Point Cloud Library (PCL) 1.13.0
Loading...
Searching...
No Matches
sac_model_cylinder.hpp
1/*
2 * Software License Agreement (BSD License)
3 *
4 * Point Cloud Library (PCL) - www.pointclouds.org
5 * Copyright (c) 2009-2010, Willow Garage, Inc.
6 * Copyright (c) 2012-, Open Perception, Inc.
7 *
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 *
14 * * Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * * Redistributions in binary form must reproduce the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer in the documentation and/or other materials provided
19 * with the distribution.
20 * * Neither the name of the copyright holder(s) nor the names of its
21 * contributors may be used to endorse or promote products derived
22 * from this software without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
27 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
28 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
29 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
30 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
31 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
32 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
34 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35 * POSSIBILITY OF SUCH DAMAGE.
36 *
37 * $Id$
38 *
39 */
40
41#ifndef PCL_SAMPLE_CONSENSUS_IMPL_SAC_MODEL_CYLINDER_H_
42#define PCL_SAMPLE_CONSENSUS_IMPL_SAC_MODEL_CYLINDER_H_
43
44#include <unsupported/Eigen/NonLinearOptimization> // for LevenbergMarquardt
45#include <pcl/sample_consensus/sac_model_cylinder.h>
46#include <pcl/common/common.h> // for getAngle3D
47#include <pcl/common/concatenate.h>
48
49//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
50template <typename PointT, typename PointNT> bool
52{
53 if (samples.size () != sample_size_)
54 {
55 PCL_ERROR ("[pcl::SampleConsensusModelCylinder::isSampleGood] Wrong number of samples (is %lu, should be %lu)!\n", samples.size (), sample_size_);
56 return (false);
57 }
58
59 // Make sure that the two sample points are not identical
60 if (
61 std::abs ((*input_)[samples[0]].x - (*input_)[samples[1]].x) <= std::numeric_limits<float>::epsilon ()
62 &&
63 std::abs ((*input_)[samples[0]].y - (*input_)[samples[1]].y) <= std::numeric_limits<float>::epsilon ()
64 &&
65 std::abs ((*input_)[samples[0]].z - (*input_)[samples[1]].z) <= std::numeric_limits<float>::epsilon ())
66 {
67 PCL_ERROR ("[pcl::SampleConsensusModelCylinder::isSampleGood] The two sample points are (almost) identical!\n");
68 return (false);
69 }
70
71 return (true);
72}
73
74//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
75template <typename PointT, typename PointNT> bool
77 const Indices &samples, Eigen::VectorXf &model_coefficients) const
78{
79 // Make sure that the samples are valid
80 if (!isSampleGood (samples))
81 {
82 PCL_ERROR ("[pcl::SampleConsensusModelCylinder::computeModelCoefficients] Invalid set of samples given!\n");
83 return (false);
84 }
85
86 if (!normals_)
87 {
88 PCL_ERROR ("[pcl::SampleConsensusModelCylinder::computeModelCoefficients] No input dataset containing normals was given!\n");
89 return (false);
90 }
91
92 Eigen::Vector4f p1 ((*input_)[samples[0]].x, (*input_)[samples[0]].y, (*input_)[samples[0]].z, 0.0f);
93 Eigen::Vector4f p2 ((*input_)[samples[1]].x, (*input_)[samples[1]].y, (*input_)[samples[1]].z, 0.0f);
94
95 Eigen::Vector4f n1 ((*normals_)[samples[0]].normal[0], (*normals_)[samples[0]].normal[1], (*normals_)[samples[0]].normal[2], 0.0f);
96 Eigen::Vector4f n2 ((*normals_)[samples[1]].normal[0], (*normals_)[samples[1]].normal[1], (*normals_)[samples[1]].normal[2], 0.0f);
97 Eigen::Vector4f w = n1 + p1 - p2;
98
99 float a = n1.dot (n1);
100 float b = n1.dot (n2);
101 float c = n2.dot (n2);
102 float d = n1.dot (w);
103 float e = n2.dot (w);
104 float denominator = a*c - b*b;
105 float sc, tc;
106 // Compute the line parameters of the two closest points
107 if (denominator < 1e-8) // The lines are almost parallel
108 {
109 sc = 0.0f;
110 tc = (b > c ? d / b : e / c); // Use the largest denominator
111 }
112 else
113 {
114 sc = (b*e - c*d) / denominator;
115 tc = (a*e - b*d) / denominator;
116 }
117
118 // point_on_axis, axis_direction
119 Eigen::Vector4f line_pt = p1 + n1 + sc * n1;
120 Eigen::Vector4f line_dir = p2 + tc * n2 - line_pt;
121 line_dir.normalize ();
122
123 model_coefficients.resize (model_size_);
124 // model_coefficients.template head<3> () = line_pt.template head<3> ();
125 model_coefficients[0] = line_pt[0];
126 model_coefficients[1] = line_pt[1];
127 model_coefficients[2] = line_pt[2];
128 // model_coefficients.template segment<3> (3) = line_dir.template head<3> ();
129 model_coefficients[3] = line_dir[0];
130 model_coefficients[4] = line_dir[1];
131 model_coefficients[5] = line_dir[2];
132 // cylinder radius
133 model_coefficients[6] = static_cast<float> (sqrt (pcl::sqrPointToLineDistance (p1, line_pt, line_dir)));
134
135 if (model_coefficients[6] > radius_max_ || model_coefficients[6] < radius_min_)
136 return (false);
137
138 PCL_DEBUG ("[pcl::SampleConsensusModelCylinder::computeModelCoefficients] Model is (%g,%g,%g,%g,%g,%g,%g).\n",
139 model_coefficients[0], model_coefficients[1], model_coefficients[2], model_coefficients[3],
140 model_coefficients[4], model_coefficients[5], model_coefficients[6]);
141 return (true);
142}
143
144//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
145template <typename PointT, typename PointNT> void
147 const Eigen::VectorXf &model_coefficients, std::vector<double> &distances) const
148{
149 // Check if the model is valid given the user constraints
150 if (!isModelValid (model_coefficients))
151 {
152 distances.clear ();
153 return;
154 }
155
156 distances.resize (indices_->size ());
157
158 Eigen::Vector4f line_pt (model_coefficients[0], model_coefficients[1], model_coefficients[2], 0.0f);
159 Eigen::Vector4f line_dir (model_coefficients[3], model_coefficients[4], model_coefficients[5], 0.0f);
160 float ptdotdir = line_pt.dot (line_dir);
161 float dirdotdir = 1.0f / line_dir.dot (line_dir);
162 // Iterate through the 3d points and calculate the distances from them to the sphere
163 for (std::size_t i = 0; i < indices_->size (); ++i)
164 {
165 // Approximate the distance from the point to the cylinder as the difference between
166 // dist(point,cylinder_axis) and cylinder radius
167 // @note need to revise this.
168 Eigen::Vector4f pt ((*input_)[(*indices_)[i]].x, (*input_)[(*indices_)[i]].y, (*input_)[(*indices_)[i]].z, 0.0f);
169
170 const double weighted_euclid_dist = (1.0 - normal_distance_weight_) * std::abs (pointToLineDistance (pt, model_coefficients) - model_coefficients[6]);
172 // Calculate the point's projection on the cylinder axis
173 float k = (pt.dot (line_dir) - ptdotdir) * dirdotdir;
174 Eigen::Vector4f pt_proj = line_pt + k * line_dir;
175 Eigen::Vector4f dir = pt - pt_proj;
176 dir.normalize ();
177
178 // Calculate the angular distance between the point normal and the (dir=pt_proj->pt) vector
179 Eigen::Vector4f n ((*normals_)[(*indices_)[i]].normal[0], (*normals_)[(*indices_)[i]].normal[1], (*normals_)[(*indices_)[i]].normal[2], 0.0f);
180 double d_normal = std::abs (getAngle3D (n, dir));
181 d_normal = (std::min) (d_normal, M_PI - d_normal);
182
183 distances[i] = std::abs (normal_distance_weight_ * d_normal + weighted_euclid_dist);
184 }
185}
186
187//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
188template <typename PointT, typename PointNT> void
190 const Eigen::VectorXf &model_coefficients, const double threshold, Indices &inliers)
191{
192 // Check if the model is valid given the user constraints
193 if (!isModelValid (model_coefficients))
194 {
195 inliers.clear ();
196 return;
197 }
198
199 inliers.clear ();
200 error_sqr_dists_.clear ();
201 inliers.reserve (indices_->size ());
202 error_sqr_dists_.reserve (indices_->size ());
203
204 Eigen::Vector4f line_pt (model_coefficients[0], model_coefficients[1], model_coefficients[2], 0.0f);
205 Eigen::Vector4f line_dir (model_coefficients[3], model_coefficients[4], model_coefficients[5], 0.0f);
206 float ptdotdir = line_pt.dot (line_dir);
207 float dirdotdir = 1.0f / line_dir.dot (line_dir);
208 // Iterate through the 3d points and calculate the distances from them to the sphere
209 for (std::size_t i = 0; i < indices_->size (); ++i)
210 {
211 // Approximate the distance from the point to the cylinder as the difference between
212 // dist(point,cylinder_axis) and cylinder radius
213 Eigen::Vector4f pt ((*input_)[(*indices_)[i]].x, (*input_)[(*indices_)[i]].y, (*input_)[(*indices_)[i]].z, 0.0f);
214 const double weighted_euclid_dist = (1.0 - normal_distance_weight_) * std::abs (pointToLineDistance (pt, model_coefficients) - model_coefficients[6]);
215 if (weighted_euclid_dist > threshold) // Early termination: cannot be an inlier
216 continue;
217
218 // Calculate the point's projection on the cylinder axis
219 float k = (pt.dot (line_dir) - ptdotdir) * dirdotdir;
220 Eigen::Vector4f pt_proj = line_pt + k * line_dir;
221 Eigen::Vector4f dir = pt - pt_proj;
222 dir.normalize ();
223
224 // Calculate the angular distance between the point normal and the (dir=pt_proj->pt) vector
225 Eigen::Vector4f n ((*normals_)[(*indices_)[i]].normal[0], (*normals_)[(*indices_)[i]].normal[1], (*normals_)[(*indices_)[i]].normal[2], 0.0f);
226 double d_normal = std::abs (getAngle3D (n, dir));
227 d_normal = (std::min) (d_normal, M_PI - d_normal);
228
229 double distance = std::abs (normal_distance_weight_ * d_normal + weighted_euclid_dist);
230 if (distance < threshold)
231 {
232 // Returns the indices of the points whose distances are smaller than the threshold
233 inliers.push_back ((*indices_)[i]);
234 error_sqr_dists_.push_back (distance);
235 }
236 }
237}
238
239//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
240template <typename PointT, typename PointNT> std::size_t
242 const Eigen::VectorXf &model_coefficients, const double threshold) const
243{
244 // Check if the model is valid given the user constraints
245 if (!isModelValid (model_coefficients))
246 return (0);
247
248 std::size_t nr_p = 0;
250 Eigen::Vector4f line_pt (model_coefficients[0], model_coefficients[1], model_coefficients[2], 0);
251 Eigen::Vector4f line_dir (model_coefficients[3], model_coefficients[4], model_coefficients[5], 0);
252 float ptdotdir = line_pt.dot (line_dir);
253 float dirdotdir = 1.0f / line_dir.dot (line_dir);
254 // Iterate through the 3d points and calculate the distances from them to the sphere
255 for (std::size_t i = 0; i < indices_->size (); ++i)
256 {
257 // Approximate the distance from the point to the cylinder as the difference between
258 // dist(point,cylinder_axis) and cylinder radius
259 Eigen::Vector4f pt ((*input_)[(*indices_)[i]].x, (*input_)[(*indices_)[i]].y, (*input_)[(*indices_)[i]].z, 0.0f);
260 const double weighted_euclid_dist = (1.0 - normal_distance_weight_) * std::abs (pointToLineDistance (pt, model_coefficients) - model_coefficients[6]);
261 if (weighted_euclid_dist > threshold) // Early termination: cannot be an inlier
262 continue;
263
264 // Calculate the point's projection on the cylinder axis
265 float k = (pt.dot (line_dir) - ptdotdir) * dirdotdir;
266 Eigen::Vector4f pt_proj = line_pt + k * line_dir;
267 Eigen::Vector4f dir = pt - pt_proj;
268 dir.normalize ();
269
270 // Calculate the angular distance between the point normal and the (dir=pt_proj->pt) vector
271 Eigen::Vector4f n ((*normals_)[(*indices_)[i]].normal[0], (*normals_)[(*indices_)[i]].normal[1], (*normals_)[(*indices_)[i]].normal[2], 0.0f);
272 double d_normal = std::abs (getAngle3D (n, dir));
273 d_normal = (std::min) (d_normal, M_PI - d_normal);
274
275 if (std::abs (normal_distance_weight_ * d_normal + weighted_euclid_dist) < threshold)
276 nr_p++;
277 }
278 return (nr_p);
279}
280
281//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
282template <typename PointT, typename PointNT> void
284 const Indices &inliers, const Eigen::VectorXf &model_coefficients, Eigen::VectorXf &optimized_coefficients) const
285{
286 optimized_coefficients = model_coefficients;
287
288 // Needs a set of valid model coefficients
289 if (!isModelValid (model_coefficients))
291 PCL_ERROR ("[pcl::SampleConsensusModelCylinder::optimizeModelCoefficients] Given model is invalid!\n");
292 return;
293 }
294
295 // Need more than the minimum sample size to make a difference
296 if (inliers.size () <= sample_size_)
297 {
298 PCL_ERROR ("[pcl::SampleConsensusModelCylinder:optimizeModelCoefficients] Not enough inliers found to optimize model coefficients (%lu)! Returning the same coefficients.\n", inliers.size ());
299 return;
300 }
301
302 OptimizationFunctor functor (this, inliers);
303 Eigen::NumericalDiff<OptimizationFunctor > num_diff (functor);
304 Eigen::LevenbergMarquardt<Eigen::NumericalDiff<OptimizationFunctor>, float> lm (num_diff);
305 int info = lm.minimize (optimized_coefficients);
306
307 // Compute the L2 norm of the residuals
308 PCL_DEBUG ("[pcl::SampleConsensusModelCylinder::optimizeModelCoefficients] LM solver finished with exit code %i, having a residual norm of %g. \nInitial solution: %g %g %g %g %g %g %g \nFinal solution: %g %g %g %g %g %g %g\n",
309 info, lm.fvec.norm (), model_coefficients[0], model_coefficients[1], model_coefficients[2], model_coefficients[3],
310 model_coefficients[4], model_coefficients[5], model_coefficients[6], optimized_coefficients[0], optimized_coefficients[1], optimized_coefficients[2], optimized_coefficients[3], optimized_coefficients[4], optimized_coefficients[5], optimized_coefficients[6]);
311
312 Eigen::Vector3f line_dir (optimized_coefficients[3], optimized_coefficients[4], optimized_coefficients[5]);
313 line_dir.normalize ();
314 optimized_coefficients[3] = line_dir[0];
315 optimized_coefficients[4] = line_dir[1];
316 optimized_coefficients[5] = line_dir[2];
317}
318
319//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
320template <typename PointT, typename PointNT> void
322 const Indices &inliers, const Eigen::VectorXf &model_coefficients, PointCloud &projected_points, bool copy_data_fields) const
323{
324 // Needs a valid set of model coefficients
325 if (!isModelValid (model_coefficients))
326 {
327 PCL_ERROR ("[pcl::SampleConsensusModelCylinder::projectPoints] Given model is invalid!\n");
328 return;
329 }
330
331 projected_points.header = input_->header;
332 projected_points.is_dense = input_->is_dense;
333
334 Eigen::Vector4f line_pt (model_coefficients[0], model_coefficients[1], model_coefficients[2], 0.0f);
335 Eigen::Vector4f line_dir (model_coefficients[3], model_coefficients[4], model_coefficients[5], 0.0f);
336 float ptdotdir = line_pt.dot (line_dir);
337 float dirdotdir = 1.0f / line_dir.dot (line_dir);
338
339 // Copy all the data fields from the input cloud to the projected one?
340 if (copy_data_fields)
341 {
342 // Allocate enough space and copy the basics
343 projected_points.resize (input_->size ());
344 projected_points.width = input_->width;
345 projected_points.height = input_->height;
346
347 using FieldList = typename pcl::traits::fieldList<PointT>::type;
348 // Iterate over each point
349 for (std::size_t i = 0; i < projected_points.size (); ++i)
350 // Iterate over each dimension
351 pcl::for_each_type <FieldList> (NdConcatenateFunctor <PointT, PointT> ((*input_)[i], projected_points[i]));
352
353 // Iterate through the 3d points and calculate the distances from them to the cylinder
354 for (const auto &inlier : inliers)
355 {
356 Eigen::Vector4f p ((*input_)[inlier].x,
357 (*input_)[inlier].y,
358 (*input_)[inlier].z,
359 1);
360
361 float k = (p.dot (line_dir) - ptdotdir) * dirdotdir;
362
363 pcl::Vector4fMap pp = projected_points[inlier].getVector4fMap ();
364 pp.matrix () = line_pt + k * line_dir;
365
366 Eigen::Vector4f dir = p - pp;
367 dir[3] = 0.0f;
368 dir.normalize ();
369
370 // Calculate the projection of the point onto the cylinder
371 pp += dir * model_coefficients[6];
372 }
373 }
374 else
375 {
376 // Allocate enough space and copy the basics
377 projected_points.resize (inliers.size ());
378 projected_points.width = inliers.size ();
379 projected_points.height = 1;
380
381 using FieldList = typename pcl::traits::fieldList<PointT>::type;
382 // Iterate over each point
383 for (std::size_t i = 0; i < inliers.size (); ++i)
384 // Iterate over each dimension
385 pcl::for_each_type <FieldList> (NdConcatenateFunctor <PointT, PointT> ((*input_)[inliers[i]], projected_points[i]));
386
387 // Iterate through the 3d points and calculate the distances from them to the cylinder
388 for (std::size_t i = 0; i < inliers.size (); ++i)
389 {
390 pcl::Vector4fMap pp = projected_points[i].getVector4fMap ();
391 pcl::Vector4fMapConst p = (*input_)[inliers[i]].getVector4fMap ();
392
393 float k = (p.dot (line_dir) - ptdotdir) * dirdotdir;
394 // Calculate the projection of the point on the line
395 pp.matrix () = line_pt + k * line_dir;
396
397 Eigen::Vector4f dir = p - pp;
398 dir[3] = 0.0f;
399 dir.normalize ();
400
401 // Calculate the projection of the point onto the cylinder
402 pp += dir * model_coefficients[6];
403 }
404 }
405}
406
407//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
408template <typename PointT, typename PointNT> bool
410 const std::set<index_t> &indices, const Eigen::VectorXf &model_coefficients, const double threshold) const
411{
412 // Needs a valid model coefficients
413 if (!isModelValid (model_coefficients))
414 {
415 PCL_ERROR ("[pcl::SampleConsensusModelCylinder::doSamplesVerifyModel] Given model is invalid!\n");
416 return (false);
417 }
418
419 for (const auto &index : indices)
420 {
421 // Approximate the distance from the point to the cylinder as the difference between
422 // dist(point,cylinder_axis) and cylinder radius
423 // @note need to revise this.
424 Eigen::Vector4f pt ((*input_)[index].x, (*input_)[index].y, (*input_)[index].z, 0.0f);
425 if (std::abs (pointToLineDistance (pt, model_coefficients) - model_coefficients[6]) > threshold)
426 return (false);
427 }
428
429 return (true);
430}
431
432//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
433template <typename PointT, typename PointNT> double
435 const Eigen::Vector4f &pt, const Eigen::VectorXf &model_coefficients) const
436{
437 Eigen::Vector4f line_pt (model_coefficients[0], model_coefficients[1], model_coefficients[2], 0.0f);
438 Eigen::Vector4f line_dir (model_coefficients[3], model_coefficients[4], model_coefficients[5], 0.0f);
439 return sqrt(pcl::sqrPointToLineDistance (pt, line_pt, line_dir));
440}
441
442//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
443template <typename PointT, typename PointNT> void
445 const Eigen::Vector4f &pt, const Eigen::VectorXf &model_coefficients, Eigen::Vector4f &pt_proj) const
446{
447 Eigen::Vector4f line_pt (model_coefficients[0], model_coefficients[1], model_coefficients[2], 0.0f);
448 Eigen::Vector4f line_dir (model_coefficients[3], model_coefficients[4], model_coefficients[5], 0.0f);
449
450 float k = (pt.dot (line_dir) - line_pt.dot (line_dir)) * line_dir.dot (line_dir);
451 pt_proj = line_pt + k * line_dir;
452
453 Eigen::Vector4f dir = pt - pt_proj;
454 dir.normalize ();
455
456 // Calculate the projection of the point onto the cylinder
457 pt_proj += dir * model_coefficients[6];
458}
459
460//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
461template <typename PointT, typename PointNT> bool
462pcl::SampleConsensusModelCylinder<PointT, PointNT>::isModelValid (const Eigen::VectorXf &model_coefficients) const
463{
464 if (!SampleConsensusModel<PointT>::isModelValid (model_coefficients))
465 return (false);
466
467 // Check against template, if given
468 if (eps_angle_ > 0.0)
469 {
470 // Obtain the cylinder direction
471 const Eigen::Vector3f coeff(model_coefficients[3], model_coefficients[4], model_coefficients[5]);
472
473 double angle_diff = std::abs (getAngle3D (axis_, coeff));
474 angle_diff = (std::min) (angle_diff, M_PI - angle_diff);
475 // Check whether the current cylinder model satisfies our angle threshold criterion with respect to the given axis
476 if (angle_diff > eps_angle_)
477 {
478 PCL_DEBUG ("[pcl::SampleConsensusModelCylinder::isModelValid] Angle between cylinder direction and given axis is too large.\n");
479 return (false);
480 }
481 }
482
483 if (radius_min_ != -std::numeric_limits<double>::max() && model_coefficients[6] < radius_min_)
484 {
485 PCL_DEBUG ("[pcl::SampleConsensusModelCylinder::isModelValid] Radius is too small: should be larger than %g, but is %g.\n",
486 radius_min_, model_coefficients[6]);
487 return (false);
488 }
489 if (radius_max_ != std::numeric_limits<double>::max() && model_coefficients[6] > radius_max_)
490 {
491 PCL_DEBUG ("[pcl::SampleConsensusModelCylinder::isModelValid] Radius is too big: should be smaller than %g, but is %g.\n",
492 radius_max_, model_coefficients[6]);
493 return (false);
494 }
495
496 return (true);
497}
498
499#define PCL_INSTANTIATE_SampleConsensusModelCylinder(PointT, PointNT) template class PCL_EXPORTS pcl::SampleConsensusModelCylinder<PointT, PointNT>;
500
501#endif // PCL_SAMPLE_CONSENSUS_IMPL_SAC_MODEL_CYLINDER_H_
502
void getDistancesToModel(const Eigen::VectorXf &model_coefficients, std::vector< double > &distances) const override
Compute all distances from the cloud data to a given cylinder model.
void projectPoints(const Indices &inliers, const Eigen::VectorXf &model_coefficients, PointCloud &projected_points, bool copy_data_fields=true) const override
Create a new point cloud with inliers projected onto the cylinder model.
bool isModelValid(const Eigen::VectorXf &model_coefficients) const override
Check whether a model is valid given the user constraints.
void optimizeModelCoefficients(const Indices &inliers, const Eigen::VectorXf &model_coefficients, Eigen::VectorXf &optimized_coefficients) const override
Recompute the cylinder coefficients using the given inlier set and return them to the user.
std::size_t countWithinDistance(const Eigen::VectorXf &model_coefficients, const double threshold) const override
Count all the points which respect the given model coefficients as inliers.
void projectPointToCylinder(const Eigen::Vector4f &pt, const Eigen::VectorXf &model_coefficients, Eigen::Vector4f &pt_proj) const
Project a point onto a cylinder given by its model coefficients (point_on_axis, axis_direction,...
void selectWithinDistance(const Eigen::VectorXf &model_coefficients, const double threshold, Indices &inliers) override
Select all the points which respect the given model coefficients as inliers.
bool isSampleGood(const Indices &samples) const override
Check if a sample of indices results in a good sample of points indices.
typename SampleConsensusModel< PointT >::PointCloud PointCloud
bool doSamplesVerifyModel(const std::set< index_t > &indices, const Eigen::VectorXf &model_coefficients, const double threshold) const override
Verify whether a subset of indices verifies the given cylinder model coefficients.
double pointToLineDistance(const Eigen::Vector4f &pt, const Eigen::VectorXf &model_coefficients) const
Get the distance from a point to a line (represented by a point and a direction)
bool computeModelCoefficients(const Indices &samples, Eigen::VectorXf &model_coefficients) const override
Check whether the given index samples can form a valid cylinder model, compute the model coefficients...
SampleConsensusModel represents the base model class.
Definition sac_model.h:70
Define standard C methods and C++ classes that are common to all methods.
double getAngle3D(const Eigen::Vector4f &v1, const Eigen::Vector4f &v2, const bool in_degree=false)
Compute the smallest angle between two 3D vectors in radians (default) or degree.
Definition common.hpp:47
double sqrPointToLineDistance(const Eigen::Vector4f &pt, const Eigen::Vector4f &line_pt, const Eigen::Vector4f &line_dir)
Get the square distance from a point to a line (represented by a point and a direction)
Definition distances.h:75
Eigen::Map< Eigen::Vector4f, Eigen::Aligned > Vector4fMap
const Eigen::Map< const Eigen::Vector4f, Eigen::Aligned > Vector4fMapConst
IndicesAllocator<> Indices
Type used for indices in PCL.
Definition types.h:133
#define M_PI
Definition pcl_macros.h:201