor's portion of the vector data. Device data is guaranteed to have the latest value.
2062: Otherwise, when this is a host vector (e.g., VECMPI), this routine functions the same as VecGetArray() and returns a host pointer.
2064: For VECKOKKOS, if Kokkos is configured without device (e.g., use serial or openmp), per this function, the vector works like VECSEQ/VECMPI;
2065: otherwise, it works like VECCUDA or VECHIP etc.
2067: Logically Collective on Vec
2069: Input Parameter:
2070: . x - the vector
2072: Output Parameters:
2073: + a - location to put pointer to the array
2074: - mtype - memory type of the array
2076: Level: beginner
2078: .seealso: `VecRestoreArrayAndMemType()`, `VecGetArrayReadAndMemType()`, `VecGetArrayWriteAndMemType()`, `VecRestoreArray()`, `VecGetArrayRead()`, `VecGetArrays()`, `VecGetArrayF90()`, `VecGetArrayReadF90()`,
2079: `VecPlaceArray()`, `VecGetArray2d()`, `VecGetArrayPair()`, `VecRestoreArrayPair()`, `VecGetArrayWrite()`, `VecRestoreArrayWrite()`
2080: @*/
2081: PetscErrorCode VecGetArrayAndMemType(Vec x, PetscScalar **a, PetscMemType *mtype)
2082: {
2087: VecSetErrorIfLocked(x, 1);
2088: if (x->ops->getarrayandmemtype) {
2089: /* VECCUDA, VECKOKKOS etc */
2090: PetscUseTypeMethod(x, getarrayandmemtype, a, mtype);
2091: } else {
2092: /* VECSTANDARD, VECNEST, VECVIENNACL */
2093: VecGetArray(x, a);
2094: if (mtype) *mtype = PETSC_MEMTYPE_HOST;
2095: }
2096: return 0;
2097: }
2099: /*@C
2100: VecRestoreArrayAndMemType - Restores a vector after VecGetArrayAndMemType() has been called.
2102: Logically Collective on Vec
2104: Input Parameters:
2105: + x - the vector
2106: - a - location of pointer to array obtained from VecGetArrayAndMemType()
2108: Level: beginner
2110: .seealso: `VecGetArrayAndMemType()`, `VecGetArray()`, `VecRestoreArrayRead()`, `VecRestoreArrays()`, `VecRestoreArrayF90()`, `VecRestoreArrayReadF90()`,
2111: `VecPlaceArray()`, `VecRestoreArray2d()`, `VecGetArrayPair()`, `VecRestoreArrayPair()`
2112: @*/
2113: PetscErrorCode VecRestoreArrayAndMemType(Vec x, PetscScalar **a)
2114: {
2118: if (x->ops->restorearrayandmemtype) {
2119: /* VECCUDA, VECKOKKOS etc */
2120: PetscUseTypeMethod(x, restorearrayandmemtype, a);
2121: } else {
2122: /* VECNEST, VECVIENNACL */
2123: VecRestoreArray(x, a);
2124: } /* VECSTANDARD does nothing */
2125: if (a) *a = NULL;
2126: PetscObjectStateIncrease((PetscObject)x);
2127: return 0;
2128: }
2130: /*@C
2131: VecGetArrayReadAndMemType - Like VecGetArrayRead(), but if the input vector is a device vector, it will return a read-only device pointer. The returned pointer is guarenteed to point to up-to-date data. For host vectors, it functions as VecGetArrayRead().
2133: Not Collective
2135: Input Parameter:
2136: . x - the vector
2138: Output Parameters:
2139: + a - the array
2140: - mtype - memory type of the array
2142: Level: beginner
2144: Notes:
2145: The array must be returned using a matching call to VecRestoreArrayReadAndMemType().
2147: .seealso: `VecRestoreArrayReadAndMemType()`, `VecGetArrayAndMemType()`, `VecGetArrayWriteAndMemType()`, `VecGetArray()`, `VecRestoreArray()`, `VecGetArrayPair()`, `VecRestoreArrayPair()`, `VecGetArrayAndMemType()`
2148: @*/
2149: PetscErrorCode VecGetArrayReadAndMemType(Vec x, const PetscScalar **a, PetscMemType *mtype)
2150: {
2155: if (x->ops->getarrayreadandmemtype) {
2156: /* VECCUDA/VECHIP though they are also petscnative */
2157: PetscUseTypeMethod(x, getarrayreadandmemtype, a, mtype);
2158: } else if (x->ops->getarrayandmemtype) {
2159: /* VECKOKKOS */
2160: PetscUseTypeMethod(x, getarrayandmemtype, (PetscScalar **)a, mtype);
2161: } else {
2162: VecGetArrayRead(x, a);
2163: if (mtype) *mtype = PETSC_MEMTYPE_HOST;
2164: }
2165: return 0;
2166: }
2168: /*@C
2169: VecRestoreArrayReadAndMemType - Restore array obtained with VecGetArrayReadAndMemType()
2171: Not Collective
2173: Input Parameters:
2174: + vec - the vector
2175: - array - the array
2177: Level: beginner
2179: .seealso: `VecGetArrayReadAndMemType()`, `VecRestoreArrayAndMemType()`, `VecRestoreArrayWriteAndMemType()`, `VecGetArray()`, `VecRestoreArray()`, `VecGetArrayPair()`, `VecRestoreArrayPair()`
2180: @*/
2181: PetscErrorCode VecRestoreArrayReadAndMemType(Vec x, const PetscScalar **a)
2182: {
2186: if (x->ops->restorearrayreadandmemtype) {
2187: /* VECCUDA/VECHIP */
2188: PetscUseTypeMethod(x, restorearrayreadandmemtype, a);
2189: } else if (!x->petscnative) {
2190: /* VECNEST */
2191: VecRestoreArrayRead(x, a);
2192: }
2193: if (a) *a = NULL;
2194: return 0;
2195: }
2197: /*@C
2198: VecGetArrayWriteAndMemType - Like VecGetArrayWrite(), but if this is a device vector it will aways return
2199: a device pointer to the device memory that contains this processor's portion of the vector data.
2201: Not Collective
2203: Input Parameter:
2204: . x - the vector
2206: Output Parameters:
2207: + a - the array
2208: - mtype - memory type of the array
2210: Level: beginner
2212: Notes:
2213: The array must be returned using a matching call to VecRestoreArrayWriteAndMemType(), where it will label the device memory as most recent.
2215: .seealso: `VecRestoreArrayWriteAndMemType()`, `VecGetArrayReadAndMemType()`, `VecGetArrayAndMemType()`, `VecGetArray()`, `VecRestoreArray()`, `VecGetArrayPair()`, `VecRestoreArrayPair()`,
2216: @*/
2217: PetscErrorCode VecGetArrayWriteAndMemType(Vec x, PetscScalar **a, PetscMemType *mtype)
2218: {
2221: VecSetErrorIfLocked(x, 1);
2224: if (x->ops->getarraywriteandmemtype) {
2225: /* VECCUDA, VECHIP, VECKOKKOS etc, though they are also petscnative */
2226: PetscUseTypeMethod(x, getarraywriteandmemtype, a, mtype);
2227: } else if (x->ops->getarrayandmemtype) {
2228: VecGetArrayAndMemType(x, a, mtype);
2229: } else {
2230: /* VECNEST, VECVIENNACL */
2231: VecGetArrayWrite(x, a);
2232: if (mtype) *mtype = PETSC_MEMTYPE_HOST;
2233: }
2234: return 0;
2235: }
2237: /*@C
2238: VecRestoreArrayWriteAndMemType - Restore array obtained with VecGetArrayWriteAndMemType()
2240: Not Collective
2242: Input Parameters:
2243: + vec - the vector
2244: - array - the array
2246: Level: beginner
2248: .seealso: `VecGetArrayWriteAndMemType()`, `VecRestoreArrayAndMemType()`, `VecGetArray()`, `VecRestoreArray()`, `VecGetArrayPair()`, `VecRestoreArrayPair()`
2249: @*/
2250: PetscErrorCode VecRestoreArrayWriteAndMemType(Vec x, PetscScalar **a)
2251: {
2254: VecSetErrorIfLocked(x, 1);
2256: if (x->ops->restorearraywriteandmemtype) {
2257: /* VECCUDA/VECHIP */
2258: PetscMemType PETSC_UNUSED mtype; // since this function doesn't accept a memtype?
2259: PetscUseTypeMethod(x, restorearraywriteandmemtype, a, &mtype);
2260: } else if (x->ops->restorearrayandmemtype) {
2261: VecRestoreArrayAndMemType(x, a);
2262: } else {
2263: VecRestoreArray(x, a);
2264: }
2265: if (a) *a = NULL;
2266: return 0;
2267: }
2269: /*@
2270: VecPlaceArray - Allows one to replace the array in a vector with an
2271: array provided by the user. This is useful to avoid copying an array
2272: into a vector.
2274: Not Collective
2276: Input Parameters:
2277: + vec - the vector
2278: - array - the array
2280: Notes:
2281: You can return to the original array with a call to `VecResetArray()`. `vec` does not take
2282: ownership of `array` in any way. The user must free `array` themselves but be careful not to
2283: do so before the vector has either been destroyed, had its original array restored with
2284: `VecResetArray()` or permanently replaced with `VecReplaceArray()`.
2286: Level: developer
2288: .seealso: `VecGetArray()`, `VecRestoreArray()`, `VecReplaceArray()`, `VecResetArray()`
2290: @*/
2291: PetscErrorCode VecPlaceArray(Vec vec, const PetscScalar array[])
2292: {
2296: PetscUseTypeMethod(vec, placearray, array);
2297: PetscObjectStateIncrease((PetscObject)vec);
2298: return 0;
2299: }
2301: /*@C
2302: VecReplaceArray - Allows one to replace the array in a vector with an
2303: array provided by the user. This is useful to avoid copying an array
2304: into a vector.
2306: Not Collective
2308: Input Parameters:
2309: + vec - the vector
2310: - array - the array
2312: Notes:
2313: This permanently replaces the array and frees the memory associated
2314: with the old array.
2316: The memory passed in MUST be obtained with PetscMalloc() and CANNOT be
2317: freed by the user. It will be freed when the vector is destroyed.
2319: Not supported from Fortran
2321: Level: developer
2323: .seealso: `VecGetArray()`, `VecRestoreArray()`, `VecPlaceArray()`, `VecResetArray()`
2325: @*/
2326: PetscErrorCode VecReplaceArray(Vec vec, const PetscScalar array[])
2327: {
2330: PetscUseTypeMethod(vec, replacearray, array);
2331: PetscObjectStateIncrease((PetscObject)vec);
2332: return 0;
2333: }
2335: /*@C
2336: VecCUDAGetArray - Provides access to the CUDA buffer inside a vector.
2338: This function has semantics similar to VecGetArray(): the pointer
2339: returned by this function points to a consistent view of the vector
2340: data. This may involve a copy operation of data from the host to the
2341: device if the data on the device is out of date. If the device
2342: memory hasn't been allocated previously it will be allocated as part
2343: of this function call. VecCUDAGetArray() assumes that
2344: the user will modify the vector data. This is similar to
2345: intent(inout) in fortran.
2347: The CUDA device pointer has to be released by calling
2348: VecCUDARestoreArray(). Upon restoring the vector data
2349: the data on the host will be marked as out of date. A subsequent
2350: access of the host data will thus incur a data transfer from the
2351: device to the host.
2353: Input Parameter:
2354: . v - the vector
2356: Output Parameter:
2357: . a - the CUDA device pointer
2359: Fortran note:
2360: This function is not currently available from Fortran.
2362: Level: intermediate
2364: .seealso: `VecCUDARestoreArray()`, `VecCUDAGetArrayRead()`, `VecCUDAGetArrayWrite()`, `VecGetArray()`, `VecGetArrayRead()`
2365: @*/
2366: PETSC_EXTERN PetscErrorCode VecCUDAGetArray(Vec v, PetscScalar **a)
2367: {
2369: #if defined(PETSC_HAVE_CUDA)
2370: {
2371: VecCUDACopyToGPU(v);
2372: *a = ((Vec_CUDA *)v->spptr)->GPUarray;
2373: }
2374: #endif
2375: return 0;
2376: }
2378: /*@C
2379: VecCUDARestoreArray - Restore a CUDA device pointer previously acquired with VecCUDAGetArray().
2381: This marks the host data as out of date. Subsequent access to the
2382: vector data on the host side with for instance VecGetArray() incurs a
2383: data transfer.
2385: Input Parameters:
2386: + v - the vector
2387: - a - the CUDA device pointer. This pointer is invalid after
2388: VecCUDARestoreArray() returns.
2390: Fortran note:
2391: This function is not currently available from Fortran.
2393: Level: intermediate
2395: .seealso: `VecCUDAGetArray()`, `VecCUDAGetArrayRead()`, `VecCUDAGetArrayWrite()`, `VecGetArray()`, `VecRestoreArray()`, `VecGetArrayRead()`
2396: @*/
2397: PETSC_EXTERN PetscErrorCode VecCUDARestoreArray(Vec v, PetscScalar **a)
2398: {
2400: #if defined(PETSC_HAVE_CUDA)
2401: v->offloadmask = PETSC_OFFLOAD_GPU;
2402: #endif
2403: PetscObjectStateIncrease((PetscObject)v);
2404: return 0;
2405: }
2407: /*@C
2408: VecCUDAGetArrayRead - Provides read access to the CUDA buffer inside a vector.
2410: This function is analogous to VecGetArrayRead(): The pointer
2411: returned by this function points to a consistent view of the vector
2412: data. This may involve a copy operation of data from the host to the
2413: device if the data on the device is out of date. If the device
2414: memory hasn't been allocated previously it will be allocated as part
2415: of this function call. VecCUDAGetArrayRead() assumes that the
2416: user will not modify the vector data. This is analgogous to
2417: intent(in) in Fortran.
2419: The CUDA device pointer has to be released by calling
2420: VecCUDARestoreArrayRead(). If the data on the host side was
2421: previously up to date it will remain so, i.e. data on both the device
2422: and the host is up to date. Accessing data on the host side does not
2423: incur a device to host data transfer.
2425: Input Parameter:
2426: . v - the vector
2428: Output Parameter:
2429: . a - the CUDA pointer.
2431: Fortran note:
2432: This function is not currently available from Fortran.
2434: Level: intermediate
2436: .seealso: `VecCUDARestoreArrayRead()`, `VecCUDAGetArray()`, `VecCUDAGetArrayWrite()`, `VecGetArray()`, `VecGetArrayRead()`
2437: @*/
2438: PETSC_EXTERN PetscErrorCode VecCUDAGetArrayRead(Vec v, const PetscScalar **a)
2439: {
2440: VecCUDAGetArray(v, (PetscScalar **)a);
2441: return 0;
2442: }
2444: /*@C
2445: VecCUDARestoreArrayRead - Restore a CUDA device pointer previously acquired with VecCUDAGetArrayRead().
2447: If the data on the host side was previously up to date it will remain
2448: so, i.e. data on both the device and the host is up to date.
2449: Accessing data on the host side e.g. with VecGetArray() does not
2450: incur a device to host data transfer.
2452: Input Parameters:
2453: + v - the vector
2454: - a - the CUDA device pointer. This pointer is invalid after
2455: VecCUDARestoreArrayRead() returns.
2457: Fortran note:
2458: This function is not currently available from Fortran.
2460: Level: intermediate
2462: .seealso: `VecCUDAGetArrayRead()`, `VecCUDAGetArrayWrite()`, `VecCUDAGetArray()`, `VecGetArray()`, `VecRestoreArray()`, `VecGetArrayRead()`
2463: @*/
2464: PETSC_EXTERN PetscErrorCode VecCUDARestoreArrayRead(Vec v, const PetscScalar **a)
2465: {
2467: *a = NULL;
2468: return 0;
2469: }
2471: /*@C
2472: VecCUDAGetArrayWrite - Provides write access to the CUDA buffer inside a vector.
2474: The data pointed to by the device pointer is uninitialized. The user
2475: may not read from this data. Furthermore, the entire array needs to
2476: be filled by the user to obtain well-defined behaviour. The device
2477: memory will be allocated by this function if it hasn't been allocated
2478: previously. This is analogous to intent(out) in Fortran.
2480: The device pointer needs to be released with
2481: VecCUDARestoreArrayWrite(). When the pointer is released the
2482: host data of the vector is marked as out of data. Subsequent access
2483: of the host data with e.g. VecGetArray() incurs a device to host data
2484: transfer.
2486: Input Parameter:
2487: . v - the vector
2489: Output Parameter:
2490: . a - the CUDA pointer
2492: Fortran note:
2493: This function is not currently available from Fortran.
2495: Level: advanced
2497: .seealso: `VecCUDARestoreArrayWrite()`, `VecCUDAGetArray()`, `VecCUDAGetArrayRead()`, `VecCUDAGetArrayWrite()`, `VecGetArray()`, `VecGetArrayRead()`
2498: @*/
2499: PETSC_EXTERN PetscErrorCode VecCUDAGetArrayWrite(Vec v, PetscScalar **a)
2500: {
2502: #if defined(PETSC_HAVE_CUDA)
2503: {
2504: VecCUDAAllocateCheck(v);
2505: *a = ((Vec_CUDA *)v->spptr)->GPUarray;
2506: }
2507: #endif
2508: return 0;
2509: }
2511: /*@C
2512: VecCUDARestoreArrayWrite - Restore a CUDA device pointer previously acquired with VecCUDAGetArrayWrite().
2514: Data on the host will be marked as out of date. Subsequent access of
2515: the data on the host side e.g. with VecGetArray() will incur a device
2516: to host data transfer.
2518: Input Parameters:
2519: + v - the vector
2520: - a - the CUDA device pointer. This pointer is invalid after
2521: VecCUDARestoreArrayWrite() returns.
2523: Fortran note:
2524: This function is not currently available from Fortran.
2526: Level: intermediate
2528: .seealso: `VecCUDAGetArrayWrite()`, `VecCUDAGetArray()`, `VecCUDAGetArrayRead()`, `VecCUDAGetArrayWrite()`, `VecGetArray()`, `VecRestoreArray()`, `VecGetArrayRead()`
2529: @*/
2530: PETSC_EXTERN PetscErrorCode VecCUDARestoreArrayWrite(Vec v, PetscScalar **a)
2531: {
2533: #if defined(PETSC_HAVE_CUDA)
2534: v->offloadmask = PETSC_OFFLOAD_GPU;
2535: if (a) *a = NULL;
2536: #endif
2537: PetscObjectStateIncrease((PetscObject)v);
2538: return 0;
2539: }
2541: /*@C
2542: VecCUDAPlaceArray - Allows one to replace the GPU array in a vector with a
2543: GPU array provided by the user. This is useful to avoid copying an
2544: array into a vector.
2546: Not Collective
2548: Input Parameters:
2549: + vec - the vector
2550: - array - the GPU array
2552: Notes:
2553: You can return to the original GPU array with a call to VecCUDAResetArray()
2554: It is not possible to use VecCUDAPlaceArray() and VecPlaceArray() at the
2555: same time on the same vector.
2557: `vec` does not take ownership of `array` in any way. The user must free `array` themselves
2558: but be careful not to do so before the vector has either been destroyed, had its original
2559: array restored with `VecCUDAResetArray()` or permanently replaced with
2560: `VecCUDAReplaceArray()`.
2562: Level: developer
2564: .seealso: `VecPlaceArray()`, `VecGetArray()`, `VecRestoreArray()`, `VecReplaceArray()`, `VecResetArray()`, `VecCUDAResetArray()`, `VecCUDAReplaceArray()`
2566: @*/
2567: PetscErrorCode VecCUDAPlaceArray(Vec vin, const PetscScalar a[])
2568: {
2570: #if defined(PETSC_HAVE_CUDA)
2571: VecCUDACopyToGPU(vin);
2573: ((Vec_Seq *)vin->data)->unplacedarray = (PetscScalar *)((Vec_CUDA *)vin->spptr)->GPUarray; /* save previous GPU array so reset can bring it back */
2574: ((Vec_CUDA *)vin->spptr)->GPUarray = (PetscScalar *)a;
2575: vin->offloadmask = PETSC_OFFLOAD_GPU;
2576: #endif
2577: PetscObjectStateIncrease((PetscObject)vin);
2578: return 0;
2579: }
2581: /*@C
2582: VecCUDAReplaceArray - Allows one to replace the GPU array in a vector
2583: with a GPU array provided by the user. This is useful to avoid copying
2584: a GPU array into a vector.
2586: Not Collective
2588: Input Parameters:
2589: + vec - the vector
2590: - array - the GPU array
2592: Notes:
2593: This permanently replaces the GPU array and frees the memory associated
2594: with the old GPU array.
2596: The memory passed in CANNOT be freed by the user. It will be freed
2597: when the vector is destroyed.
2599: Not supported from Fortran
2601: Level: developer
2603: .seealso: `VecGetArray()`, `VecRestoreArray()`, `VecPlaceArray()`, `VecResetArray()`, `VecCUDAResetArray()`, `VecCUDAPlaceArray()`, `VecReplaceArray()`
2605: @*/
2606: PetscErrorCode VecCUDAReplaceArray(Vec vin, const PetscScalar a[])
2607: {
2608: #if defined(PETSC_HAVE_CUDA)
2609: #endif
2612: #if defined(PETSC_HAVE_CUDA)
2613: if (((Vec_CUDA *)vin->spptr)->GPUarray_allocated) cudaFree(((Vec_CUDA *)vin->spptr)->GPUarray_allocated);
2614: ((Vec_CUDA *)vin->spptr)->GPUarray_allocated = ((Vec_CUDA *)vin->spptr)->GPUarray = (PetscScalar *)a;
2615: vin->offloadmask = PETSC_OFFLOAD_GPU;
2616: #endif
2617: PetscObjectStateIncrease((PetscObject)vin);
2618: return 0;
2619: }
2621: /*@C
2622: VecCUDAResetArray - Resets a vector to use its default memory. Call this
2623: after the use of VecCUDAPlaceArray().
2625: Not Collective
2627: Input Parameters:
2628: . vec - the vector
2630: Level: developer
2632: .seealso: `VecGetArray()`, `VecRestoreArray()`, `VecReplaceArray()`, `VecPlaceArray()`, `VecResetArray()`, `VecCUDAPlaceArray()`, `VecCUDAReplaceArray()`
2634: @*/
2635: PetscErrorCode VecCUDAResetArray(Vec vin)
2636: {
2638: #if defined(PETSC_HAVE_CUDA)
2639: VecCUDACopyToGPU(vin);
2640: ((Vec_CUDA *)vin->spptr)->GPUarray = (PetscScalar *)((Vec_Seq *)vin->data)->unplacedarray;
2641: ((Vec_Seq *)vin->data)->unplacedarray = 0;
2642: vin->offloadmask = PETSC_OFFLOAD_GPU;
2643: #endif
2644: PetscObjectStateIncrease((PetscObject)vin);
2645: return 0;
2646: }
2648: /*@C
2649: VecHIPGetArray - Provides access to the HIP buffer inside a vector.
2651: This function has semantics similar to VecGetArray(): the pointer
2652: returned by this function points to a consistent view of the vector
2653: data. This may involve a copy operation of data from the host to the
2654: device if the data on the device is out of date. If the device
2655: memory hasn't been allocated previously it will be allocated as part
2656: of this function call. VecHIPGetArray() assumes that
2657: the user will modify the vector data. This is similar to
2658: intent(inout) in fortran.
2660: The HIP device pointer has to be released by calling
2661: VecHIPRestoreArray(). Upon restoring the vector data
2662: the data on the host will be marked as out of date. A subsequent
2663: access of the host data will thus incur a data transfer from the
2664: device to the host.
2666: Input Parameter:
2667: . v - the vector
2669: Output Parameter:
2670: . a - the HIP device pointer
2672: Fortran note:
2673: This function is not currently available from Fortran.
2675: Level: intermediate
2677: .seealso: `VecHIPRestoreArray()`, `VecHIPGetArrayRead()`, `VecHIPGetArrayWrite()`, `VecGetArray()`, `VecGetArrayRead()`
2678: @*/
2679: PETSC_EXTERN PetscErrorCode VecHIPGetArray(Vec v, PetscScalar **a)
2680: {
2682: #if defined(PETSC_HAVE_HIP)
2683: *a = 0;
2684: VecHIPCopyToGPU(v);
2685: *a = ((Vec_HIP *)v->spptr)->GPUarray;
2686: #endif
2687: return 0;
2688: }
2690: /*@C
2691: VecHIPRestoreArray - Restore a HIP device pointer previously acquired with VecHIPGetArray().
2693: This marks the host data as out of date. Subsequent access to the
2694: vector data on the host side with for instance VecGetArray() incurs a
2695: data transfer.
2697: Input Parameters:
2698: + v - the vector
2699: - a - the HIP device pointer. This pointer is invalid after
2700: VecHIPRestoreArray() returns.
2702: Fortran note:
2703: This function is not currently available from Fortran.
2705: Level: intermediate
2707: .seealso: `VecHIPGetArray()`, `VecHIPGetArrayRead()`, `VecHIPGetArrayWrite()`, `VecGetArray()`, `VecRestoreArray()`, `VecGetArrayRead()`
2708: @*/
2709: PETSC_EXTERN PetscErrorCode VecHIPRestoreArray(Vec v, PetscScalar **a)
2710: {
2712: #if defined(PETSC_HAVE_HIP)
2713: v->offloadmask = PETSC_OFFLOAD_GPU;
2714: #endif
2716: PetscObjectStateIncrease((PetscObject)v);
2717: return 0;
2718: }
2720: /*@C
2721: VecHIPGetArrayRead - Provides read access to the HIP buffer inside a vector.
2723: This function is analogous to VecGetArrayRead(): The pointer
2724: returned by this function points to a consistent view of the vector
2725: data. This may involve a copy operation of data from the host to the
2726: device if the data on the device is out of date. If the device
2727: memory hasn't been allocated previously it will be allocated as part
2728: of this function call. VecHIPGetArrayRead() assumes that the
2729: user will not modify the vector data. This is analgogous to
2730: intent(in) in Fortran.
2732: The HIP device pointer has to be released by calling
2733: VecHIPRestoreArrayRead(). If the data on the host side was
2734: previously up to date it will remain so, i.e. data on both the device
2735: and the host is up to date. Accessing data on the host side does not
2736: incur a device to host data transfer.
2738: Input Parameter:
2739: . v - the vector
2741: Output Parameter:
2742: . a - the HIP pointer.
2744: Fortran note:
2745: This function is not currently available from Fortran.
2747: Level: intermediate
2749: .seealso: `VecHIPRestoreArrayRead()`, `VecHIPGetArray()`, `VecHIPGetArrayWrite()`, `VecGetArray()`, `VecGetArrayRead()`
2750: @*/
2751: PETSC_EXTERN PetscErrorCode VecHIPGetArrayRead(Vec v, const PetscScalar **a)
2752: {
2754: #if defined(PETSC_HAVE_HIP)
2755: *a = 0;
2756: VecHIPCopyToGPU(v);
2757: *a = ((Vec_HIP *)v->spptr)->GPUarray;
2758: #endif
2759: return 0;
2760: }
2762: /*@C
2763: VecHIPRestoreArrayRead - Restore a HIP device pointer previously acquired with VecHIPGetArrayRead().
2765: If the data on the host side was previously up to date it will remain
2766: so, i.e. data on both the device and the host is up to date.
2767: Accessing data on the host side e.g. with VecGetArray() does not
2768: incur a device to host data transfer.
2770: Input Parameters:
2771: + v - the vector
2772: - a - the HIP device pointer. This pointer is invalid after
2773: VecHIPRestoreArrayRead() returns.
2775: Fortran note:
2776: This function is not currently available from Fortran.
2778: Level: intermediate
2780: .seealso: `VecHIPGetArrayRead()`, `VecHIPGetArrayWrite()`, `VecHIPGetArray()`, `VecGetArray()`, `VecRestoreArray()`, `VecGetArrayRead()`
2781: @*/
2782: PETSC_EXTERN PetscErrorCode VecHIPRestoreArrayRead(Vec v, const PetscScalar **a)
2783: {
2785: *a = NULL;
2786: return 0;
2787: }
2789: /*@C
2790: VecHIPGetArrayWrite - Provides write access to the HIP buffer inside a vector.
2792: The data pointed to by the device pointer is uninitialized. The user
2793: may not read from this data. Furthermore, the entire array needs to
2794: be filled by the user to obtain well-defined behaviour. The device
2795: memory will be allocated by this function if it hasn't been allocated
2796: previously. This is analogous to intent(out) in Fortran.
2798: The device pointer needs to be released with
2799: VecHIPRestoreArrayWrite(). When the pointer is released the
2800: host data of the vector is marked as out of data. Subsequent access
2801: of the host data with e.g. VecGetArray() incurs a device to host data
2802: transfer.
2804: Input Parameter:
2805: . v - the vector
2807: Output Parameter:
2808: . a - the HIP pointer
2810: Fortran note:
2811: This function is not currently available from Fortran.
2813: Level: advanced
2815: .seealso: `VecHIPRestoreArrayWrite()`, `VecHIPGetArray()`, `VecHIPGetArrayRead()`, `VecHIPGetArrayWrite()`, `VecGetArray()`, `VecGetArrayRead()`
2816: @*/
2817: PETSC_EXTERN PetscErrorCode VecHIPGetArrayWrite(Vec v, PetscScalar **a)
2818: {
2820: #if defined(PETSC_HAVE_HIP)
2821: *a = 0;
2822: VecHIPAllocateCheck(v);
2823: *a = ((Vec_HIP *)v->spptr)->GPUarray;
2824: #endif
2825: return 0;
2826: }
2828: /*@C
2829: VecHIPRestoreArrayWrite - Restore a HIP device pointer previously acquired with VecHIPGetArrayWrite().
2831: Data on the host will be marked as out of date. Subsequent access of
2832: the data on the host side e.g. with VecGetArray() will incur a device
2833: to host data transfer.
2835: Input Parameters:
2836: + v - the vector
2837: - a - the HIP device pointer. This pointer is invalid after
2838: VecHIPRestoreArrayWrite() returns.
2840: Fortran note:
2841: This function is not currently available from Fortran.
2843: Level: intermediate
2845: .seealso: `VecHIPGetArrayWrite()`, `VecHIPGetArray()`, `VecHIPGetArrayRead()`, `VecHIPGetArrayWrite()`, `VecGetArray()`, `VecRestoreArray()`, `VecGetArrayRead()`
2846: @*/
2847: PETSC_EXTERN PetscErrorCode VecHIPRestoreArrayWrite(Vec v, PetscScalar **a)
2848: {
2850: #if defined(PETSC_HAVE_HIP)
2851: v->offloadmask = PETSC_OFFLOAD_GPU;
2852: #endif
2854: PetscObjectStateIncrease((PetscObject)v);
2855: return 0;
2856: }
2858: /*@C
2859: VecHIPPlaceArray - Allows one to replace the GPU array in a vector with a
2860: GPU array provided by the user. This is useful to avoid copying an
2861: array into a vector.
2863: Not Collective
2865: Input Parameters:
2866: + vec - the vector
2867: - array - the GPU array
2869: Notes:
2870: You can return to the original GPU array with a call to VecHIPResetArray()
2871: It is not possible to use VecHIPPlaceArray() and VecPlaceArray() at the
2872: same time on the same vector.
2874: `vec` does not take ownership of `array` in any way. The user must free `array` themselves
2875: but be careful not to do so before the vector has either been destroyed, had its original
2876: array restored with `VecHIPResetArray()` or permanently replaced with
2877: `VecHIPReplaceArray()`.
2879: Level: developer
2881: .seealso: `VecPlaceArray()`, `VecGetArray()`, `VecRestoreArray()`, `VecReplaceArray()`, `VecResetArray()`, `VecHIPResetArray()`, `VecHIPReplaceArray()`
2883: @*/
2884: PetscErrorCode VecHIPPlaceArray(Vec vin, const PetscScalar a[])
2885: {
2887: #if defined(PETSC_HAVE_HIP)
2888: VecHIPCopyToGPU(vin);
2890: ((Vec_Seq *)vin->data)->unplacedarray = (PetscScalar *)((Vec_HIP *)vin->spptr)->GPUarray; /* save previous GPU array so reset can bring it back */
2891: ((Vec_HIP *)vin->spptr)->GPUarray = (PetscScalar *)a;
2892: vin->offloadmask = PETSC_OFFLOAD_GPU;
2893: #endif
2894: PetscObjectStateIncrease((PetscObject)vin);
2895: return 0;
2896: }
2898: /*@C
2899: VecHIPReplaceArray - Allows one to replace the GPU array in a vector
2900: with a GPU array provided by the user. This is useful to avoid copying
2901: a GPU array into a vector.
2903: Not Collective
2905: Input Parameters:
2906: + vec - the vector
2907: - array - the GPU array
2909: Notes:
2910: This permanently replaces the GPU array and frees the memory associated
2911: with the old GPU array.
2913: The memory passed in CANNOT be freed by the user. It will be freed
2914: when the vector is destroyed.
2916: Not supported from Fortran
2918: Level: developer
2920: .seealso: `VecGetArray()`, `VecRestoreArray()`, `VecPlaceArray()`, `VecResetArray()`, `VecHIPResetArray()`, `VecHIPPlaceArray()`, `VecReplaceArray()`
2922: @*/
2923: PetscErrorCode VecHIPReplaceArray(Vec vin, const PetscScalar a[])
2924: {
2926: #if defined(PETSC_HAVE_HIP)
2927: hipFree(((Vec_HIP *)vin->spptr)->GPUarray);
2928: ((Vec_HIP *)vin->spptr)->GPUarray = (PetscScalar *)a;
2929: vin->offloadmask = PETSC_OFFLOAD_GPU;
2930: #endif
2931: PetscObjectStateIncrease((PetscObject)vin);
2932: return 0;
2933: }
2935: /*@C
2936: VecHIPResetArray - Resets a vector to use its default memory. Call this
2937: after the use of VecHIPPlaceArray().
2939: Not Collective
2941: Input Parameters:
2942: . vec - the vector
2944: Level: developer
2946: .seealso: `VecGetArray()`, `VecRestoreArray()`, `VecReplaceArray()`, `VecPlaceArray()`, `VecResetArray()`, `VecHIPPlaceArray()`, `VecHIPReplaceArray()`
2948: @*/
2949: PetscErrorCode VecHIPResetArray(Vec vin)
2950: {
2952: #if defined(PETSC_HAVE_HIP)
2953: VecHIPCopyToGPU(vin);
2954: ((Vec_HIP *)vin->spptr)->GPUarray = (PetscScalar *)((Vec_Seq *)vin->data)->unplacedarray;
2955: ((Vec_Seq *)vin->data)->unplacedarray = 0;
2956: vin->offloadmask = PETSC_OFFLOAD_GPU;
2957: #endif
2958: PetscObjectStateIncrease((PetscObject)vin);
2959: return 0;
2960: }
2962: /*MC
2963: VecDuplicateVecsF90 - Creates several vectors of the same type as an existing vector
2964: and makes them accessible via a Fortran90 pointer.
2966: Synopsis:
2967: VecDuplicateVecsF90(Vec x,PetscInt n,{Vec, pointer :: y(:)},integer ierr)
2969: Collective on Vec
2971: Input Parameters:
2972: + x - a vector to mimic
2973: - n - the number of vectors to obtain
2975: Output Parameters:
2976: + y - Fortran90 pointer to the array of vectors
2977: - ierr - error code
2979: Example of Usage:
2980: .vb
2981: #include <petsc/finclude/petscvec.h>
2982: use petscvec
2984: Vec x
2985: Vec, pointer :: y(:)
2986: ....
2987: call VecDuplicateVecsF90(x,2,y,ierr)
2988: call VecSet(y(2),alpha,ierr)
2989: call VecSet(y(2),alpha,ierr)
2990: ....
2991: call VecDestroyVecsF90(2,y,ierr)
2992: .ve
2994: Notes:
2995: Not yet supported for all F90 compilers
2997: Use VecDestroyVecsF90() to free the space.
2999: Level: beginner
3001: .seealso: `VecDestroyVecsF90()`, `VecDuplicateVecs()`
3003: M*/
3005: /*MC
3006: VecRestoreArrayF90 - Restores a vector to a usable state after a call to
3007: VecGetArrayF90().
3009: Synopsis:
3010: VecRestoreArrayF90(Vec x,{Scalar, pointer :: xx_v(:)},integer ierr)
3012: Logically Collective on Vec
3014: Input Parameters:
3015: + x - vector
3016: - xx_v - the Fortran90 pointer to the array
3018: Output Parameter:
3019: . ierr - error code
3021: Example of Usage:
3022: .vb
3023: #include <petsc/finclude/petscvec.h>
3024: use petscvec
3026: PetscScalar, pointer :: xx_v(:)
3027: ....
3028: call VecGetArrayF90(x,xx_v,ierr)
3029: xx_v(3) = a
3030: call VecRestoreArrayF90(x,xx_v,ierr)
3031: .ve
3033: Level: beginner
3035: .seealso: `VecGetArrayF90()`, `VecGetArray()`, `VecRestoreArray()`, `VecRestoreArrayReadF90()`
3037: M*/
3039: /*MC
3040: VecDestroyVecsF90 - Frees a block of vectors obtained with VecDuplicateVecsF90().
3042: Synopsis:
3043: VecDestroyVecsF90(PetscInt n,{Vec, pointer :: x(:)},PetscErrorCode ierr)
3045: Collective on Vec
3047: Input Parameters:
3048: + n - the number of vectors previously obtained
3049: - x - pointer to array of vector pointers
3051: Output Parameter:
3052: . ierr - error code
3054: Notes:
3055: Not yet supported for all F90 compilers
3057: Level: beginner
3059: .seealso: `VecDestroyVecs()`, `VecDuplicateVecsF90()`
3061: M*/
3063: /*MC
3064: VecGetArrayF90 - Accesses a vector array from Fortran90. For default PETSc
3065: vectors, VecGetArrayF90() returns a pointer to the local data array. Otherwise,
3066: this routine is implementation dependent. You MUST call VecRestoreArrayF90()
3067: when you no longer need access to the array.
3069: Synopsis:
3070: VecGetArrayF90(Vec x,{Scalar, pointer :: xx_v(:)},integer ierr)
3072: Logically Collective on Vec
3074: Input Parameter:
3075: . x - vector
3077: Output Parameters:
3078: + xx_v - the Fortran90 pointer to the array
3079: - ierr - error code
3081: Example of Usage:
3082: .vb
3083: #include <petsc/finclude/petscvec.h>
3084: use petscvec
3086: PetscScalar, pointer :: xx_v(:)
3087: ....
3088: call VecGetArrayF90(x,xx_v,ierr)
3089: xx_v(3) = a
3090: call VecRestoreArrayF90(x,xx_v,ierr)
3091: .ve
3093: If you ONLY intend to read entries from the array and not change any entries you should use VecGetArrayReadF90().
3095: Level: beginner
3097: .seealso: `VecRestoreArrayF90()`, `VecGetArray()`, `VecRestoreArray()`, `VecGetArrayReadF90()`
3099: M*/
3101: /*MC
3102: VecGetArrayReadF90 - Accesses a read only array from Fortran90. For default PETSc
3103: vectors, VecGetArrayF90() returns a pointer to the local data array. Otherwise,
3104: this routine is implementation dependent. You MUST call VecRestoreArrayReadF90()
3105: when you no longer need access to the array.
3107: Synopsis:
3108: VecGetArrayReadF90(Vec x,{Scalar, pointer :: xx_v(:)},integer ierr)
3110: Logically Collective on Vec
3112: Input Parameter:
3113: . x - vector
3115: Output Parameters:
3116: + xx_v - the Fortran90 pointer to the array
3117: - ierr - error code
3119: Example of Usage:
3120: .vb
3121: #include <petsc/finclude/petscvec.h>
3122: use petscvec
3124: PetscScalar, pointer :: xx_v(:)
3125: ....
3126: call VecGetArrayReadF90(x,xx_v,ierr)
3127: a = xx_v(3)
3128: call VecRestoreArrayReadF90(x,xx_v,ierr)
3129: .ve
3131: If you intend to write entries into the array you must use VecGetArrayF90().
3133: Level: beginner
3135: .seealso: `VecRestoreArrayReadF90()`, `VecGetArray()`, `VecRestoreArray()`, `VecGetArrayRead()`, `VecRestoreArrayRead()`, `VecGetArrayF90()`
3137: M*/
3139: /*MC
3140: VecRestoreArrayReadF90 - Restores a readonly vector to a usable state after a call to
3141: VecGetArrayReadF90().
3143: Synopsis:
3144: VecRestoreArrayReadF90(Vec x,{Scalar, pointer :: xx_v(:)},integer ierr)
3146: Logically Collective on Vec
3148: Input Parameters:
3149: + x - vector
3150: - xx_v - the Fortran90 pointer to the array
3152: Output Parameter:
3153: . ierr - error code
3155: Example of Usage:
3156: .vb
3157: #include <petsc/finclude/petscvec.h>
3158: use petscvec
3160: PetscScalar, pointer :: xx_v(:)
3161: ....
3162: call VecGetArrayReadF90(x,xx_v,ierr)
3163: a = xx_v(3)
3164: call VecRestoreArrayReadF90(x,xx_v,ierr)
3165: .ve
3167: Level: beginner
3169: .seealso: `VecGetArrayReadF90()`, `VecGetArray()`, `VecRestoreArray()`, `VecGetArrayRead()`, `VecRestoreArrayRead()`, `VecRestoreArrayF90()`
3171: M*/
3173: /*@C
3174: VecGetArray2d - Returns a pointer to a 2d contiguous array that contains this
3175: processor's portion of the vector data. You MUST call VecRestoreArray2d()
3176: when you no longer need access to the array.
3178: Logically Collective
3180: Input Parameters:
3181: + x - the vector
3182: . m - first dimension of two dimensional array
3183: . n - second dimension of two dimensional array
3184: . mstart - first index you will use in first coordinate direction (often 0)
3185: - nstart - first index in the second coordinate direction (often 0)
3187: Output Parameter:
3188: . a - location to put pointer to the array
3190: Level: developer
3192: Notes:
3193: For a vector obtained from DMCreateLocalVector() mstart and nstart are likely
3194: obtained from the corner indices obtained from DMDAGetGhostCorners() while for
3195: DMCreateGlobalVector() they are the corner indices from DMDAGetCorners(). In both cases
3196: the arguments from DMDAGet[Ghost]Corners() are reversed in the call to VecGetArray2d().
3198: For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.
3200: .seealso: `VecGetArray()`, `VecRestoreArray()`, `VecGetArrays()`, `VecGetArrayF90()`, `VecPlaceArray()`,
3201: `VecRestoreArray2d()`, `DMDAVecGetArray()`, `DMDAVecRestoreArray()`, `VecGetArray3d()`, `VecRestoreArray3d()`,
3202: `VecGetArray1d()`, `VecRestoreArray1d()`, `VecGetArray4d()`, `VecRestoreArray4d()`
3203: @*/
3204: PetscErrorCode VecGetArray2d(Vec x, PetscInt m, PetscInt n, PetscInt mstart, PetscInt nstart, PetscScalar **a[])
3205: {
3206: PetscInt i, N;
3207: PetscScalar *aa;
3212: VecGetLocalSize(x, &N);
3214: VecGetArray(x, &aa);
3216: PetscMalloc1(m, a);
3217: for (i = 0; i < m; i++) (*a)[i] = aa + i * n - nstart;
3218: *a -= mstart;
3219: return 0;
3220: }
3222: /*@C
3223: VecGetArray2dWrite - Returns a pointer to a 2d contiguous array that will contain this
3224: processor's portion of the vector data. You MUST call VecRestoreArray2dWrite()
3225: when you no longer need access to the array.
3227: Logically Collective
3229: Input Parameters:
3230: + x - the vector
3231: . m - first dimension of two dimensional array
3232: . n - second dimension of two dimensional array
3233: . mstart - first index you will use in first coordinate direction (often 0)
3234: - nstart - first index in the second coordinate direction (often 0)
3236: Output Parameter:
3237: . a - location to put pointer to the array
3239: Level: developer
3241: Notes:
3242: For a vector obtained from DMCreateLocalVector() mstart and nstart are likely
3243: obtained from the corner indices obtained from DMDAGetGhostCorners() while for
3244: DMCreateGlobalVector() they are the corner indices from DMDAGetCorners(). In both cases
3245: the arguments from DMDAGet[Ghost]Corners() are reversed in the call to VecGetArray2d().
3247: For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.
3249: .seealso: `VecGetArray()`, `VecRestoreArray()`, `VecGetArrays()`, `VecGetArrayF90()`, `VecPlaceArray()`,
3250: `VecRestoreArray2d()`, `DMDAVecGetArray()`, `DMDAVecRestoreArray()`, `VecGetArray3d()`, `VecRestoreArray3d()`,
3251: `VecGetArray1d()`, `VecRestoreArray1d()`, `VecGetArray4d()`, `VecRestoreArray4d()`
3252: @*/
3253: PetscErrorCode VecGetArray2dWrite(Vec x, PetscInt m, PetscInt n, PetscInt mstart, PetscInt nstart, PetscScalar **a[])
3254: {
3255: PetscInt i, N;
3256: PetscScalar *aa;
3261: VecGetLocalSize(x, &N);
3263: VecGetArrayWrite(x, &aa);
3265: PetscMalloc1(m, a);
3266: for (i = 0; i < m; i++) (*a)[i] = aa + i * n - nstart;
3267: *a -= mstart;
3268: return 0;
3269: }
3271: /*@C
3272: VecRestoreArray2d - Restores a vector after VecGetArray2d() has been called.
3274: Logically Collective
3276: Input Parameters:
3277: + x - the vector
3278: . m - first dimension of two dimensional array
3279: . n - second dimension of the two dimensional array
3280: . mstart - first index you will use in first coordinate direction (often 0)
3281: . nstart - first index in the second coordinate direction (often 0)
3282: - a - location of pointer to array obtained from VecGetArray2d()
3284: Level: developer
3286: Notes:
3287: For regular PETSc vectors this routine does not involve any copies. For
3288: any special vectors that do not store local vector data in a contiguous
3289: array, this routine will copy the data back into the underlying
3290: vector data structure from the array obtained with VecGetArray().
3292: This routine actually zeros out the a pointer.
3294: .seealso: `VecGetArray()`, `VecRestoreArray()`, `VecRestoreArrays()`, `VecRestoreArrayF90()`, `VecPlaceArray()`,
3295: `VecGetArray2d()`, `VecGetArray3d()`, `VecRestoreArray3d()`, `DMDAVecGetArray()`, `DMDAVecRestoreArray()`
3296: `VecGetArray1d()`, `VecRestoreArray1d()`, `VecGetArray4d()`, `VecRestoreArray4d()`
3297: @*/
3298: PetscErrorCode VecRestoreArray2d(Vec x, PetscInt m, PetscInt n, PetscInt mstart, PetscInt nstart, PetscScalar **a[])
3299: {
3300: void *dummy;
3305: dummy = (void *)(*a + mstart);
3306: PetscFree(dummy);
3307: VecRestoreArray(x, NULL);
3308: return 0;
3309: }
3311: /*@C
3312: VecRestoreArray2dWrite - Restores a vector after VecGetArray2dWrite() has been called.
3314: Logically Collective
3316: Input Parameters:
3317: + x - the vector
3318: . m - first dimension of two dimensional array
3319: . n - second dimension of the two dimensional array
3320: . mstart - first index you will use in first coordinate direction (often 0)
3321: . nstart - first index in the second coordinate direction (often 0)
3322: - a - location of pointer to array obtained from VecGetArray2d()
3324: Level: developer
3326: Notes:
3327: For regular PETSc vectors this routine does not involve any copies. For
3328: any special vectors that do not store local vector data in a contiguous
3329: array, this routine will copy the data back into the underlying
3330: vector data structure from the array obtained with VecGetArray().
3332: This routine actually zeros out the a pointer.
3334: .seealso: `VecGetArray()`, `VecRestoreArray()`, `VecRestoreArrays()`, `VecRestoreArrayF90()`, `VecPlaceArray()`,
3335: `VecGetArray2d()`, `VecGetArray3d()`, `VecRestoreArray3d()`, `DMDAVecGetArray()`, `DMDAVecRestoreArray()`
3336: `VecGetArray1d()`, `VecRestoreArray1d()`, `VecGetArray4d()`, `VecRestoreArray4d()`
3337: @*/
3338: PetscErrorCode VecRestoreArray2dWrite(Vec x, PetscInt m, PetscInt n, PetscInt mstart, PetscInt nstart, PetscScalar **a[])
3339: {
3340: void *dummy;
3345: dummy = (void *)(*a + mstart);
3346: PetscFree(dummy);
3347: VecRestoreArrayWrite(x, NULL);
3348: return 0;
3349: }
3351: /*@C
3352: VecGetArray1d - Returns a pointer to a 1d contiguous array that contains this
3353: processor's portion of the vector data. You MUST call VecRestoreArray1d()
3354: when you no longer need access to the array.
3356: Logically Collective
3358: Input Parameters:
3359: + x - the vector
3360: . m - first dimension of two dimensional array
3361: - mstart - first index you will use in first coordinate direction (often 0)
3363: Output Parameter:
3364: . a - location to put pointer to the array
3366: Level: developer
3368: Notes:
3369: For a vector obtained from DMCreateLocalVector() mstart are likely
3370: obtained from the corner indices obtained from DMDAGetGhostCorners() while for
3371: DMCreateGlobalVector() they are the corner indices from DMDAGetCorners().
3373: For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.
3375: .seealso: `VecGetArray()`, `VecRestoreArray()`, `VecGetArrays()`, `VecGetArrayF90()`, `VecPlaceArray()`,
3376: `VecRestoreArray2d()`, `DMDAVecGetArray()`, `DMDAVecRestoreArray()`, `VecGetArray3d()`, `VecRestoreArray3d()`,
3377: `VecGetArray2d()`, `VecRestoreArray1d()`, `VecGetArray4d()`, `VecRestoreArray4d()`
3378: @*/
3379: PetscErrorCode VecGetArray1d(Vec x, PetscInt m, PetscInt mstart, PetscScalar *a[])
3380: {
3381: PetscInt N;
3386: VecGetLocalSize(x, &N);
3388: VecGetArray(x, a);
3389: *a -= mstart;
3390: return 0;
3391: }
3393: /*@C
3394: VecGetArray1dWrite - Returns a pointer to a 1d contiguous array that will contain this
3395: processor's portion of the vector data. You MUST call VecRestoreArray1dWrite()
3396: when you no longer need access to the array.
3398: Logically Collective
3400: Input Parameters:
3401: + x - the vector
3402: . m - first dimension of two dimensional array
3403: - mstart - first index you will use in first coordinate direction (often 0)
3405: Output Parameter:
3406: . a - location to put pointer to the array
3408: Level: developer
3410: Notes:
3411: For a vector obtained from DMCreateLocalVector() mstart are likely
3412: obtained from the corner indices obtained from DMDAGetGhostCorners() while for
3413: DMCreateGlobalVector() they are the corner indices from DMDAGetCorners().
3415: For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.
3417: .seealso: `VecGetArray()`, `VecRestoreArray()`, `VecGetArrays()`, `VecGetArrayF90()`, `VecPlaceArray()`,
3418: `VecRestoreArray2d()`, `DMDAVecGetArray()`, `DMDAVecRestoreArray()`, `VecGetArray3d()`, `VecRestoreArray3d()`,
3419: `VecGetArray2d()`, `VecRestoreArray1d()`, `VecGetArray4d()`, `VecRestoreArray4d()`
3420: @*/
3421: PetscErrorCode VecGetArray1dWrite(Vec x, PetscInt m, PetscInt mstart, PetscScalar *a[])
3422: {
3423: PetscInt N;
3428: VecGetLocalSize(x, &N);
3430: VecGetArrayWrite(x, a);
3431: *a -= mstart;
3432: return 0;
3433: }
3435: /*@C
3436: VecRestoreArray1d - Restores a vector after VecGetArray1d() has been called.
3438: Logically Collective
3440: Input Parameters:
3441: + x - the vector
3442: . m - first dimension of two dimensional array
3443: . mstart - first index you will use in first coordinate direction (often 0)
3444: - a - location of pointer to array obtained from VecGetArray21()
3446: Level: developer
3448: Notes:
3449: For regular PETSc vectors this routine does not involve any copies. For
3450: any special vectors that do not store local vector data in a contiguous
3451: array, this routine will copy the data back into the underlying
3452: vector data structure from the array obtained with VecGetArray1d().
3454: This routine actually zeros out the a pointer.
3456: .seealso: `VecGetArray()`, `VecRestoreArray()`, `VecRestoreArrays()`, `VecRestoreArrayF90()`, `VecPlaceArray()`,
3457: `VecGetArray2d()`, `VecGetArray3d()`, `VecRestoreArray3d()`, `DMDAVecGetArray()`, `DMDAVecRestoreArray()`
3458: `VecGetArray1d()`, `VecRestoreArray2d()`, `VecGetArray4d()`, `VecRestoreArray4d()`
3459: @*/
3460: PetscErrorCode VecRestoreArray1d(Vec x, PetscInt m, PetscInt mstart, PetscScalar *a[])
3461: {
3464: VecRestoreArray(x, NULL);
3465: return 0;
3466: }
3468: /*@C
3469: VecRestoreArray1dWrite - Restores a vector after VecGetArray1dWrite() has been called.
3471: Logically Collective
3473: Input Parameters:
3474: + x - the vector
3475: . m - first dimension of two dimensional array
3476: . mstart - first index you will use in first coordinate direction (often 0)
3477: - a - location of pointer to array obtained from VecGetArray21()
3479: Level: developer
3481: Notes:
3482: For regular PETSc vectors this routine does not involve any copies. For
3483: any special vectors that do not store local vector data in a contiguous
3484: array, this routine will copy the data back into the underlying
3485: vector data structure from the array obtained with VecGetArray1d().
3487: This routine actually zeros out the a pointer.
3489: .seealso: `VecGetArray()`, `VecRestoreArray()`, `VecRestoreArrays()`, `VecRestoreArrayF90()`, `VecPlaceArray()`,
3490: `VecGetArray2d()`, `VecGetArray3d()`, `VecRestoreArray3d()`, `DMDAVecGetArray()`, `DMDAVecRestoreArray()`
3491: `VecGetArray1d()`, `VecRestoreArray2d()`, `VecGetArray4d()`, `VecRestoreArray4d()`
3492: @*/
3493: PetscErrorCode VecRestoreArray1dWrite(Vec x, PetscInt m, PetscInt mstart, PetscScalar *a[])
3494: {
3497: VecRestoreArrayWrite(x, NULL);
3498: return 0;
3499: }
3501: /*@C
3502: VecGetArray3d - Returns a pointer to a 3d contiguous array that contains this
3503: processor's portion of the vector data. You MUST call VecRestoreArray3d()
3504: when you no longer need access to the array.
3506: Logically Collective
3508: Input Parameters:
3509: + x - the vector
3510: . m - first dimension of three dimensional array
3511: . n - second dimension of three dimensional array
3512: . p - third dimension of three dimensional array
3513: . mstart - first index you will use in first coordinate direction (often 0)
3514: . nstart - first index in the second coordinate direction (often 0)
3515: - pstart - first index in the third coordinate direction (often 0)
3517: Output Parameter:
3518: . a - location to put pointer to the array
3520: Level: developer
3522: Notes:
3523: For a vector obtained from DMCreateLocalVector() mstart, nstart, and pstart are likely
3524: obtained from the corner indices obtained from DMDAGetGhostCorners() while for
3525: DMCreateGlobalVector() they are the corner indices from DMDAGetCorners(). In both cases
3526: the arguments from DMDAGet[Ghost]Corners() are reversed in the call to VecGetArray3d().
3528: For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.
3530: .seealso: `VecGetArray()`, `VecRestoreArray()`, `VecGetArrays()`, `VecGetArrayF90()`, `VecPlaceArray()`,
3531: `VecRestoreArray2d()`, `DMDAVecGetarray()`, `DMDAVecRestoreArray()`, `VecGetArray3d()`, `VecRestoreArray3d()`,
3532: `VecGetArray1d()`, `VecRestoreArray1d()`, `VecGetArray4d()`, `VecRestoreArray4d()`
3533: @*/
3534: PetscErrorCode VecGetArray3d(Vec x, PetscInt m, PetscInt n, PetscInt p, PetscInt mstart, PetscInt nstart, PetscInt pstart, PetscScalar ***a[])
3535: {
3536: PetscInt i, N, j;
3537: PetscScalar *aa, **b;
3542: VecGetLocalSize(x, &N);
3544: VecGetArray(x, &aa);
3546: PetscMalloc(m * sizeof(PetscScalar **) + m * n * sizeof(PetscScalar *), a);
3547: b = (PetscScalar **)((*a) + m);
3548: for (i = 0; i < m; i++) (*a)[i] = b + i * n - nstart;
3549: for (i = 0; i < m; i++)
3550: for (j = 0; j < n; j++) b[i * n + j] = aa + i * n * p + j * p - pstart;
3551: *a -= mstart;
3552: return 0;
3553: }
3555: /*@C
3556: VecGetArray3dWrite - Returns a pointer to a 3d contiguous array that will contain this
3557: processor's portion of the vector data. You MUST call VecRestoreArray3dWrite()
3558: when you no longer need access to the array.
3560: Logically Collective
3562: Input Parameters:
3563: + x - the vector
3564: . m - first dimension of three dimensional array
3565: . n - second dimension of three dimensional array
3566: . p - third dimension of three dimensional array
3567: . mstart - first index you will use in first coordinate direction (often 0)
3568: . nstart - first index in the second coordinate direction (often 0)
3569: - pstart - first index in the third coordinate direction (often 0)
3571: Output Parameter:
3572: . a - location to put pointer to the array
3574: Level: developer
3576: Notes:
3577: For a vector obtained from DMCreateLocalVector() mstart, nstart, and pstart are likely
3578: obtained from the corner indices obtained from DMDAGetGhostCorners() while for
3579: DMCreateGlobalVector() they are the corner indices from DMDAGetCorners(). In both cases
3580: the arguments from DMDAGet[Ghost]Corners() are reversed in the call to VecGetArray3d().
3582: For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.
3584: .seealso: `VecGetArray()`, `VecRestoreArray()`, `VecGetArrays()`, `VecGetArrayF90()`, `VecPlaceArray()`,
3585: `VecRestoreArray2d()`, `DMDAVecGetarray()`, `DMDAVecRestoreArray()`, `VecGetArray3d()`, `VecRestoreArray3d()`,
3586: `VecGetArray1d()`, `VecRestoreArray1d()`, `VecGetArray4d()`, `VecRestoreArray4d()`
3587: @*/
3588: PetscErrorCode VecGetArray3dWrite(Vec x, PetscInt m, PetscInt n, PetscInt p, PetscInt mstart, PetscInt nstart, PetscInt pstart, PetscScalar ***a[])
3589: {
3590: PetscInt i, N, j;
3591: PetscScalar *aa, **b;
3596: VecGetLocalSize(x, &N);
3598: VecGetArrayWrite(x, &aa);
3600: PetscMalloc(m * sizeof(PetscScalar **) + m * n * sizeof(PetscScalar *), a);
3601: b = (PetscScalar **)((*a) + m);
3602: for (i = 0; i < m; i++) (*a)[i] = b + i * n - nstart;
3603: for (i = 0; i < m; i++)
3604: for (j = 0; j < n; j++) b[i * n + j] = aa + i * n * p + j * p - pstart;
3606: *a -= mstart;
3607: return 0;
3608: }
3610: /*@C
3611: VecRestoreArray3d - Restores a vector after VecGetArray3d() has been called.
3613: Logically Collective
3615: Input Parameters:
3616: + x - the vector
3617: . m - first dimension of three dimensional array
3618: . n - second dimension of the three dimensional array
3619: . p - third dimension of the three dimensional array
3620: . mstart - first index you will use in first coordinate direction (often 0)
3621: . nstart - first index in the second coordinate direction (often 0)
3622: . pstart - first index in the third coordinate direction (often 0)
3623: - a - location of pointer to array obtained from VecGetArray3d()
3625: Level: developer
3627: Notes:
3628: For regular PETSc vectors this routine does not involve any copies. For
3629: any special vectors that do not store local vector data in a contiguous
3630: array, this routine will copy the data back into the underlying
3631: vector data structure from the array obtained with VecGetArray().
3633: This routine actually zeros out the a pointer.
3635: .seealso: `VecGetArray()`, `VecRestoreArray()`, `VecRestoreArrays()`, `VecRestoreArrayF90()`, `VecPlaceArray()`,
3636: `VecGetArray2d()`, `VecGetArray3d()`, `VecRestoreArray3d()`, `DMDAVecGetArray()`, `DMDAVecRestoreArray()`
3637: `VecGetArray1d()`, `VecRestoreArray1d()`, `VecGetArray4d()`, `VecRestoreArray4d()`, `VecGet`
3638: @*/
3639: PetscErrorCode VecRestoreArray3d(Vec x, PetscInt m, PetscInt n, PetscInt p, PetscInt mstart, PetscInt nstart, PetscInt pstart, PetscScalar ***a[])
3640: {
3641: void *dummy;
3646: dummy = (void *)(*a + mstart);
3647: PetscFree(dummy);
3648: VecRestoreArray(x, NULL);
3649: return 0;
3650: }
3652: /*@C
3653: VecRestoreArray3dWrite - Restores a vector after VecGetArray3dWrite() has been called.
3655: Logically Collective
3657: Input Parameters:
3658: + x - the vector
3659: . m - first dimension of three dimensional array
3660: . n - second dimension of the three dimensional array
3661: . p - third dimension of the three dimensional array
3662: . mstart - first index you will use in first coordinate direction (often 0)
3663: . nstart - first index in the second coordinate direction (often 0)
3664: . pstart - first index in the third coordinate direction (often 0)
3665: - a - location of pointer to array obtained from VecGetArray3d()
3667: Level: developer
3669: Notes:
3670: For regular PETSc vectors this routine does not involve any copies. For
3671: any special vectors that do not store local vector data in a contiguous
3672: array, this routine will copy the data back into the underlying
3673: vector data structure from the array obtained with VecGetArray().
3675: This routine actually zeros out the a pointer.
3677: .seealso: `VecGetArray()`, `VecRestoreArray()`, `VecRestoreArrays()`, `VecRestoreArrayF90()`, `VecPlaceArray()`,
3678: `VecGetArray2d()`, `VecGetArray3d()`, `VecRestoreArray3d()`, `DMDAVecGetArray()`, `DMDAVecRestoreArray()`
3679: `VecGetArray1d()`, `VecRestoreArray1d()`, `VecGetArray4d()`, `VecRestoreArray4d()`, `VecGet`
3680: @*/
3681: PetscErrorCode VecRestoreArray3dWrite(Vec x, PetscInt m, PetscInt n, PetscInt p, PetscInt mstart, PetscInt nstart, PetscInt pstart, PetscScalar ***a[])
3682: {
3683: void *dummy;
3688: dummy = (void *)(*a + mstart);
3689: PetscFree(dummy);
3690: VecRestoreArrayWrite(x, NULL);
3691: return 0;
3692: }
3694: /*@C
3695: VecGetArray4d - Returns a pointer to a 4d contiguous array that contains this
3696: processor's portion of the vector data. You MUST call VecRestoreArray4d()
3697: when you no longer need access to the array.
3699: Logically Collective
3701: Input Parameters:
3702: + x - the vector
3703: . m - first dimension of four dimensional array
3704: . n - second dimension of four dimensional array
3705: . p - third dimension of four dimensional array
3706: . q - fourth dimension of four dimensional array
3707: . mstart - first index you will use in first coordinate direction (often 0)
3708: . nstart - first index in the second coordinate direction (often 0)
3709: . pstart - first index in the third coordinate direction (often 0)
3710: - qstart - first index in the fourth coordinate direction (often 0)
3712: Output Parameter:
3713: . a - location to put pointer to the array
3715: Level: beginner
3717: Notes:
3718: For a vector obtained from DMCreateLocalVector() mstart, nstart, and pstart are likely
3719: obtained from the corner indices obtained from DMDAGetGhostCorners() while for
3720: DMCreateGlobalVector() they are the corner indices from DMDAGetCorners(). In both cases
3721: the arguments from DMDAGet[Ghost]Corners() are reversed in the call to VecGetArray3d().
3723: For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.
3725: .seealso: `VecGetArray()`, `VecRestoreArray()`, `VecGetArrays()`, `VecGetArrayF90()`, `VecPlaceArray()`,
3726: `VecRestoreArray2d()`, `DMDAVecGetarray()`, `DMDAVecRestoreArray()`, `VecGetArray3d()`, `VecRestoreArray3d()`,
3727: `VecGetArray1d()`, `VecRestoreArray1d()`, `VecGetArray4d()`, `VecRestoreArray4d()`
3728: @*/
3729: PetscErrorCode VecGetArray4d(Vec x, PetscInt m, PetscInt n, PetscInt p, PetscInt q, PetscInt mstart, PetscInt nstart, PetscInt pstart, PetscInt qstart, PetscScalar ****a[])
3730: {
3731: PetscInt i, N, j, k;
3732: PetscScalar *aa, ***b, **c;
3737: VecGetLocalSize(x, &N);
3739: VecGetArray(x, &aa);
3741: PetscMalloc(m * sizeof(PetscScalar ***) + m * n * sizeof(PetscScalar **) + m * n * p * sizeof(PetscScalar *), a);
3742: b = (PetscScalar ***)((*a) + m);
3743: c = (PetscScalar **)(b + m * n);
3744: for (i = 0; i < m; i++) (*a)[i] = b + i * n - nstart;
3745: for (i = 0; i < m; i++)
3746: for (j = 0; j < n; j++) b[i * n + j] = c + i * n * p + j * p - pstart;
3747: for (i = 0; i < m; i++)
3748: for (j = 0; j < n; j++)
3749: for (k = 0; k < p; k++) c[i * n * p + j * p + k] = aa + i * n * p * q + j * p * q + k * q - qstart;
3750: *a -= mstart;
3751: return 0;
3752: }
3754: /*@C
3755: VecGetArray4dWrite - Returns a pointer to a 4d contiguous array that will contain this
3756: processor's portion of the vector data. You MUST call VecRestoreArray4dWrite()
3757: when you no longer need access to the array.
3759: Logically Collective
3761: Input Parameters:
3762: + x - the vector
3763: . m - first dimension of four dimensional array
3764: . n - second dimension of four dimensional array
3765: . p - third dimension of four dimensional array
3766: . q - fourth dimension of four dimensional array
3767: . mstart - first index you will use in first coordinate direction (often 0)
3768: . nstart - first index in the second coordinate direction (often 0)
3769: . pstart - first index in the third coordinate direction (often 0)
3770: - qstart - first index in the fourth coordinate direction (often 0)
3772: Output Parameter:
3773: . a - location to put pointer to the array
3775: Level: beginner
3777: Notes:
3778: For a vector obtained from DMCreateLocalVector() mstart, nstart, and pstart are likely
3779: obtained from the corner indices obtained from DMDAGetGhostCorners() while for
3780: DMCreateGlobalVector() they are the corner indices from DMDAGetCorners(). In both cases
3781: the arguments from DMDAGet[Ghost]Corners() are reversed in the call to VecGetArray3d().
3783: For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.
3785: .seealso: `VecGetArray()`, `VecRestoreArray()`, `VecGetArrays()`, `VecGetArrayF90()`, `VecPlaceArray()`,
3786: `VecRestoreArray2d()`, `DMDAVecGetarray()`, `DMDAVecRestoreArray()`, `VecGetArray3d()`, `VecRestoreArray3d()`,
3787: `VecGetArray1d()`, `VecRestoreArray1d()`, `VecGetArray4d()`, `VecRestoreArray4d()`
3788: @*/
3789: PetscErrorCode VecGetArray4dWrite(Vec x, PetscInt m, PetscInt n, PetscInt p, PetscInt q, PetscInt mstart, PetscInt nstart, PetscInt pstart, PetscInt qstart, PetscScalar ****a[])
3790: {
3791: PetscInt i, N, j, k;
3792: PetscScalar *aa, ***b, **c;
3797: VecGetLocalSize(x, &N);
3799: VecGetArrayWrite(x, &aa);
3801: PetscMalloc(m * sizeof(PetscScalar ***) + m * n * sizeof(PetscScalar **) + m * n * p * sizeof(PetscScalar *), a);
3802: b = (PetscScalar ***)((*a) + m);
3803: c = (PetscScalar **)(b + m * n);
3804: for (i = 0; i < m; i++) (*a)[i] = b + i * n - nstart;
3805: for (i = 0; i < m; i++)
3806: for (j = 0; j < n; j++) b[i * n + j] = c + i * n * p + j * p - pstart;
3807: for (i = 0; i < m; i++)
3808: for (j = 0; j < n; j++)
3809: for (k = 0; k < p; k++) c[i * n * p + j * p + k] = aa + i * n * p * q + j * p * q + k * q - qstart;
3810: *a -= mstart;
3811: return 0;
3812: }
3814: /*@C
3815: VecRestoreArray4d - Restores a vector after VecGetArray3d() has been called.
3817: Logically Collective
3819: Input Parameters:
3820: + x - the vector
3821: . m - first dimension of four dimensional array
3822: . n - second dimension of the four dimensional array
3823: . p - third dimension of the four dimensional array
3824: . q - fourth dimension of the four dimensional array
3825: . mstart - first index you will use in first coordinate direction (often 0)
3826: . nstart - first index in the second coordinate direction (often 0)
3827: . pstart - first index in the third coordinate direction (often 0)
3828: . qstart - first index in the fourth coordinate direction (often 0)
3829: - a - location of pointer to array obtained from VecGetArray4d()
3831: Level: beginner
3833: Notes:
3834: For regular PETSc vectors this routine does not involve any copies. For
3835: any special vectors that do not store local vector data in a contiguous
3836: array, this routine will copy the data back into the underlying
3837: vector data structure from the array obtained with VecGetArray().
3839: This routine actually zeros out the a pointer.
3841: .seealso: `VecGetArray()`, `VecRestoreArray()`, `VecRestoreArrays()`, `VecRestoreArrayF90()`, `VecPlaceArray()`,
3842: `VecGetArray2d()`, `VecGetArray3d()`, `VecRestoreArray3d()`, `DMDAVecGetArray()`, `DMDAVecRestoreArray()`
3843: `VecGetArray1d()`, `VecRestoreArray1d()`, `VecGetArray4d()`, `VecRestoreArray4d()`, `VecGet`
3844: @*/
3845: PetscErrorCode VecRestoreArray4d(Vec x, PetscInt m, PetscInt n, PetscInt p, PetscInt q, PetscInt mstart, PetscInt nstart, PetscInt pstart, PetscInt qstart, PetscScalar ****a[])
3846: {
3847: void *dummy;
3852: dummy = (void *)(*a + mstart);
3853: PetscFree(dummy);
3854: VecRestoreArray(x, NULL);
3855: return 0;
3856: }
3858: /*@C
3859: VecRestoreArray4dWrite - Restores a vector after VecGetArray3dWrite() has been called.
3861: Logically Collective
3863: Input Parameters:
3864: + x - the vector
3865: . m - first dimension of four dimensional array
3866: . n - second dimension of the four dimensional array
3867: . p - third dimension of the four dimensional array
3868: . q - fourth dimension of the four dimensional array
3869: . mstart - first index you will use in first coordinate direction (often 0)
3870: . nstart - first index in the second coordinate direction (often 0)
3871: . pstart - first index in the third coordinate direction (often 0)
3872: . qstart - first index in the fourth coordinate direction (often 0)
3873: - a - location of pointer to array obtained from VecGetArray4d()
3875: Level: beginner
3877: Notes:
3878: For regular PETSc vectors this routine does not involve any copies. For
3879: any special vectors that do not store local vector data in a contiguous
3880: array, this routine will copy the data back into the underlying
3881: vector data structure from the array obtained with VecGetArray().
3883: This routine actually zeros out the a pointer.
3885: .seealso: `VecGetArray()`, `VecRestoreArray()`, `VecRestoreArrays()`, `VecRestoreArrayF90()`, `VecPlaceArray()`,
3886: `VecGetArray2d()`, `VecGetArray3d()`, `VecRestoreArray3d()`, `DMDAVecGetArray()`, `DMDAVecRestoreArray()`
3887: `VecGetArray1d()`, `VecRestoreArray1d()`, `VecGetArray4d()`, `VecRestoreArray4d()`, `VecGet`
3888: @*/
3889: PetscErrorCode VecRestoreArray4dWrite(Vec x, PetscInt m, PetscInt n, PetscInt p, PetscInt q, PetscInt mstart, PetscInt nstart, PetscInt pstart, PetscInt qstart, PetscScalar ****a[])
3890: {
3891: void *dummy;
3896: dummy = (void *)(*a + mstart);
3897: PetscFree(dummy);
3898: VecRestoreArrayWrite(x, NULL);
3899: return 0;
3900: }
3902: /*@C
3903: VecGetArray2dRead - Returns a pointer to a 2d contiguous array that contains this
3904: processor's portion of the vector data. You MUST call VecRestoreArray2dRead()
3905: when you no longer need access to the array.
3907: Logically Collective
3909: Input Parameters:
3910: + x - the vector
3911: . m - first dimension of two dimensional array
3912: . n - second dimension of two dimensional array
3913: . mstart - first index you will use in first coordinate direction (often 0)
3914: - nstart - first index in the second coordinate direction (often 0)
3916: Output Parameter:
3917: . a - location to put pointer to the array
3919: Level: developer
3921: Notes:
3922: For a vector obtained from DMCreateLocalVector() mstart and nstart are likely
3923: obtained from the corner indices obtained from DMDAGetGhostCorners() while for
3924: DMCreateGlobalVector() they are the corner indices from DMDAGetCorners(). In both cases
3925: the arguments from DMDAGet[Ghost]Corners() are reversed in the call to VecGetArray2d().
3927: For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.
3929: .seealso: `VecGetArray()`, `VecRestoreArray()`, `VecGetArrays()`, `VecGetArrayF90()`, `VecPlaceArray()`,
3930: `VecRestoreArray2d()`, `DMDAVecGetArray()`, `DMDAVecRestoreArray()`, `VecGetArray3d()`, `VecRestoreArray3d()`,
3931: `VecGetArray1d()`, `VecRestoreArray1d()`, `VecGetArray4d()`, `VecRestoreArray4d()`
3932: @*/
3933: PetscErrorCode VecGetArray2dRead(Vec x, PetscInt m, PetscInt n, PetscInt mstart, PetscInt nstart, PetscScalar **a[])
3934: {
3935: PetscInt i, N;
3936: const PetscScalar *aa;
3941: VecGetLocalSize(x, &N);
3943: VecGetArrayRead(x, &aa);
3945: PetscMalloc1(m, a);
3946: for (i = 0; i < m; i++) (*a)[i] = (PetscScalar *)aa + i * n - nstart;
3947: *a -= mstart;
3948: return 0;
3949: }
3951: /*@C
3952: VecRestoreArray2dRead - Restores a vector after VecGetArray2dRead() has been called.
3954: Logically Collective
3956: Input Parameters:
3957: + x - the vector
3958: . m - first dimension of two dimensional array
3959: . n - second dimension of the two dimensional array
3960: . mstart - first index you will use in first coordinate direction (often 0)
3961: . nstart - first index in the second coordinate direction (often 0)
3962: - a - location of pointer to array obtained from VecGetArray2d()
3964: Level: developer
3966: Notes:
3967: For regular PETSc vectors this routine does not involve any copies. For
3968: any special vectors that do not store local vector data in a contiguous
3969: array, this routine will copy the data back into the underlying
3970: vector data structure from the array obtained with VecGetArray().
3972: This routine actually zeros out the a pointer.
3974: .seealso: `VecGetArray()`, `VecRestoreArray()`, `VecRestoreArrays()`, `VecRestoreArrayF90()`, `VecPlaceArray()`,
3975: `VecGetArray2d()`, `VecGetArray3d()`, `VecRestoreArray3d()`, `DMDAVecGetArray()`, `DMDAVecRestoreArray()`
3976: `VecGetArray1d()`, `VecRestoreArray1d()`, `VecGetArray4d()`, `VecRestoreArray4d()`
3977: @*/
3978: PetscErrorCode VecRestoreArray2dRead(Vec x, PetscInt m, PetscInt n, PetscInt mstart, PetscInt nstart, PetscScalar **a[])
3979: {
3980: void *dummy;
3985: dummy = (void *)(*a + mstart);
3986: PetscFree(dummy);
3987: VecRestoreArrayRead(x, NULL);
3988: return 0;
3989: }
3991: /*@C
3992: VecGetArray1dRead - Returns a pointer to a 1d contiguous array that contains this
3993: processor's portion of the vector data. You MUST call VecRestoreArray1dRead()
3994: when you no longer need access to the array.
3996: Logically Collective
3998: Input Parameters:
3999: + x - the vector
4000: . m - first dimension of two dimensional array
4001: - mstart - first index you will use in first coordinate direction (often 0)
4003: Output Parameter:
4004: . a - location to put pointer to the array
4006: Level: developer
4008: Notes:
4009: For a vector obtained from DMCreateLocalVector() mstart are likely
4010: obtained from the corner indices obtained from DMDAGetGhostCorners() while for
4011: DMCreateGlobalVector() they are the corner indices from DMDAGetCorners().
4013: For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.
4015: .seealso: `VecGetArray()`, `VecRestoreArray()`, `VecGetArrays()`, `VecGetArrayF90()`, `VecPlaceArray()`,
4016: `VecRestoreArray2d()`, `DMDAVecGetArray()`, `DMDAVecRestoreArray()`, `VecGetArray3d()`, `VecRestoreArray3d()`,
4017: `VecGetArray2d()`, `VecRestoreArray1d()`, `VecGetArray4d()`, `VecRestoreArray4d()`
4018: @*/
4019: PetscErrorCode VecGetArray1dRead(Vec x, PetscInt m, PetscInt mstart, PetscScalar *a[])
4020: {
4021: PetscInt N;
4026: VecGetLocalSize(x, &N);
4028: VecGetArrayRead(x, (const PetscScalar **)a);
4029: *a -= mstart;
4030: return 0;
4031: }
4033: /*@C
4034: VecRestoreArray1dRead - Restores a vector after VecGetArray1dRead() has been called.
4036: Logically Collective
4038: Input Parameters:
4039: + x - the vector
4040: . m - first dimension of two dimensional array
4041: . mstart - first index you will use in first coordinate direction (often 0)
4042: - a - location of pointer to array obtained from VecGetArray21()
4044: Level: developer
4046: Notes:
4047: For regular PETSc vectors this routine does not involve any copies. For
4048: any special vectors that do not store local vector data in a contiguous
4049: array, this routine will copy the data back into the underlying
4050: vector data structure from the array obtained with VecGetArray1dRead().
4052: This routine actually zeros out the a pointer.
4054: .seealso: `VecGetArray()`, `VecRestoreArray()`, `VecRestoreArrays()`, `VecRestoreArrayF90()`, `VecPlaceArray()`,
4055: `VecGetArray2d()`, `VecGetArray3d()`, `VecRestoreArray3d()`, `DMDAVecGetArray()`, `DMDAVecRestoreArray()`
4056: `VecGetArray1d()`, `VecRestoreArray2d()`, `VecGetArray4d()`, `VecRestoreArray4d()`
4057: @*/
4058: PetscErrorCode VecRestoreArray1dRead(Vec x, PetscInt m, PetscInt mstart, PetscScalar *a[])
4059: {
4062: VecRestoreArrayRead(x, NULL);
4063: return 0;
4064: }
4066: /*@C
4067: VecGetArray3dRead - Returns a pointer to a 3d contiguous array that contains this
4068: processor's portion of the vector data. You MUST call VecRestoreArray3dRead()
4069: when you no longer need access to the array.
4071: Logically Collective
4073: Input Parameters:
4074: + x - the vector
4075: . m - first dimension of three dimensional array
4076: . n - second dimension of three dimensional array
4077: . p - third dimension of three dimensional array
4078: . mstart - first index you will use in first coordinate direction (often 0)
4079: . nstart - first index in the second coordinate direction (often 0)
4080: - pstart - first index in the third coordinate direction (often 0)
4082: Output Parameter:
4083: . a - location to put pointer to the array
4085: Level: developer
4087: Notes:
4088: For a vector obtained from DMCreateLocalVector() mstart, nstart, and pstart are likely
4089: obtained from the corner indices obtained from DMDAGetGhostCorners() while for
4090: DMCreateGlobalVector() they are the corner indices from DMDAGetCorners(). In both cases
4091: the arguments from DMDAGet[Ghost]Corners() are reversed in the call to VecGetArray3dRead().
4093: For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.
4095: .seealso: `VecGetArray()`, `VecRestoreArray()`, `VecGetArrays()`, `VecGetArrayF90()`, `VecPlaceArray()`,
4096: `VecRestoreArray2d()`, `DMDAVecGetarray()`, `DMDAVecRestoreArray()`, `VecGetArray3d()`, `VecRestoreArray3d()`,
4097: `VecGetArray1d()`, `VecRestoreArray1d()`, `VecGetArray4d()`, `VecRestoreArray4d()`
4098: @*/
4099: PetscErrorCode VecGetArray3dRead(Vec x, PetscInt m, PetscInt n, PetscInt p, PetscInt mstart, PetscInt nstart, PetscInt pstart, PetscScalar ***a[])
4100: {
4101: PetscInt i, N, j;
4102: const PetscScalar *aa;
4103: PetscScalar **b;
4108: VecGetLocalSize(x, &N);
4110: VecGetArrayRead(x, &aa);
4112: PetscMalloc(m * sizeof(PetscScalar **) + m * n * sizeof(PetscScalar *), a);
4113: b = (PetscScalar **)((*a) + m);
4114: for (i = 0; i < m; i++) (*a)[i] = b + i * n - nstart;
4115: for (i = 0; i < m; i++)
4116: for (j = 0; j < n; j++) b[i * n + j] = (PetscScalar *)aa + i * n * p + j * p - pstart;
4117: *a -= mstart;
4118: return 0;
4119: }
4121: /*@C
4122: VecRestoreArray3dRead - Restores a vector after VecGetArray3dRead() has been called.
4124: Logically Collective
4126: Input Parameters:
4127: + x - the vector
4128: . m - first dimension of three dimensional array
4129: . n - second dimension of the three dimensional array
4130: . p - third dimension of the three dimensional array
4131: . mstart - first index you will use in first coordinate direction (often 0)
4132: . nstart - first index in the second coordinate direction (often 0)
4133: . pstart - first index in the third coordinate direction (often 0)
4134: - a - location of pointer to array obtained from VecGetArray3dRead()
4136: Level: developer
4138: Notes:
4139: For regular PETSc vectors this routine does not involve any copies. For
4140: any special vectors that do not store local vector data in a contiguous
4141: array, this routine will copy the data back into the underlying
4142: vector data structure from the array obtained with VecGetArray().
4144: This routine actually zeros out the a pointer.
4146: .seealso: `VecGetArray()`, `VecRestoreArray()`, `VecRestoreArrays()`, `VecRestoreArrayF90()`, `VecPlaceArray()`,
4147: `VecGetArray2d()`, `VecGetArray3d()`, `VecRestoreArray3d()`, `DMDAVecGetArray()`, `DMDAVecRestoreArray()`
4148: `VecGetArray1d()`, `VecRestoreArray1d()`, `VecGetArray4d()`, `VecRestoreArray4d()`, `VecGet`
4149: @*/
4150: PetscErrorCode VecRestoreArray3dRead(Vec x, PetscInt m, PetscInt n, PetscInt p, PetscInt mstart, PetscInt nstart, PetscInt pstart, PetscScalar ***a[])
4151: {
4152: void *dummy;
4157: dummy = (void *)(*a + mstart);
4158: PetscFree(dummy);
4159: VecRestoreArrayRead(x, NULL);
4160: return 0;
4161: }
4163: /*@C
4164: VecGetArray4dRead - Returns a pointer to a 4d contiguous array that contains this
4165: processor's portion of the vector data. You MUST call VecRestoreArray4dRead()
4166: when you no longer need access to the array.
4168: Logically Collective
4170: Input Parameters:
4171: + x - the vector
4172: . m - first dimension of four dimensional array
4173: . n - second dimension of four dimensional array
4174: . p - third dimension of four dimensional array
4175: . q - fourth dimension of four dimensional array
4176: . mstart - first index you will use in first coordinate direction (often 0)
4177: . nstart - first index in the second coordinate direction (often 0)
4178: . pstart - first index in the third coordinate direction (often 0)
4179: - qstart - first index in the fourth coordinate direction (often 0)
4181: Output Parameter:
4182: . a - location to put pointer to the array
4184: Level: beginner
4186: Notes:
4187: For a vector obtained from DMCreateLocalVector() mstart, nstart, and pstart are likely
4188: obtained from the corner indices obtained from DMDAGetGhostCorners() while for
4189: DMCreateGlobalVector() they are the corner indices from DMDAGetCorners(). In both cases
4190: the arguments from DMDAGet[Ghost]Corners() are reversed in the call to VecGetArray3d().
4192: For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.
4194: .seealso: `VecGetArray()`, `VecRestoreArray()`, `VecGetArrays()`, `VecGetArrayF90()`, `VecPlaceArray()`,
4195: `VecRestoreArray2d()`, `DMDAVecGetarray()`, `DMDAVecRestoreArray()`, `VecGetArray3d()`, `VecRestoreArray3d()`,
4196: `VecGetArray1d()`, `VecRestoreArray1d()`, `VecGetArray4d()`, `VecRestoreArray4d()`
4197: @*/
4198: PetscErrorCode VecGetArray4dRead(Vec x, PetscInt m, PetscInt n, PetscInt p, PetscInt q, PetscInt mstart, PetscInt nstart, PetscInt pstart, PetscInt qstart, PetscScalar ****a[])
4199: {
4200: PetscInt i, N, j, k;
4201: const PetscScalar *aa;
4202: PetscScalar ***b, **c;
4207: VecGetLocalSize(x, &N);
4209: VecGetArrayRead(x, &aa);
4211: PetscMalloc(m * sizeof(PetscScalar ***) + m * n * sizeof(PetscScalar **) + m * n * p * sizeof(PetscScalar *), a);
4212: b = (PetscScalar ***)((*a) + m);
4213: c = (PetscScalar **)(b + m * n);
4214: for (i = 0; i < m; i++) (*a)[i] = b + i * n - nstart;
4215: for (i = 0; i < m; i++)
4216: for (j = 0; j < n; j++) b[i * n + j] = c + i * n * p + j * p - pstart;
4217: for (i = 0; i < m; i++)
4218: for (j = 0; j < n; j++)
4219: for (k = 0; k < p; k++) c[i * n * p + j * p + k] = (PetscScalar *)aa + i * n * p * q + j * p * q + k * q - qstart;
4220: *a -= mstart;
4221: return 0;
4222: }
4224: /*@C
4225: VecRestoreArray4dRead - Restores a vector after VecGetArray3d() has been called.
4227: Logically Collective
4229: Input Parameters:
4230: + x - the vector
4231: . m - first dimension of four dimensional array
4232: . n - second dimension of the four dimensional array
4233: . p - third dimension of the four dimensional array
4234: . q - fourth dimension of the four dimensional array
4235: . mstart - first index you will use in first coordinate direction (often 0)
4236: . nstart - first index in the second coordinate direction (often 0)
4237: . pstart - first index in the third coordinate direction (often 0)
4238: . qstart - first index in the fourth coordinate direction (often 0)
4239: - a - location of pointer to array obtained from VecGetArray4dRead()
4241: Level: beginner
4243: Notes:
4244: For regular PETSc vectors this routine does not involve any copies. For
4245: any special vectors that do not store local vector data in a contiguous
4246: array, this routine will copy the data back into the underlying
4247: vector data structure from the array obtained with VecGetArray().
4249: This routine actually zeros out the a pointer.
4251: .seealso: `VecGetArray()`, `VecRestoreArray()`, `VecRestoreArrays()`, `VecRestoreArrayF90()`, `VecPlaceArray()`,
4252: `VecGetArray2d()`, `VecGetArray3d()`, `VecRestoreArray3d()`, `DMDAVecGetArray()`, `DMDAVecRestoreArray()`
4253: `VecGetArray1d()`, `VecRestoreArray1d()`, `VecGetArray4d()`, `VecRestoreArray4d()`, `VecGet`
4254: @*/
4255: PetscErrorCode VecRestoreArray4dRead(Vec x, PetscInt m, PetscInt n, PetscInt p, PetscInt q, PetscInt mstart, PetscInt nstart, PetscInt pstart, PetscInt qstart, PetscScalar ****a[])
4256: {
4257: void *dummy;
4262: dummy = (void *)(*a + mstart);
4263: PetscFree(dummy);
4264: VecRestoreArrayRead(x, NULL);
4265: return 0;
4266: }
4268: #if defined(PETSC_USE_DEBUG)
4270: /*@
4271: VecLockGet - Gets the current lock status of a vector
4273: Logically Collective on Vec
4275: Input Parameter:
4276: . x - the vector
4278: Output Parameter:
4279: . state - greater than zero indicates the vector is locked for read; less then zero indicates the vector is
4280: locked for write; equal to zero means the vector is unlocked, that is, it is free to read or write.
4282: Level: beginner
4284: .seealso: `VecRestoreArray()`, `VecGetArrayRead()`, `VecLockReadPush()`, `VecLockReadPop()`
4285: @*/
4286: PetscErrorCode VecLockGet(Vec x, PetscInt *state)
4287: {
4289: *state = x->lock;
4290: return 0;
4291: }
4293: PetscErrorCode VecLockGetLocation(Vec x, const char *file[], const char *func[], int *line)
4294: {
4299: {
4300: const int index = x->lockstack.currentsize - 1;
4303: *file = x->lockstack.file[index];
4304: *func = x->lockstack.function[index];
4305: *line = x->lockstack.line[index];
4306: }
4307: return 0;
4308: }
4310: /*@
4311: VecLockReadPush - Pushes a read-only lock on a vector to prevent it from writing
4313: Logically Collective on Vec
4315: Input Parameter:
4316: . x - the vector
4318: Notes:
4319: If this is set then calls to VecGetArray() or VecSetValues() or any other routines that change the vectors values will fail.
4321: The call can be nested, i.e., called multiple times on the same vector, but each VecLockReadPush(x) has to have one matching
4322: VecLockReadPop(x), which removes the latest read-only lock.
4324: Level: beginner
4326: .seealso: `VecRestoreArray()`, `VecGetArrayRead()`, `VecLockReadPop()`, `VecLockGet()`
4327: @*/
4328: PetscErrorCode VecLockReadPush(Vec x)
4329: {
4330: const char *file, *func;
4331: int index, line;
4335: if ((index = petscstack.currentsize - 2) == -1) {
4336: // vec was locked "outside" of petsc, either in user-land or main. the error message will
4337: // now show this function as the culprit, but it will include the stacktrace
4338: file = "unknown user-file";
4339: func = "unknown_user_function";
4340: line = 0;
4341: } else {
4343: file = petscstack.file[index];
4344: func = petscstack.function[index];
4345: line = petscstack.line[index];
4346: }
4347: PetscStackPush_Private(x->lockstack, file, func, line, petscstack.petscroutine[index], PETSC_FALSE);
4348: return 0;
4349: }
4351: /*@
4352: VecLockReadPop - Pops a read-only lock from a vector
4354: Logically Collective on Vec
4356: Input Parameter:
4357: . x - the vector
4359: Level: beginner
4361: .seealso: `VecRestoreArray()`, `VecGetArrayRead()`, `VecLockReadPush()`, `VecLockGet()`
4362: @*/
4363: PetscErrorCode VecLockReadPop(Vec x)
4364: {
4367: {
4368: const char *previous = x->lockstack.function[x->lockstack.currentsize - 1];
4370: PetscStackPop_Private(x->lockstack, previous);
4371: }
4372: return 0;
4373: }
4375: /*@C
4376: VecLockWriteSet - Lock or unlock a vector for exclusive read/write access
4378: Logically Collective on Vec
4380: Input Parameters:
4381: + x - the vector
4382: - flg - PETSC_TRUE to lock the vector for exclusive read/write access; PETSC_FALSE to unlock it.
4384: Notes:
4385: The function is usefull in split-phase computations, which usually have a begin phase and an end phase.
4386: One can call VecLockWriteSet(x,PETSC_TRUE) in the begin phase to lock a vector for exclusive
4387: access, and call VecLockWriteSet(x,PETSC_FALSE) in the end phase to unlock the vector from exclusive
4388: access. In this way, one is ensured no other operations can access the vector in between. The code may like
4390: VecGetArray(x,&xdata); // begin phase
4391: VecLockWriteSet(v,PETSC_TRUE);
4393: Other operations, which can not acceess x anymore (they can access xdata, of course)
4395: VecRestoreArray(x,&vdata); // end phase
4396: VecLockWriteSet(v,PETSC_FALSE);
4398: The call can not be nested on the same vector, in other words, one can not call VecLockWriteSet(x,PETSC_TRUE)
4399: again before calling VecLockWriteSet(v,PETSC_FALSE).
4401: Level: beginner
4403: .seealso: `VecRestoreArray()`, `VecGetArrayRead()`, `VecLockReadPush()`, `VecLockReadPop()`, `VecLockGet()`
4404: @*/
4405: PetscErrorCode VecLockWriteSet(Vec x, PetscBool flg)
4406: {
4408: if (flg) {
4411: x->lock = -1;
4412: } else {
4414: x->lock = 0;
4415: }
4416: return 0;
4417: }
4419: /*@
4420: VecLockPush - Pushes a read-only lock on a vector to prevent it from writing
4422: Level: deprecated
4424: .seealso: `VecLockReadPush()`
4425: @*/
4426: PetscErrorCode VecLockPush(Vec x)
4427: {
4428: VecLockReadPush(x);
4429: return 0;
4430: }
4432: /*@
4433: VecLockPop - Pops a read-only lock from a vector
4435: Level: deprecated
4437: .seealso: `VecLockReadPop()`
4438: @*/
4439: PetscErrorCode VecLockPop(Vec x)
4440: {
4441: VecLockReadPop(x);
4442: return 0;
4443: }
4445: #endif