Point Cloud Library (PCL)  1.12.1
sac_model_cylinder.hpp
1 /*
2  * Software License Agreement (BSD License)
3  *
4  * Point Cloud Library (PCL) - www.pointclouds.org
5  * Copyright (c) 2009-2010, Willow Garage, Inc.
6  * Copyright (c) 2012-, Open Perception, Inc.
7  *
8  * All rights reserved.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  *
14  * * Redistributions of source code must retain the above copyright
15  * notice, this list of conditions and the following disclaimer.
16  * * Redistributions in binary form must reproduce the above
17  * copyright notice, this list of conditions and the following
18  * disclaimer in the documentation and/or other materials provided
19  * with the distribution.
20  * * Neither the name of the copyright holder(s) nor the names of its
21  * contributors may be used to endorse or promote products derived
22  * from this software without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
27  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
28  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
29  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
30  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
31  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
32  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
34  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
35  * POSSIBILITY OF SUCH DAMAGE.
36  *
37  * $Id$
38  *
39  */
40 
41 #ifndef PCL_SAMPLE_CONSENSUS_IMPL_SAC_MODEL_CYLINDER_H_
42 #define PCL_SAMPLE_CONSENSUS_IMPL_SAC_MODEL_CYLINDER_H_
43 
44 #include <unsupported/Eigen/NonLinearOptimization> // for LevenbergMarquardt
45 #include <pcl/sample_consensus/sac_model_cylinder.h>
46 #include <pcl/common/common.h> // for getAngle3D
47 #include <pcl/common/concatenate.h>
48 
49 //////////////////////////////////////////////////////////////////////////////////////////////////////////////////
50 template <typename PointT, typename PointNT> bool
52 {
53  if (samples.size () != sample_size_)
54  {
55  PCL_ERROR ("[pcl::SampleConsensusModelCylinder::isSampleGood] Wrong number of samples (is %lu, should be %lu)!\n", samples.size (), sample_size_);
56  return (false);
57  }
58  return (true);
59 }
60 
61 //////////////////////////////////////////////////////////////////////////////////////////////////////////////////
62 template <typename PointT, typename PointNT> bool
64  const Indices &samples, Eigen::VectorXf &model_coefficients) const
65 {
66  // Need 2 samples
67  if (samples.size () != sample_size_)
68  {
69  PCL_ERROR ("[pcl::SampleConsensusModelCylinder::computeModelCoefficients] Invalid set of samples given (%lu)!\n", samples.size ());
70  return (false);
71  }
72 
73  if (!normals_)
74  {
75  PCL_ERROR ("[pcl::SampleConsensusModelCylinder::computeModelCoefficients] No input dataset containing normals was given!\n");
76  return (false);
77  }
78 
79  if (std::abs ((*input_)[samples[0]].x - (*input_)[samples[1]].x) <= std::numeric_limits<float>::epsilon () &&
80  std::abs ((*input_)[samples[0]].y - (*input_)[samples[1]].y) <= std::numeric_limits<float>::epsilon () &&
81  std::abs ((*input_)[samples[0]].z - (*input_)[samples[1]].z) <= std::numeric_limits<float>::epsilon ())
82  {
83  return (false);
84  }
85 
86  Eigen::Vector4f p1 ((*input_)[samples[0]].x, (*input_)[samples[0]].y, (*input_)[samples[0]].z, 0.0f);
87  Eigen::Vector4f p2 ((*input_)[samples[1]].x, (*input_)[samples[1]].y, (*input_)[samples[1]].z, 0.0f);
88 
89  Eigen::Vector4f n1 ((*normals_)[samples[0]].normal[0], (*normals_)[samples[0]].normal[1], (*normals_)[samples[0]].normal[2], 0.0f);
90  Eigen::Vector4f n2 ((*normals_)[samples[1]].normal[0], (*normals_)[samples[1]].normal[1], (*normals_)[samples[1]].normal[2], 0.0f);
91  Eigen::Vector4f w = n1 + p1 - p2;
92 
93  float a = n1.dot (n1);
94  float b = n1.dot (n2);
95  float c = n2.dot (n2);
96  float d = n1.dot (w);
97  float e = n2.dot (w);
98  float denominator = a*c - b*b;
99  float sc, tc;
100  // Compute the line parameters of the two closest points
101  if (denominator < 1e-8) // The lines are almost parallel
102  {
103  sc = 0.0f;
104  tc = (b > c ? d / b : e / c); // Use the largest denominator
105  }
106  else
107  {
108  sc = (b*e - c*d) / denominator;
109  tc = (a*e - b*d) / denominator;
110  }
111 
112  // point_on_axis, axis_direction
113  Eigen::Vector4f line_pt = p1 + n1 + sc * n1;
114  Eigen::Vector4f line_dir = p2 + tc * n2 - line_pt;
115  line_dir.normalize ();
116 
117  model_coefficients.resize (model_size_);
118  // model_coefficients.template head<3> () = line_pt.template head<3> ();
119  model_coefficients[0] = line_pt[0];
120  model_coefficients[1] = line_pt[1];
121  model_coefficients[2] = line_pt[2];
122  // model_coefficients.template segment<3> (3) = line_dir.template head<3> ();
123  model_coefficients[3] = line_dir[0];
124  model_coefficients[4] = line_dir[1];
125  model_coefficients[5] = line_dir[2];
126  // cylinder radius
127  model_coefficients[6] = static_cast<float> (sqrt (pcl::sqrPointToLineDistance (p1, line_pt, line_dir)));
128 
129  if (model_coefficients[6] > radius_max_ || model_coefficients[6] < radius_min_)
130  return (false);
131 
132  PCL_DEBUG ("[pcl::SampleConsensusModelCylinder::computeModelCoefficients] Model is (%g,%g,%g,%g,%g,%g,%g).\n",
133  model_coefficients[0], model_coefficients[1], model_coefficients[2], model_coefficients[3],
134  model_coefficients[4], model_coefficients[5], model_coefficients[6]);
135  return (true);
136 }
137 
138 //////////////////////////////////////////////////////////////////////////////////////////////////////////////////
139 template <typename PointT, typename PointNT> void
141  const Eigen::VectorXf &model_coefficients, std::vector<double> &distances) const
142 {
143  // Check if the model is valid given the user constraints
144  if (!isModelValid (model_coefficients))
145  {
146  distances.clear ();
147  return;
148  }
149 
150  distances.resize (indices_->size ());
151 
152  Eigen::Vector4f line_pt (model_coefficients[0], model_coefficients[1], model_coefficients[2], 0.0f);
153  Eigen::Vector4f line_dir (model_coefficients[3], model_coefficients[4], model_coefficients[5], 0.0f);
154  float ptdotdir = line_pt.dot (line_dir);
155  float dirdotdir = 1.0f / line_dir.dot (line_dir);
156  // Iterate through the 3d points and calculate the distances from them to the sphere
157  for (std::size_t i = 0; i < indices_->size (); ++i)
158  {
159  // Approximate the distance from the point to the cylinder as the difference between
160  // dist(point,cylinder_axis) and cylinder radius
161  // @note need to revise this.
162  Eigen::Vector4f pt ((*input_)[(*indices_)[i]].x, (*input_)[(*indices_)[i]].y, (*input_)[(*indices_)[i]].z, 0.0f);
163 
164  const double weighted_euclid_dist = (1.0 - normal_distance_weight_) * std::abs (pointToLineDistance (pt, model_coefficients) - model_coefficients[6]);
165 
166  // Calculate the point's projection on the cylinder axis
167  float k = (pt.dot (line_dir) - ptdotdir) * dirdotdir;
168  Eigen::Vector4f pt_proj = line_pt + k * line_dir;
169  Eigen::Vector4f dir = pt - pt_proj;
170  dir.normalize ();
171 
172  // Calculate the angular distance between the point normal and the (dir=pt_proj->pt) vector
173  Eigen::Vector4f n ((*normals_)[(*indices_)[i]].normal[0], (*normals_)[(*indices_)[i]].normal[1], (*normals_)[(*indices_)[i]].normal[2], 0.0f);
174  double d_normal = std::abs (getAngle3D (n, dir));
175  d_normal = (std::min) (d_normal, M_PI - d_normal);
176 
177  distances[i] = std::abs (normal_distance_weight_ * d_normal + weighted_euclid_dist);
178  }
179 }
180 
181 //////////////////////////////////////////////////////////////////////////////////////////////////////////////////
182 template <typename PointT, typename PointNT> void
184  const Eigen::VectorXf &model_coefficients, const double threshold, Indices &inliers)
185 {
186  // Check if the model is valid given the user constraints
187  if (!isModelValid (model_coefficients))
188  {
189  inliers.clear ();
190  return;
191  }
192 
193  inliers.clear ();
194  error_sqr_dists_.clear ();
195  inliers.reserve (indices_->size ());
196  error_sqr_dists_.reserve (indices_->size ());
197 
198  Eigen::Vector4f line_pt (model_coefficients[0], model_coefficients[1], model_coefficients[2], 0.0f);
199  Eigen::Vector4f line_dir (model_coefficients[3], model_coefficients[4], model_coefficients[5], 0.0f);
200  float ptdotdir = line_pt.dot (line_dir);
201  float dirdotdir = 1.0f / line_dir.dot (line_dir);
202  // Iterate through the 3d points and calculate the distances from them to the sphere
203  for (std::size_t i = 0; i < indices_->size (); ++i)
204  {
205  // Approximate the distance from the point to the cylinder as the difference between
206  // dist(point,cylinder_axis) and cylinder radius
207  Eigen::Vector4f pt ((*input_)[(*indices_)[i]].x, (*input_)[(*indices_)[i]].y, (*input_)[(*indices_)[i]].z, 0.0f);
208  const double weighted_euclid_dist = (1.0 - normal_distance_weight_) * std::abs (pointToLineDistance (pt, model_coefficients) - model_coefficients[6]);
209  if (weighted_euclid_dist > threshold) // Early termination: cannot be an inlier
210  continue;
211 
212  // Calculate the point's projection on the cylinder axis
213  float k = (pt.dot (line_dir) - ptdotdir) * dirdotdir;
214  Eigen::Vector4f pt_proj = line_pt + k * line_dir;
215  Eigen::Vector4f dir = pt - pt_proj;
216  dir.normalize ();
217 
218  // Calculate the angular distance between the point normal and the (dir=pt_proj->pt) vector
219  Eigen::Vector4f n ((*normals_)[(*indices_)[i]].normal[0], (*normals_)[(*indices_)[i]].normal[1], (*normals_)[(*indices_)[i]].normal[2], 0.0f);
220  double d_normal = std::abs (getAngle3D (n, dir));
221  d_normal = (std::min) (d_normal, M_PI - d_normal);
222 
223  double distance = std::abs (normal_distance_weight_ * d_normal + weighted_euclid_dist);
224  if (distance < threshold)
225  {
226  // Returns the indices of the points whose distances are smaller than the threshold
227  inliers.push_back ((*indices_)[i]);
228  error_sqr_dists_.push_back (distance);
229  }
230  }
231 }
232 
233 //////////////////////////////////////////////////////////////////////////////////////////////////////////////////
234 template <typename PointT, typename PointNT> std::size_t
236  const Eigen::VectorXf &model_coefficients, const double threshold) const
237 {
238  // Check if the model is valid given the user constraints
239  if (!isModelValid (model_coefficients))
240  return (0);
241 
242  std::size_t nr_p = 0;
243 
244  Eigen::Vector4f line_pt (model_coefficients[0], model_coefficients[1], model_coefficients[2], 0);
245  Eigen::Vector4f line_dir (model_coefficients[3], model_coefficients[4], model_coefficients[5], 0);
246  float ptdotdir = line_pt.dot (line_dir);
247  float dirdotdir = 1.0f / line_dir.dot (line_dir);
248  // Iterate through the 3d points and calculate the distances from them to the sphere
249  for (std::size_t i = 0; i < indices_->size (); ++i)
250  {
251  // Approximate the distance from the point to the cylinder as the difference between
252  // dist(point,cylinder_axis) and cylinder radius
253  Eigen::Vector4f pt ((*input_)[(*indices_)[i]].x, (*input_)[(*indices_)[i]].y, (*input_)[(*indices_)[i]].z, 0.0f);
254  const double weighted_euclid_dist = (1.0 - normal_distance_weight_) * std::abs (pointToLineDistance (pt, model_coefficients) - model_coefficients[6]);
255  if (weighted_euclid_dist > threshold) // Early termination: cannot be an inlier
256  continue;
257 
258  // Calculate the point's projection on the cylinder axis
259  float k = (pt.dot (line_dir) - ptdotdir) * dirdotdir;
260  Eigen::Vector4f pt_proj = line_pt + k * line_dir;
261  Eigen::Vector4f dir = pt - pt_proj;
262  dir.normalize ();
263 
264  // Calculate the angular distance between the point normal and the (dir=pt_proj->pt) vector
265  Eigen::Vector4f n ((*normals_)[(*indices_)[i]].normal[0], (*normals_)[(*indices_)[i]].normal[1], (*normals_)[(*indices_)[i]].normal[2], 0.0f);
266  double d_normal = std::abs (getAngle3D (n, dir));
267  d_normal = (std::min) (d_normal, M_PI - d_normal);
268 
269  if (std::abs (normal_distance_weight_ * d_normal + weighted_euclid_dist) < threshold)
270  nr_p++;
271  }
272  return (nr_p);
273 }
274 
275 //////////////////////////////////////////////////////////////////////////////////////////////////////////////////
276 template <typename PointT, typename PointNT> void
278  const Indices &inliers, const Eigen::VectorXf &model_coefficients, Eigen::VectorXf &optimized_coefficients) const
279 {
280  optimized_coefficients = model_coefficients;
281 
282  // Needs a set of valid model coefficients
283  if (!isModelValid (model_coefficients))
284  {
285  PCL_ERROR ("[pcl::SampleConsensusModelCylinder::optimizeModelCoefficients] Given model is invalid!\n");
286  return;
287  }
288 
289  // Need more than the minimum sample size to make a difference
290  if (inliers.size () <= sample_size_)
291  {
292  PCL_ERROR ("[pcl::SampleConsensusModelCylinder:optimizeModelCoefficients] Not enough inliers found to optimize model coefficients (%lu)! Returning the same coefficients.\n", inliers.size ());
293  return;
294  }
295 
296  OptimizationFunctor functor (this, inliers);
297  Eigen::NumericalDiff<OptimizationFunctor > num_diff (functor);
298  Eigen::LevenbergMarquardt<Eigen::NumericalDiff<OptimizationFunctor>, float> lm (num_diff);
299  int info = lm.minimize (optimized_coefficients);
300 
301  // Compute the L2 norm of the residuals
302  PCL_DEBUG ("[pcl::SampleConsensusModelCylinder::optimizeModelCoefficients] LM solver finished with exit code %i, having a residual norm of %g. \nInitial solution: %g %g %g %g %g %g %g \nFinal solution: %g %g %g %g %g %g %g\n",
303  info, lm.fvec.norm (), model_coefficients[0], model_coefficients[1], model_coefficients[2], model_coefficients[3],
304  model_coefficients[4], model_coefficients[5], model_coefficients[6], optimized_coefficients[0], optimized_coefficients[1], optimized_coefficients[2], optimized_coefficients[3], optimized_coefficients[4], optimized_coefficients[5], optimized_coefficients[6]);
305 
306  Eigen::Vector3f line_dir (optimized_coefficients[3], optimized_coefficients[4], optimized_coefficients[5]);
307  line_dir.normalize ();
308  optimized_coefficients[3] = line_dir[0];
309  optimized_coefficients[4] = line_dir[1];
310  optimized_coefficients[5] = line_dir[2];
311 }
312 
313 //////////////////////////////////////////////////////////////////////////////////////////////////////////////////
314 template <typename PointT, typename PointNT> void
316  const Indices &inliers, const Eigen::VectorXf &model_coefficients, PointCloud &projected_points, bool copy_data_fields) const
317 {
318  // Needs a valid set of model coefficients
319  if (!isModelValid (model_coefficients))
320  {
321  PCL_ERROR ("[pcl::SampleConsensusModelCylinder::projectPoints] Given model is invalid!\n");
322  return;
323  }
324 
325  projected_points.header = input_->header;
326  projected_points.is_dense = input_->is_dense;
327 
328  Eigen::Vector4f line_pt (model_coefficients[0], model_coefficients[1], model_coefficients[2], 0.0f);
329  Eigen::Vector4f line_dir (model_coefficients[3], model_coefficients[4], model_coefficients[5], 0.0f);
330  float ptdotdir = line_pt.dot (line_dir);
331  float dirdotdir = 1.0f / line_dir.dot (line_dir);
332 
333  // Copy all the data fields from the input cloud to the projected one?
334  if (copy_data_fields)
335  {
336  // Allocate enough space and copy the basics
337  projected_points.resize (input_->size ());
338  projected_points.width = input_->width;
339  projected_points.height = input_->height;
340 
341  using FieldList = typename pcl::traits::fieldList<PointT>::type;
342  // Iterate over each point
343  for (std::size_t i = 0; i < projected_points.size (); ++i)
344  // Iterate over each dimension
345  pcl::for_each_type <FieldList> (NdConcatenateFunctor <PointT, PointT> ((*input_)[i], projected_points[i]));
346 
347  // Iterate through the 3d points and calculate the distances from them to the cylinder
348  for (const auto &inlier : inliers)
349  {
350  Eigen::Vector4f p ((*input_)[inlier].x,
351  (*input_)[inlier].y,
352  (*input_)[inlier].z,
353  1);
354 
355  float k = (p.dot (line_dir) - ptdotdir) * dirdotdir;
356 
357  pcl::Vector4fMap pp = projected_points[inlier].getVector4fMap ();
358  pp.matrix () = line_pt + k * line_dir;
359 
360  Eigen::Vector4f dir = p - pp;
361  dir[3] = 0.0f;
362  dir.normalize ();
363 
364  // Calculate the projection of the point onto the cylinder
365  pp += dir * model_coefficients[6];
366  }
367  }
368  else
369  {
370  // Allocate enough space and copy the basics
371  projected_points.resize (inliers.size ());
372  projected_points.width = inliers.size ();
373  projected_points.height = 1;
374 
375  using FieldList = typename pcl::traits::fieldList<PointT>::type;
376  // Iterate over each point
377  for (std::size_t i = 0; i < inliers.size (); ++i)
378  // Iterate over each dimension
379  pcl::for_each_type <FieldList> (NdConcatenateFunctor <PointT, PointT> ((*input_)[inliers[i]], projected_points[i]));
380 
381  // Iterate through the 3d points and calculate the distances from them to the cylinder
382  for (std::size_t i = 0; i < inliers.size (); ++i)
383  {
384  pcl::Vector4fMap pp = projected_points[i].getVector4fMap ();
385  pcl::Vector4fMapConst p = (*input_)[inliers[i]].getVector4fMap ();
386 
387  float k = (p.dot (line_dir) - ptdotdir) * dirdotdir;
388  // Calculate the projection of the point on the line
389  pp.matrix () = line_pt + k * line_dir;
390 
391  Eigen::Vector4f dir = p - pp;
392  dir[3] = 0.0f;
393  dir.normalize ();
394 
395  // Calculate the projection of the point onto the cylinder
396  pp += dir * model_coefficients[6];
397  }
398  }
399 }
400 
401 //////////////////////////////////////////////////////////////////////////////////////////////////////////////////
402 template <typename PointT, typename PointNT> bool
404  const std::set<index_t> &indices, const Eigen::VectorXf &model_coefficients, const double threshold) const
405 {
406  // Needs a valid model coefficients
407  if (!isModelValid (model_coefficients))
408  {
409  PCL_ERROR ("[pcl::SampleConsensusModelCylinder::doSamplesVerifyModel] Given model is invalid!\n");
410  return (false);
411  }
412 
413  for (const auto &index : indices)
414  {
415  // Approximate the distance from the point to the cylinder as the difference between
416  // dist(point,cylinder_axis) and cylinder radius
417  // @note need to revise this.
418  Eigen::Vector4f pt ((*input_)[index].x, (*input_)[index].y, (*input_)[index].z, 0.0f);
419  if (std::abs (pointToLineDistance (pt, model_coefficients) - model_coefficients[6]) > threshold)
420  return (false);
421  }
422 
423  return (true);
424 }
425 
426 //////////////////////////////////////////////////////////////////////////////////////////////////////////////////
427 template <typename PointT, typename PointNT> double
429  const Eigen::Vector4f &pt, const Eigen::VectorXf &model_coefficients) const
430 {
431  Eigen::Vector4f line_pt (model_coefficients[0], model_coefficients[1], model_coefficients[2], 0.0f);
432  Eigen::Vector4f line_dir (model_coefficients[3], model_coefficients[4], model_coefficients[5], 0.0f);
433  return sqrt(pcl::sqrPointToLineDistance (pt, line_pt, line_dir));
434 }
435 
436 //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
437 template <typename PointT, typename PointNT> void
439  const Eigen::Vector4f &pt, const Eigen::VectorXf &model_coefficients, Eigen::Vector4f &pt_proj) const
440 {
441  Eigen::Vector4f line_pt (model_coefficients[0], model_coefficients[1], model_coefficients[2], 0.0f);
442  Eigen::Vector4f line_dir (model_coefficients[3], model_coefficients[4], model_coefficients[5], 0.0f);
443 
444  float k = (pt.dot (line_dir) - line_pt.dot (line_dir)) * line_dir.dot (line_dir);
445  pt_proj = line_pt + k * line_dir;
446 
447  Eigen::Vector4f dir = pt - pt_proj;
448  dir.normalize ();
449 
450  // Calculate the projection of the point onto the cylinder
451  pt_proj += dir * model_coefficients[6];
452 }
453 
454 //////////////////////////////////////////////////////////////////////////////////////////////////////////////////
455 template <typename PointT, typename PointNT> bool
456 pcl::SampleConsensusModelCylinder<PointT, PointNT>::isModelValid (const Eigen::VectorXf &model_coefficients) const
457 {
458  if (!SampleConsensusModel<PointT>::isModelValid (model_coefficients))
459  return (false);
460 
461  // Check against template, if given
462  if (eps_angle_ > 0.0)
463  {
464  // Obtain the cylinder direction
465  const Eigen::Vector3f coeff(model_coefficients[3], model_coefficients[4], model_coefficients[5]);
466 
467  double angle_diff = std::abs (getAngle3D (axis_, coeff));
468  angle_diff = (std::min) (angle_diff, M_PI - angle_diff);
469  // Check whether the current cylinder model satisfies our angle threshold criterion with respect to the given axis
470  if (angle_diff > eps_angle_)
471  {
472  PCL_DEBUG ("[pcl::SampleConsensusModelCylinder::isModelValid] Angle between cylinder direction and given axis is too large.\n");
473  return (false);
474  }
475  }
476 
477  if (radius_min_ != -std::numeric_limits<double>::max() && model_coefficients[6] < radius_min_)
478  {
479  PCL_DEBUG ("[pcl::SampleConsensusModelCylinder::isModelValid] Radius is too small: should be larger than %g, but is %g.\n",
480  radius_min_, model_coefficients[6]);
481  return (false);
482  }
483  if (radius_max_ != std::numeric_limits<double>::max() && model_coefficients[6] > radius_max_)
484  {
485  PCL_DEBUG ("[pcl::SampleConsensusModelCylinder::isModelValid] Radius is too big: should be smaller than %g, but is %g.\n",
486  radius_max_, model_coefficients[6]);
487  return (false);
488  }
489 
490  return (true);
491 }
492 
493 #define PCL_INSTANTIATE_SampleConsensusModelCylinder(PointT, PointNT) template class PCL_EXPORTS pcl::SampleConsensusModelCylinder<PointT, PointNT>;
494 
495 #endif // PCL_SAMPLE_CONSENSUS_IMPL_SAC_MODEL_CYLINDER_H_
496 
PointCloud represents the base class in PCL for storing collections of 3D points.
Definition: point_cloud.h:173
bool is_dense
True if no points are invalid (e.g., have NaN or Inf values in any of their floating point fields).
Definition: point_cloud.h:403
void resize(std::size_t count)
Resizes the container to contain count elements.
Definition: point_cloud.h:462
std::uint32_t width
The point cloud width (if organized as an image-structure).
Definition: point_cloud.h:398
pcl::PCLHeader header
The point cloud header.
Definition: point_cloud.h:392
std::uint32_t height
The point cloud height (if organized as an image-structure).
Definition: point_cloud.h:400
std::size_t size() const
Definition: point_cloud.h:443
void getDistancesToModel(const Eigen::VectorXf &model_coefficients, std::vector< double > &distances) const override
Compute all distances from the cloud data to a given cylinder model.
void projectPoints(const Indices &inliers, const Eigen::VectorXf &model_coefficients, PointCloud &projected_points, bool copy_data_fields=true) const override
Create a new point cloud with inliers projected onto the cylinder model.
bool isModelValid(const Eigen::VectorXf &model_coefficients) const override
Check whether a model is valid given the user constraints.
void optimizeModelCoefficients(const Indices &inliers, const Eigen::VectorXf &model_coefficients, Eigen::VectorXf &optimized_coefficients) const override
Recompute the cylinder coefficients using the given inlier set and return them to the user.
std::size_t countWithinDistance(const Eigen::VectorXf &model_coefficients, const double threshold) const override
Count all the points which respect the given model coefficients as inliers.
void projectPointToCylinder(const Eigen::Vector4f &pt, const Eigen::VectorXf &model_coefficients, Eigen::Vector4f &pt_proj) const
Project a point onto a cylinder given by its model coefficients (point_on_axis, axis_direction,...
void selectWithinDistance(const Eigen::VectorXf &model_coefficients, const double threshold, Indices &inliers) override
Select all the points which respect the given model coefficients as inliers.
bool isSampleGood(const Indices &samples) const override
Check if a sample of indices results in a good sample of points indices.
bool doSamplesVerifyModel(const std::set< index_t > &indices, const Eigen::VectorXf &model_coefficients, const double threshold) const override
Verify whether a subset of indices verifies the given cylinder model coefficients.
double pointToLineDistance(const Eigen::Vector4f &pt, const Eigen::VectorXf &model_coefficients) const
Get the distance from a point to a line (represented by a point and a direction)
bool computeModelCoefficients(const Indices &samples, Eigen::VectorXf &model_coefficients) const override
Check whether the given index samples can form a valid cylinder model, compute the model coefficients...
SampleConsensusModel represents the base model class.
Definition: sac_model.h:70
Define standard C methods and C++ classes that are common to all methods.
double getAngle3D(const Eigen::Vector4f &v1, const Eigen::Vector4f &v2, const bool in_degree=false)
Compute the smallest angle between two 3D vectors in radians (default) or degree.
Definition: common.hpp:47
double sqrPointToLineDistance(const Eigen::Vector4f &pt, const Eigen::Vector4f &line_pt, const Eigen::Vector4f &line_dir)
Get the square distance from a point to a line (represented by a point and a direction)
Definition: distances.h:75
float distance(const PointT &p1, const PointT &p2)
Definition: geometry.h:60
Eigen::Map< Eigen::Vector4f, Eigen::Aligned > Vector4fMap
const Eigen::Map< const Eigen::Vector4f, Eigen::Aligned > Vector4fMapConst
IndicesAllocator<> Indices
Type used for indices in PCL.
Definition: types.h:133
#define M_PI
Definition: pcl_macros.h:201
Helper functor structure for concatenate.
Definition: concatenate.h:50