{-# OPTIONS_GHC -w #-}
{-# OPTIONS -XMagicHash -XBangPatterns -XTypeSynonymInstances -XFlexibleInstances -cpp #-}
#if __GLASGOW_HASKELL__ >= 710
{-# OPTIONS_GHC -XPartialTypeSignatures #-}
#endif
{-# LANGUAGE BangPatterns #-}
{-# OPTIONS_GHC -w #-}
module CParser (parseC) where

import Prelude    hiding (reverse)
import qualified Data.List as List

import Position   (Position, Pos(..), nopos)
import UNames     (names)
import Idents     (Ident)
import Attributes (Attrs, newAttrs, newAttrsOnlyPos)

import State      (PreCST, raiseFatal, getNameSupply)
import CLexer     (lexC, parseError)
import CAST       (CHeader(..), CExtDecl(..), CFunDef(..), CStat(..),
                   CBlockItem(..), CDecl(..), CDeclSpec(..), CStorageSpec(..),
                   CTypeSpec(..), CTypeQual(..), CStructUnion(..),
                   CStructTag(..), CEnum(..), CDeclr(..), CInit(..), CInitList,
                   CDesignator(..), CExpr(..), CAssignOp(..), CBinaryOp(..),
                   CUnaryOp(..), CConst (..))
import CBuiltin   (builtinTypeNames)
import CTokens    (CToken(..), GnuCTok(..))
import CParserMonad (P, execParser, getNewName, addTypedef, shadowTypedef,
                     enterScope, leaveScope )
import qualified Data.Array as Happy_Data_Array
import qualified Data.Bits as Bits
import qualified GHC.Exts as Happy_GHC_Exts
import Control.Applicative(Applicative(..))
import Control.Monad (ap)

-- parser produced by Happy Version 1.19.12

newtype HappyAbsSyn  = HappyAbsSyn HappyAny
#if __GLASGOW_HASKELL__ >= 607
type HappyAny = Happy_GHC_Exts.Any
#else
type HappyAny = forall a . a
#endif
newtype HappyWrap4 = HappyWrap4 (CHeader)
happyIn4 :: (CHeader) -> (HappyAbsSyn )
happyIn4 :: CHeader -> HappyAbsSyn
happyIn4 x :: CHeader
x = HappyWrap4 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CHeader -> HappyWrap4
HappyWrap4 CHeader
x)
{-# INLINE happyIn4 #-}
happyOut4 :: (HappyAbsSyn ) -> HappyWrap4
happyOut4 :: HappyAbsSyn -> HappyWrap4
happyOut4 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap4
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut4 #-}
newtype HappyWrap5 = HappyWrap5 (Reversed [CExtDecl])
happyIn5 :: (Reversed [CExtDecl]) -> (HappyAbsSyn )
happyIn5 :: Reversed [CExtDecl] -> HappyAbsSyn
happyIn5 x :: Reversed [CExtDecl]
x = HappyWrap5 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (Reversed [CExtDecl] -> HappyWrap5
HappyWrap5 Reversed [CExtDecl]
x)
{-# INLINE happyIn5 #-}
happyOut5 :: (HappyAbsSyn ) -> HappyWrap5
happyOut5 :: HappyAbsSyn -> HappyWrap5
happyOut5 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap5
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut5 #-}
newtype HappyWrap6 = HappyWrap6 (CExtDecl)
happyIn6 :: (CExtDecl) -> (HappyAbsSyn )
happyIn6 :: CExtDecl -> HappyAbsSyn
happyIn6 x :: CExtDecl
x = HappyWrap6 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CExtDecl -> HappyWrap6
HappyWrap6 CExtDecl
x)
{-# INLINE happyIn6 #-}
happyOut6 :: (HappyAbsSyn ) -> HappyWrap6
happyOut6 :: HappyAbsSyn -> HappyWrap6
happyOut6 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap6
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut6 #-}
newtype HappyWrap7 = HappyWrap7 (CFunDef)
happyIn7 :: (CFunDef) -> (HappyAbsSyn )
happyIn7 :: CFunDef -> HappyAbsSyn
happyIn7 x :: CFunDef
x = HappyWrap7 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CFunDef -> HappyWrap7
HappyWrap7 CFunDef
x)
{-# INLINE happyIn7 #-}
happyOut7 :: (HappyAbsSyn ) -> HappyWrap7
happyOut7 :: HappyAbsSyn -> HappyWrap7
happyOut7 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap7
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut7 #-}
newtype HappyWrap8 = HappyWrap8 (CDeclr)
happyIn8 :: (CDeclr) -> (HappyAbsSyn )
happyIn8 :: CDeclr -> HappyAbsSyn
happyIn8 x :: CDeclr
x = HappyWrap8 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CDeclr -> HappyWrap8
HappyWrap8 CDeclr
x)
{-# INLINE happyIn8 #-}
happyOut8 :: (HappyAbsSyn ) -> HappyWrap8
happyOut8 :: HappyAbsSyn -> HappyWrap8
happyOut8 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap8
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut8 #-}
newtype HappyWrap9 = HappyWrap9 (Reversed [CDecl])
happyIn9 :: (Reversed [CDecl]) -> (HappyAbsSyn )
happyIn9 :: Reversed [CDecl] -> HappyAbsSyn
happyIn9 x :: Reversed [CDecl]
x = HappyWrap9 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (Reversed [CDecl] -> HappyWrap9
HappyWrap9 Reversed [CDecl]
x)
{-# INLINE happyIn9 #-}
happyOut9 :: (HappyAbsSyn ) -> HappyWrap9
happyOut9 :: HappyAbsSyn -> HappyWrap9
happyOut9 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap9
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut9 #-}
newtype HappyWrap10 = HappyWrap10 (CStat)
happyIn10 :: (CStat) -> (HappyAbsSyn )
happyIn10 :: CStat -> HappyAbsSyn
happyIn10 x :: CStat
x = HappyWrap10 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CStat -> HappyWrap10
HappyWrap10 CStat
x)
{-# INLINE happyIn10 #-}
happyOut10 :: (HappyAbsSyn ) -> HappyWrap10
happyOut10 :: HappyAbsSyn -> HappyWrap10
happyOut10 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap10
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut10 #-}
newtype HappyWrap11 = HappyWrap11 (CStat)
happyIn11 :: (CStat) -> (HappyAbsSyn )
happyIn11 :: CStat -> HappyAbsSyn
happyIn11 x :: CStat
x = HappyWrap11 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CStat -> HappyWrap11
HappyWrap11 CStat
x)
{-# INLINE happyIn11 #-}
happyOut11 :: (HappyAbsSyn ) -> HappyWrap11
happyOut11 :: HappyAbsSyn -> HappyWrap11
happyOut11 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap11
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut11 #-}
newtype HappyWrap12 = HappyWrap12 (CStat)
happyIn12 :: (CStat) -> (HappyAbsSyn )
happyIn12 :: CStat -> HappyAbsSyn
happyIn12 x :: CStat
x = HappyWrap12 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CStat -> HappyWrap12
HappyWrap12 CStat
x)
{-# INLINE happyIn12 #-}
happyOut12 :: (HappyAbsSyn ) -> HappyWrap12
happyOut12 :: HappyAbsSyn -> HappyWrap12
happyOut12 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap12
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut12 #-}
newtype HappyWrap13 = HappyWrap13 (())
happyIn13 :: (()) -> (HappyAbsSyn )
happyIn13 :: () -> HappyAbsSyn
happyIn13 x :: ()
x = HappyWrap13 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (() -> HappyWrap13
HappyWrap13 ()
x)
{-# INLINE happyIn13 #-}
happyOut13 :: (HappyAbsSyn ) -> HappyWrap13
happyOut13 :: HappyAbsSyn -> HappyWrap13
happyOut13 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap13
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut13 #-}
newtype HappyWrap14 = HappyWrap14 (())
happyIn14 :: (()) -> (HappyAbsSyn )
happyIn14 :: () -> HappyAbsSyn
happyIn14 x :: ()
x = HappyWrap14 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (() -> HappyWrap14
HappyWrap14 ()
x)
{-# INLINE happyIn14 #-}
happyOut14 :: (HappyAbsSyn ) -> HappyWrap14
happyOut14 :: HappyAbsSyn -> HappyWrap14
happyOut14 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap14
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut14 #-}
newtype HappyWrap15 = HappyWrap15 (Reversed [CBlockItem])
happyIn15 :: (Reversed [CBlockItem]) -> (HappyAbsSyn )
happyIn15 :: Reversed [CBlockItem] -> HappyAbsSyn
happyIn15 x :: Reversed [CBlockItem]
x = HappyWrap15 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (Reversed [CBlockItem] -> HappyWrap15
HappyWrap15 Reversed [CBlockItem]
x)
{-# INLINE happyIn15 #-}
happyOut15 :: (HappyAbsSyn ) -> HappyWrap15
happyOut15 :: HappyAbsSyn -> HappyWrap15
happyOut15 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap15
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut15 #-}
newtype HappyWrap16 = HappyWrap16 (CBlockItem)
happyIn16 :: (CBlockItem) -> (HappyAbsSyn )
happyIn16 :: CBlockItem -> HappyAbsSyn
happyIn16 x :: CBlockItem
x = HappyWrap16 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CBlockItem -> HappyWrap16
HappyWrap16 CBlockItem
x)
{-# INLINE happyIn16 #-}
happyOut16 :: (HappyAbsSyn ) -> HappyWrap16
happyOut16 :: HappyAbsSyn -> HappyWrap16
happyOut16 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap16
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut16 #-}
newtype HappyWrap17 = HappyWrap17 (CBlockItem)
happyIn17 :: (CBlockItem) -> (HappyAbsSyn )
happyIn17 :: CBlockItem -> HappyAbsSyn
happyIn17 x :: CBlockItem
x = HappyWrap17 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CBlockItem -> HappyWrap17
HappyWrap17 CBlockItem
x)
{-# INLINE happyIn17 #-}
happyOut17 :: (HappyAbsSyn ) -> HappyWrap17
happyOut17 :: HappyAbsSyn -> HappyWrap17
happyOut17 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap17
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut17 #-}
newtype HappyWrap18 = HappyWrap18 (CFunDef)
happyIn18 :: (CFunDef) -> (HappyAbsSyn )
happyIn18 :: CFunDef -> HappyAbsSyn
happyIn18 x :: CFunDef
x = HappyWrap18 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CFunDef -> HappyWrap18
HappyWrap18 CFunDef
x)
{-# INLINE happyIn18 #-}
happyOut18 :: (HappyAbsSyn ) -> HappyWrap18
happyOut18 :: HappyAbsSyn -> HappyWrap18
happyOut18 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap18
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut18 #-}
newtype HappyWrap19 = HappyWrap19 (())
happyIn19 :: (()) -> (HappyAbsSyn )
happyIn19 :: () -> HappyAbsSyn
happyIn19 x :: ()
x = HappyWrap19 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (() -> HappyWrap19
HappyWrap19 ()
x)
{-# INLINE happyIn19 #-}
happyOut19 :: (HappyAbsSyn ) -> HappyWrap19
happyOut19 :: HappyAbsSyn -> HappyWrap19
happyOut19 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap19
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut19 #-}
newtype HappyWrap20 = HappyWrap20 (CStat)
happyIn20 :: (CStat) -> (HappyAbsSyn )
happyIn20 :: CStat -> HappyAbsSyn
happyIn20 x :: CStat
x = HappyWrap20 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CStat -> HappyWrap20
HappyWrap20 CStat
x)
{-# INLINE happyIn20 #-}
happyOut20 :: (HappyAbsSyn ) -> HappyWrap20
happyOut20 :: HappyAbsSyn -> HappyWrap20
happyOut20 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap20
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut20 #-}
newtype HappyWrap21 = HappyWrap21 (CStat)
happyIn21 :: (CStat) -> (HappyAbsSyn )
happyIn21 :: CStat -> HappyAbsSyn
happyIn21 x :: CStat
x = HappyWrap21 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CStat -> HappyWrap21
HappyWrap21 CStat
x)
{-# INLINE happyIn21 #-}
happyOut21 :: (HappyAbsSyn ) -> HappyWrap21
happyOut21 :: HappyAbsSyn -> HappyWrap21
happyOut21 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap21
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut21 #-}
newtype HappyWrap22 = HappyWrap22 (CStat)
happyIn22 :: (CStat) -> (HappyAbsSyn )
happyIn22 :: CStat -> HappyAbsSyn
happyIn22 x :: CStat
x = HappyWrap22 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CStat -> HappyWrap22
HappyWrap22 CStat
x)
{-# INLINE happyIn22 #-}
happyOut22 :: (HappyAbsSyn ) -> HappyWrap22
happyOut22 :: HappyAbsSyn -> HappyWrap22
happyOut22 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap22
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut22 #-}
newtype HappyWrap23 = HappyWrap23 (CStat)
happyIn23 :: (CStat) -> (HappyAbsSyn )
happyIn23 :: CStat -> HappyAbsSyn
happyIn23 x :: CStat
x = HappyWrap23 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CStat -> HappyWrap23
HappyWrap23 CStat
x)
{-# INLINE happyIn23 #-}
happyOut23 :: (HappyAbsSyn ) -> HappyWrap23
happyOut23 :: HappyAbsSyn -> HappyWrap23
happyOut23 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap23
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut23 #-}
newtype HappyWrap24 = HappyWrap24 (CStat)
happyIn24 :: (CStat) -> (HappyAbsSyn )
happyIn24 :: CStat -> HappyAbsSyn
happyIn24 x :: CStat
x = HappyWrap24 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CStat -> HappyWrap24
HappyWrap24 CStat
x)
{-# INLINE happyIn24 #-}
happyOut24 :: (HappyAbsSyn ) -> HappyWrap24
happyOut24 :: HappyAbsSyn -> HappyWrap24
happyOut24 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap24
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut24 #-}
newtype HappyWrap25 = HappyWrap25 (())
happyIn25 :: (()) -> (HappyAbsSyn )
happyIn25 :: () -> HappyAbsSyn
happyIn25 x :: ()
x = HappyWrap25 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (() -> HappyWrap25
HappyWrap25 ()
x)
{-# INLINE happyIn25 #-}
happyOut25 :: (HappyAbsSyn ) -> HappyWrap25
happyOut25 :: HappyAbsSyn -> HappyWrap25
happyOut25 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap25
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut25 #-}
newtype HappyWrap26 = HappyWrap26 (())
happyIn26 :: (()) -> (HappyAbsSyn )
happyIn26 :: () -> HappyAbsSyn
happyIn26 x :: ()
x = HappyWrap26 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (() -> HappyWrap26
HappyWrap26 ()
x)
{-# INLINE happyIn26 #-}
happyOut26 :: (HappyAbsSyn ) -> HappyWrap26
happyOut26 :: HappyAbsSyn -> HappyWrap26
happyOut26 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap26
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut26 #-}
newtype HappyWrap27 = HappyWrap27 (())
happyIn27 :: (()) -> (HappyAbsSyn )
happyIn27 :: () -> HappyAbsSyn
happyIn27 x :: ()
x = HappyWrap27 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (() -> HappyWrap27
HappyWrap27 ()
x)
{-# INLINE happyIn27 #-}
happyOut27 :: (HappyAbsSyn ) -> HappyWrap27
happyOut27 :: HappyAbsSyn -> HappyWrap27
happyOut27 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap27
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut27 #-}
newtype HappyWrap28 = HappyWrap28 (())
happyIn28 :: (()) -> (HappyAbsSyn )
happyIn28 :: () -> HappyAbsSyn
happyIn28 x :: ()
x = HappyWrap28 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (() -> HappyWrap28
HappyWrap28 ()
x)
{-# INLINE happyIn28 #-}
happyOut28 :: (HappyAbsSyn ) -> HappyWrap28
happyOut28 :: HappyAbsSyn -> HappyWrap28
happyOut28 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap28
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut28 #-}
newtype HappyWrap29 = HappyWrap29 (())
happyIn29 :: (()) -> (HappyAbsSyn )
happyIn29 :: () -> HappyAbsSyn
happyIn29 x :: ()
x = HappyWrap29 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (() -> HappyWrap29
HappyWrap29 ()
x)
{-# INLINE happyIn29 #-}
happyOut29 :: (HappyAbsSyn ) -> HappyWrap29
happyOut29 :: HappyAbsSyn -> HappyWrap29
happyOut29 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap29
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut29 #-}
newtype HappyWrap30 = HappyWrap30 (CDecl)
happyIn30 :: (CDecl) -> (HappyAbsSyn )
happyIn30 :: CDecl -> HappyAbsSyn
happyIn30 x :: CDecl
x = HappyWrap30 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CDecl -> HappyWrap30
HappyWrap30 CDecl
x)
{-# INLINE happyIn30 #-}
happyOut30 :: (HappyAbsSyn ) -> HappyWrap30
happyOut30 :: HappyAbsSyn -> HappyWrap30
happyOut30 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap30
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut30 #-}
newtype HappyWrap31 = HappyWrap31 (CDecl)
happyIn31 :: (CDecl) -> (HappyAbsSyn )
happyIn31 :: CDecl -> HappyAbsSyn
happyIn31 x :: CDecl
x = HappyWrap31 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CDecl -> HappyWrap31
HappyWrap31 CDecl
x)
{-# INLINE happyIn31 #-}
happyOut31 :: (HappyAbsSyn ) -> HappyWrap31
happyOut31 :: HappyAbsSyn -> HappyWrap31
happyOut31 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap31
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut31 #-}
newtype HappyWrap32 = HappyWrap32 (CDecl)
happyIn32 :: (CDecl) -> (HappyAbsSyn )
happyIn32 :: CDecl -> HappyAbsSyn
happyIn32 x :: CDecl
x = HappyWrap32 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CDecl -> HappyWrap32
HappyWrap32 CDecl
x)
{-# INLINE happyIn32 #-}
happyOut32 :: (HappyAbsSyn ) -> HappyWrap32
happyOut32 :: HappyAbsSyn -> HappyWrap32
happyOut32 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap32
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut32 #-}
newtype HappyWrap33 = HappyWrap33 ([CDeclSpec])
happyIn33 :: ([CDeclSpec]) -> (HappyAbsSyn )
happyIn33 :: [CDeclSpec] -> HappyAbsSyn
happyIn33 x :: [CDeclSpec]
x = HappyWrap33 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# ([CDeclSpec] -> HappyWrap33
HappyWrap33 [CDeclSpec]
x)
{-# INLINE happyIn33 #-}
happyOut33 :: (HappyAbsSyn ) -> HappyWrap33
happyOut33 :: HappyAbsSyn -> HappyWrap33
happyOut33 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap33
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut33 #-}
newtype HappyWrap34 = HappyWrap34 (Reversed [CDeclSpec])
happyIn34 :: (Reversed [CDeclSpec]) -> (HappyAbsSyn )
happyIn34 :: Reversed [CDeclSpec] -> HappyAbsSyn
happyIn34 x :: Reversed [CDeclSpec]
x = HappyWrap34 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (Reversed [CDeclSpec] -> HappyWrap34
HappyWrap34 Reversed [CDeclSpec]
x)
{-# INLINE happyIn34 #-}
happyOut34 :: (HappyAbsSyn ) -> HappyWrap34
happyOut34 :: HappyAbsSyn -> HappyWrap34
happyOut34 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap34
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut34 #-}
newtype HappyWrap35 = HappyWrap35 (CDeclSpec)
happyIn35 :: (CDeclSpec) -> (HappyAbsSyn )
happyIn35 :: CDeclSpec -> HappyAbsSyn
happyIn35 x :: CDeclSpec
x = HappyWrap35 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CDeclSpec -> HappyWrap35
HappyWrap35 CDeclSpec
x)
{-# INLINE happyIn35 #-}
happyOut35 :: (HappyAbsSyn ) -> HappyWrap35
happyOut35 :: HappyAbsSyn -> HappyWrap35
happyOut35 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap35
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut35 #-}
newtype HappyWrap36 = HappyWrap36 (CStorageSpec)
happyIn36 :: (CStorageSpec) -> (HappyAbsSyn )
happyIn36 :: CStorageSpec -> HappyAbsSyn
happyIn36 x :: CStorageSpec
x = HappyWrap36 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CStorageSpec -> HappyWrap36
HappyWrap36 CStorageSpec
x)
{-# INLINE happyIn36 #-}
happyOut36 :: (HappyAbsSyn ) -> HappyWrap36
happyOut36 :: HappyAbsSyn -> HappyWrap36
happyOut36 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap36
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut36 #-}
newtype HappyWrap37 = HappyWrap37 ([CDeclSpec])
happyIn37 :: ([CDeclSpec]) -> (HappyAbsSyn )
happyIn37 :: [CDeclSpec] -> HappyAbsSyn
happyIn37 x :: [CDeclSpec]
x = HappyWrap37 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# ([CDeclSpec] -> HappyWrap37
HappyWrap37 [CDeclSpec]
x)
{-# INLINE happyIn37 #-}
happyOut37 :: (HappyAbsSyn ) -> HappyWrap37
happyOut37 :: HappyAbsSyn -> HappyWrap37
happyOut37 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap37
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut37 #-}
newtype HappyWrap38 = HappyWrap38 (CTypeSpec)
happyIn38 :: (CTypeSpec) -> (HappyAbsSyn )
happyIn38 :: CTypeSpec -> HappyAbsSyn
happyIn38 x :: CTypeSpec
x = HappyWrap38 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CTypeSpec -> HappyWrap38
HappyWrap38 CTypeSpec
x)
{-# INLINE happyIn38 #-}
happyOut38 :: (HappyAbsSyn ) -> HappyWrap38
happyOut38 :: HappyAbsSyn -> HappyWrap38
happyOut38 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap38
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut38 #-}
newtype HappyWrap39 = HappyWrap39 (Reversed [CDeclSpec])
happyIn39 :: (Reversed [CDeclSpec]) -> (HappyAbsSyn )
happyIn39 :: Reversed [CDeclSpec] -> HappyAbsSyn
happyIn39 x :: Reversed [CDeclSpec]
x = HappyWrap39 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (Reversed [CDeclSpec] -> HappyWrap39
HappyWrap39 Reversed [CDeclSpec]
x)
{-# INLINE happyIn39 #-}
happyOut39 :: (HappyAbsSyn ) -> HappyWrap39
happyOut39 :: HappyAbsSyn -> HappyWrap39
happyOut39 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap39
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut39 #-}
newtype HappyWrap40 = HappyWrap40 (Reversed [CDeclSpec])
happyIn40 :: (Reversed [CDeclSpec]) -> (HappyAbsSyn )
happyIn40 :: Reversed [CDeclSpec] -> HappyAbsSyn
happyIn40 x :: Reversed [CDeclSpec]
x = HappyWrap40 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (Reversed [CDeclSpec] -> HappyWrap40
HappyWrap40 Reversed [CDeclSpec]
x)
{-# INLINE happyIn40 #-}
happyOut40 :: (HappyAbsSyn ) -> HappyWrap40
happyOut40 :: HappyAbsSyn -> HappyWrap40
happyOut40 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap40
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut40 #-}
newtype HappyWrap41 = HappyWrap41 (Reversed [CDeclSpec])
happyIn41 :: (Reversed [CDeclSpec]) -> (HappyAbsSyn )
happyIn41 :: Reversed [CDeclSpec] -> HappyAbsSyn
happyIn41 x :: Reversed [CDeclSpec]
x = HappyWrap41 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (Reversed [CDeclSpec] -> HappyWrap41
HappyWrap41 Reversed [CDeclSpec]
x)
{-# INLINE happyIn41 #-}
happyOut41 :: (HappyAbsSyn ) -> HappyWrap41
happyOut41 :: HappyAbsSyn -> HappyWrap41
happyOut41 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap41
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut41 #-}
newtype HappyWrap42 = HappyWrap42 (Reversed [CDeclSpec])
happyIn42 :: (Reversed [CDeclSpec]) -> (HappyAbsSyn )
happyIn42 :: Reversed [CDeclSpec] -> HappyAbsSyn
happyIn42 x :: Reversed [CDeclSpec]
x = HappyWrap42 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (Reversed [CDeclSpec] -> HappyWrap42
HappyWrap42 Reversed [CDeclSpec]
x)
{-# INLINE happyIn42 #-}
happyOut42 :: (HappyAbsSyn ) -> HappyWrap42
happyOut42 :: HappyAbsSyn -> HappyWrap42
happyOut42 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap42
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut42 #-}
newtype HappyWrap43 = HappyWrap43 (Reversed [CDeclSpec])
happyIn43 :: (Reversed [CDeclSpec]) -> (HappyAbsSyn )
happyIn43 :: Reversed [CDeclSpec] -> HappyAbsSyn
happyIn43 x :: Reversed [CDeclSpec]
x = HappyWrap43 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (Reversed [CDeclSpec] -> HappyWrap43
HappyWrap43 Reversed [CDeclSpec]
x)
{-# INLINE happyIn43 #-}
happyOut43 :: (HappyAbsSyn ) -> HappyWrap43
happyOut43 :: HappyAbsSyn -> HappyWrap43
happyOut43 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap43
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut43 #-}
newtype HappyWrap44 = HappyWrap44 (Reversed [CDeclSpec])
happyIn44 :: (Reversed [CDeclSpec]) -> (HappyAbsSyn )
happyIn44 :: Reversed [CDeclSpec] -> HappyAbsSyn
happyIn44 x :: Reversed [CDeclSpec]
x = HappyWrap44 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (Reversed [CDeclSpec] -> HappyWrap44
HappyWrap44 Reversed [CDeclSpec]
x)
{-# INLINE happyIn44 #-}
happyOut44 :: (HappyAbsSyn ) -> HappyWrap44
happyOut44 :: HappyAbsSyn -> HappyWrap44
happyOut44 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap44
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut44 #-}
newtype HappyWrap45 = HappyWrap45 (CTypeSpec)
happyIn45 :: (CTypeSpec) -> (HappyAbsSyn )
happyIn45 :: CTypeSpec -> HappyAbsSyn
happyIn45 x :: CTypeSpec
x = HappyWrap45 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CTypeSpec -> HappyWrap45
HappyWrap45 CTypeSpec
x)
{-# INLINE happyIn45 #-}
happyOut45 :: (HappyAbsSyn ) -> HappyWrap45
happyOut45 :: HappyAbsSyn -> HappyWrap45
happyOut45 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap45
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut45 #-}
newtype HappyWrap46 = HappyWrap46 (CStructUnion)
happyIn46 :: (CStructUnion) -> (HappyAbsSyn )
happyIn46 :: CStructUnion -> HappyAbsSyn
happyIn46 x :: CStructUnion
x = HappyWrap46 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CStructUnion -> HappyWrap46
HappyWrap46 CStructUnion
x)
{-# INLINE happyIn46 #-}
happyOut46 :: (HappyAbsSyn ) -> HappyWrap46
happyOut46 :: HappyAbsSyn -> HappyWrap46
happyOut46 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap46
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut46 #-}
newtype HappyWrap47 = HappyWrap47 (Located CStructTag)
happyIn47 :: (Located CStructTag) -> (HappyAbsSyn )
happyIn47 :: Located CStructTag -> HappyAbsSyn
happyIn47 x :: Located CStructTag
x = HappyWrap47 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (Located CStructTag -> HappyWrap47
HappyWrap47 Located CStructTag
x)
{-# INLINE happyIn47 #-}
happyOut47 :: (HappyAbsSyn ) -> HappyWrap47
happyOut47 :: HappyAbsSyn -> HappyWrap47
happyOut47 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap47
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut47 #-}
newtype HappyWrap48 = HappyWrap48 (Reversed [CDecl])
happyIn48 :: (Reversed [CDecl]) -> (HappyAbsSyn )
happyIn48 :: Reversed [CDecl] -> HappyAbsSyn
happyIn48 x :: Reversed [CDecl]
x = HappyWrap48 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (Reversed [CDecl] -> HappyWrap48
HappyWrap48 Reversed [CDecl]
x)
{-# INLINE happyIn48 #-}
happyOut48 :: (HappyAbsSyn ) -> HappyWrap48
happyOut48 :: HappyAbsSyn -> HappyWrap48
happyOut48 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap48
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut48 #-}
newtype HappyWrap49 = HappyWrap49 (CDecl)
happyIn49 :: (CDecl) -> (HappyAbsSyn )
happyIn49 :: CDecl -> HappyAbsSyn
happyIn49 x :: CDecl
x = HappyWrap49 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CDecl -> HappyWrap49
HappyWrap49 CDecl
x)
{-# INLINE happyIn49 #-}
happyOut49 :: (HappyAbsSyn ) -> HappyWrap49
happyOut49 :: HappyAbsSyn -> HappyWrap49
happyOut49 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap49
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut49 #-}
newtype HappyWrap50 = HappyWrap50 (CDecl)
happyIn50 :: (CDecl) -> (HappyAbsSyn )
happyIn50 :: CDecl -> HappyAbsSyn
happyIn50 x :: CDecl
x = HappyWrap50 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CDecl -> HappyWrap50
HappyWrap50 CDecl
x)
{-# INLINE happyIn50 #-}
happyOut50 :: (HappyAbsSyn ) -> HappyWrap50
happyOut50 :: HappyAbsSyn -> HappyWrap50
happyOut50 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap50
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut50 #-}
newtype HappyWrap51 = HappyWrap51 (CDecl)
happyIn51 :: (CDecl) -> (HappyAbsSyn )
happyIn51 :: CDecl -> HappyAbsSyn
happyIn51 x :: CDecl
x = HappyWrap51 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CDecl -> HappyWrap51
HappyWrap51 CDecl
x)
{-# INLINE happyIn51 #-}
happyOut51 :: (HappyAbsSyn ) -> HappyWrap51
happyOut51 :: HappyAbsSyn -> HappyWrap51
happyOut51 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap51
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut51 #-}
newtype HappyWrap52 = HappyWrap52 ((Maybe CDeclr, Maybe CExpr))
happyIn52 :: ((Maybe CDeclr, Maybe CExpr)) -> (HappyAbsSyn )
happyIn52 :: (Maybe CDeclr, Maybe CExpr) -> HappyAbsSyn
happyIn52 x :: (Maybe CDeclr, Maybe CExpr)
x = HappyWrap52 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# ((Maybe CDeclr, Maybe CExpr) -> HappyWrap52
HappyWrap52 (Maybe CDeclr, Maybe CExpr)
x)
{-# INLINE happyIn52 #-}
happyOut52 :: (HappyAbsSyn ) -> HappyWrap52
happyOut52 :: HappyAbsSyn -> HappyWrap52
happyOut52 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap52
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut52 #-}
newtype HappyWrap53 = HappyWrap53 ((Maybe CDeclr, Maybe CExpr))
happyIn53 :: ((Maybe CDeclr, Maybe CExpr)) -> (HappyAbsSyn )
happyIn53 :: (Maybe CDeclr, Maybe CExpr) -> HappyAbsSyn
happyIn53 x :: (Maybe CDeclr, Maybe CExpr)
x = HappyWrap53 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# ((Maybe CDeclr, Maybe CExpr) -> HappyWrap53
HappyWrap53 (Maybe CDeclr, Maybe CExpr)
x)
{-# INLINE happyIn53 #-}
happyOut53 :: (HappyAbsSyn ) -> HappyWrap53
happyOut53 :: HappyAbsSyn -> HappyWrap53
happyOut53 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap53
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut53 #-}
newtype HappyWrap54 = HappyWrap54 (CEnum)
happyIn54 :: (CEnum) -> (HappyAbsSyn )
happyIn54 :: CEnum -> HappyAbsSyn
happyIn54 x :: CEnum
x = HappyWrap54 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CEnum -> HappyWrap54
HappyWrap54 CEnum
x)
{-# INLINE happyIn54 #-}
happyOut54 :: (HappyAbsSyn ) -> HappyWrap54
happyOut54 :: HappyAbsSyn -> HappyWrap54
happyOut54 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap54
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut54 #-}
newtype HappyWrap55 = HappyWrap55 (Reversed [(Ident, Maybe CExpr)])
happyIn55 :: (Reversed [(Ident, Maybe CExpr)]) -> (HappyAbsSyn )
happyIn55 :: Reversed [(Ident, Maybe CExpr)] -> HappyAbsSyn
happyIn55 x :: Reversed [(Ident, Maybe CExpr)]
x = HappyWrap55 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (Reversed [(Ident, Maybe CExpr)] -> HappyWrap55
HappyWrap55 Reversed [(Ident, Maybe CExpr)]
x)
{-# INLINE happyIn55 #-}
happyOut55 :: (HappyAbsSyn ) -> HappyWrap55
happyOut55 :: HappyAbsSyn -> HappyWrap55
happyOut55 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap55
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut55 #-}
newtype HappyWrap56 = HappyWrap56 ((Ident, Maybe CExpr))
happyIn56 :: ((Ident, Maybe CExpr)) -> (HappyAbsSyn )
happyIn56 :: (Ident, Maybe CExpr) -> HappyAbsSyn
happyIn56 x :: (Ident, Maybe CExpr)
x = HappyWrap56 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# ((Ident, Maybe CExpr) -> HappyWrap56
HappyWrap56 (Ident, Maybe CExpr)
x)
{-# INLINE happyIn56 #-}
happyOut56 :: (HappyAbsSyn ) -> HappyWrap56
happyOut56 :: HappyAbsSyn -> HappyWrap56
happyOut56 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap56
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut56 #-}
newtype HappyWrap57 = HappyWrap57 (CTypeQual)
happyIn57 :: (CTypeQual) -> (HappyAbsSyn )
happyIn57 :: CTypeQual -> HappyAbsSyn
happyIn57 x :: CTypeQual
x = HappyWrap57 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CTypeQual -> HappyWrap57
HappyWrap57 CTypeQual
x)
{-# INLINE happyIn57 #-}
happyOut57 :: (HappyAbsSyn ) -> HappyWrap57
happyOut57 :: HappyAbsSyn -> HappyWrap57
happyOut57 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap57
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut57 #-}
newtype HappyWrap58 = HappyWrap58 (CDeclr)
happyIn58 :: (CDeclr) -> (HappyAbsSyn )
happyIn58 :: CDeclr -> HappyAbsSyn
happyIn58 x :: CDeclr
x = HappyWrap58 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CDeclr -> HappyWrap58
HappyWrap58 CDeclr
x)
{-# INLINE happyIn58 #-}
happyOut58 :: (HappyAbsSyn ) -> HappyWrap58
happyOut58 :: HappyAbsSyn -> HappyWrap58
happyOut58 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap58
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut58 #-}
newtype HappyWrap59 = HappyWrap59 (())
happyIn59 :: (()) -> (HappyAbsSyn )
happyIn59 :: () -> HappyAbsSyn
happyIn59 x :: ()
x = HappyWrap59 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (() -> HappyWrap59
HappyWrap59 ()
x)
{-# INLINE happyIn59 #-}
happyOut59 :: (HappyAbsSyn ) -> HappyWrap59
happyOut59 :: HappyAbsSyn -> HappyWrap59
happyOut59 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap59
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut59 #-}
newtype HappyWrap60 = HappyWrap60 (CDeclr)
happyIn60 :: (CDeclr) -> (HappyAbsSyn )
happyIn60 :: CDeclr -> HappyAbsSyn
happyIn60 x :: CDeclr
x = HappyWrap60 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CDeclr -> HappyWrap60
HappyWrap60 CDeclr
x)
{-# INLINE happyIn60 #-}
happyOut60 :: (HappyAbsSyn ) -> HappyWrap60
happyOut60 :: HappyAbsSyn -> HappyWrap60
happyOut60 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap60
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut60 #-}
newtype HappyWrap61 = HappyWrap61 (CDeclr)
happyIn61 :: (CDeclr) -> (HappyAbsSyn )
happyIn61 :: CDeclr -> HappyAbsSyn
happyIn61 x :: CDeclr
x = HappyWrap61 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CDeclr -> HappyWrap61
HappyWrap61 CDeclr
x)
{-# INLINE happyIn61 #-}
happyOut61 :: (HappyAbsSyn ) -> HappyWrap61
happyOut61 :: HappyAbsSyn -> HappyWrap61
happyOut61 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap61
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut61 #-}
newtype HappyWrap62 = HappyWrap62 (CDeclr)
happyIn62 :: (CDeclr) -> (HappyAbsSyn )
happyIn62 :: CDeclr -> HappyAbsSyn
happyIn62 x :: CDeclr
x = HappyWrap62 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CDeclr -> HappyWrap62
HappyWrap62 CDeclr
x)
{-# INLINE happyIn62 #-}
happyOut62 :: (HappyAbsSyn ) -> HappyWrap62
happyOut62 :: HappyAbsSyn -> HappyWrap62
happyOut62 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap62
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut62 #-}
newtype HappyWrap63 = HappyWrap63 (CDeclr)
happyIn63 :: (CDeclr) -> (HappyAbsSyn )
happyIn63 :: CDeclr -> HappyAbsSyn
happyIn63 x :: CDeclr
x = HappyWrap63 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CDeclr -> HappyWrap63
HappyWrap63 CDeclr
x)
{-# INLINE happyIn63 #-}
happyOut63 :: (HappyAbsSyn ) -> HappyWrap63
happyOut63 :: HappyAbsSyn -> HappyWrap63
happyOut63 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap63
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut63 #-}
newtype HappyWrap64 = HappyWrap64 (CDeclr)
happyIn64 :: (CDeclr) -> (HappyAbsSyn )
happyIn64 :: CDeclr -> HappyAbsSyn
happyIn64 x :: CDeclr
x = HappyWrap64 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CDeclr -> HappyWrap64
HappyWrap64 CDeclr
x)
{-# INLINE happyIn64 #-}
happyOut64 :: (HappyAbsSyn ) -> HappyWrap64
happyOut64 :: HappyAbsSyn -> HappyWrap64
happyOut64 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap64
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut64 #-}
newtype HappyWrap65 = HappyWrap65 (CDeclr)
happyIn65 :: (CDeclr) -> (HappyAbsSyn )
happyIn65 :: CDeclr -> HappyAbsSyn
happyIn65 x :: CDeclr
x = HappyWrap65 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CDeclr -> HappyWrap65
HappyWrap65 CDeclr
x)
{-# INLINE happyIn65 #-}
happyOut65 :: (HappyAbsSyn ) -> HappyWrap65
happyOut65 :: HappyAbsSyn -> HappyWrap65
happyOut65 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap65
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut65 #-}
newtype HappyWrap66 = HappyWrap66 (CDeclr)
happyIn66 :: (CDeclr) -> (HappyAbsSyn )
happyIn66 :: CDeclr -> HappyAbsSyn
happyIn66 x :: CDeclr
x = HappyWrap66 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CDeclr -> HappyWrap66
HappyWrap66 CDeclr
x)
{-# INLINE happyIn66 #-}
happyOut66 :: (HappyAbsSyn ) -> HappyWrap66
happyOut66 :: HappyAbsSyn -> HappyWrap66
happyOut66 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap66
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut66 #-}
newtype HappyWrap67 = HappyWrap67 (CDeclr)
happyIn67 :: (CDeclr) -> (HappyAbsSyn )
happyIn67 :: CDeclr -> HappyAbsSyn
happyIn67 x :: CDeclr
x = HappyWrap67 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CDeclr -> HappyWrap67
HappyWrap67 CDeclr
x)
{-# INLINE happyIn67 #-}
happyOut67 :: (HappyAbsSyn ) -> HappyWrap67
happyOut67 :: HappyAbsSyn -> HappyWrap67
happyOut67 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap67
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut67 #-}
newtype HappyWrap68 = HappyWrap68 (CDeclr)
happyIn68 :: (CDeclr) -> (HappyAbsSyn )
happyIn68 :: CDeclr -> HappyAbsSyn
happyIn68 x :: CDeclr
x = HappyWrap68 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CDeclr -> HappyWrap68
HappyWrap68 CDeclr
x)
{-# INLINE happyIn68 #-}
happyOut68 :: (HappyAbsSyn ) -> HappyWrap68
happyOut68 :: HappyAbsSyn -> HappyWrap68
happyOut68 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap68
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut68 #-}
newtype HappyWrap69 = HappyWrap69 (CDeclr)
happyIn69 :: (CDeclr) -> (HappyAbsSyn )
happyIn69 :: CDeclr -> HappyAbsSyn
happyIn69 x :: CDeclr
x = HappyWrap69 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CDeclr -> HappyWrap69
HappyWrap69 CDeclr
x)
{-# INLINE happyIn69 #-}
happyOut69 :: (HappyAbsSyn ) -> HappyWrap69
happyOut69 :: HappyAbsSyn -> HappyWrap69
happyOut69 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap69
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut69 #-}
newtype HappyWrap70 = HappyWrap70 (CDeclr)
happyIn70 :: (CDeclr) -> (HappyAbsSyn )
happyIn70 :: CDeclr -> HappyAbsSyn
happyIn70 x :: CDeclr
x = HappyWrap70 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CDeclr -> HappyWrap70
HappyWrap70 CDeclr
x)
{-# INLINE happyIn70 #-}
happyOut70 :: (HappyAbsSyn ) -> HappyWrap70
happyOut70 :: HappyAbsSyn -> HappyWrap70
happyOut70 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap70
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut70 #-}
newtype HappyWrap71 = HappyWrap71 (CDeclr)
happyIn71 :: (CDeclr) -> (HappyAbsSyn )
happyIn71 :: CDeclr -> HappyAbsSyn
happyIn71 x :: CDeclr
x = HappyWrap71 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CDeclr -> HappyWrap71
HappyWrap71 CDeclr
x)
{-# INLINE happyIn71 #-}
happyOut71 :: (HappyAbsSyn ) -> HappyWrap71
happyOut71 :: HappyAbsSyn -> HappyWrap71
happyOut71 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap71
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut71 #-}
newtype HappyWrap72 = HappyWrap72 (CDeclr)
happyIn72 :: (CDeclr) -> (HappyAbsSyn )
happyIn72 :: CDeclr -> HappyAbsSyn
happyIn72 x :: CDeclr
x = HappyWrap72 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CDeclr -> HappyWrap72
HappyWrap72 CDeclr
x)
{-# INLINE happyIn72 #-}
happyOut72 :: (HappyAbsSyn ) -> HappyWrap72
happyOut72 :: HappyAbsSyn -> HappyWrap72
happyOut72 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap72
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut72 #-}
newtype HappyWrap73 = HappyWrap73 (Reversed [CTypeQual])
happyIn73 :: (Reversed [CTypeQual]) -> (HappyAbsSyn )
happyIn73 :: Reversed [CTypeQual] -> HappyAbsSyn
happyIn73 x :: Reversed [CTypeQual]
x = HappyWrap73 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (Reversed [CTypeQual] -> HappyWrap73
HappyWrap73 Reversed [CTypeQual]
x)
{-# INLINE happyIn73 #-}
happyOut73 :: (HappyAbsSyn ) -> HappyWrap73
happyOut73 :: HappyAbsSyn -> HappyWrap73
happyOut73 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap73
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut73 #-}
newtype HappyWrap74 = HappyWrap74 (([CDecl], Bool))
happyIn74 :: (([CDecl], Bool)) -> (HappyAbsSyn )
happyIn74 :: ([CDecl], Bool) -> HappyAbsSyn
happyIn74 x :: ([CDecl], Bool)
x = HappyWrap74 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (([CDecl], Bool) -> HappyWrap74
HappyWrap74 ([CDecl], Bool)
x)
{-# INLINE happyIn74 #-}
happyOut74 :: (HappyAbsSyn ) -> HappyWrap74
happyOut74 :: HappyAbsSyn -> HappyWrap74
happyOut74 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap74
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut74 #-}
newtype HappyWrap75 = HappyWrap75 (Reversed [CDecl])
happyIn75 :: (Reversed [CDecl]) -> (HappyAbsSyn )
happyIn75 :: Reversed [CDecl] -> HappyAbsSyn
happyIn75 x :: Reversed [CDecl]
x = HappyWrap75 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (Reversed [CDecl] -> HappyWrap75
HappyWrap75 Reversed [CDecl]
x)
{-# INLINE happyIn75 #-}
happyOut75 :: (HappyAbsSyn ) -> HappyWrap75
happyOut75 :: HappyAbsSyn -> HappyWrap75
happyOut75 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap75
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut75 #-}
newtype HappyWrap76 = HappyWrap76 (CDecl)
happyIn76 :: (CDecl) -> (HappyAbsSyn )
happyIn76 :: CDecl -> HappyAbsSyn
happyIn76 x :: CDecl
x = HappyWrap76 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CDecl -> HappyWrap76
HappyWrap76 CDecl
x)
{-# INLINE happyIn76 #-}
happyOut76 :: (HappyAbsSyn ) -> HappyWrap76
happyOut76 :: HappyAbsSyn -> HappyWrap76
happyOut76 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap76
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut76 #-}
newtype HappyWrap77 = HappyWrap77 (Reversed [Ident])
happyIn77 :: (Reversed [Ident]) -> (HappyAbsSyn )
happyIn77 :: Reversed [Ident] -> HappyAbsSyn
happyIn77 x :: Reversed [Ident]
x = HappyWrap77 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (Reversed [Ident] -> HappyWrap77
HappyWrap77 Reversed [Ident]
x)
{-# INLINE happyIn77 #-}
happyOut77 :: (HappyAbsSyn ) -> HappyWrap77
happyOut77 :: HappyAbsSyn -> HappyWrap77
happyOut77 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap77
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut77 #-}
newtype HappyWrap78 = HappyWrap78 (CDecl)
happyIn78 :: (CDecl) -> (HappyAbsSyn )
happyIn78 :: CDecl -> HappyAbsSyn
happyIn78 x :: CDecl
x = HappyWrap78 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CDecl -> HappyWrap78
HappyWrap78 CDecl
x)
{-# INLINE happyIn78 #-}
happyOut78 :: (HappyAbsSyn ) -> HappyWrap78
happyOut78 :: HappyAbsSyn -> HappyWrap78
happyOut78 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap78
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut78 #-}
newtype HappyWrap79 = HappyWrap79 (CDeclr)
happyIn79 :: (CDeclr) -> (HappyAbsSyn )
happyIn79 :: CDeclr -> HappyAbsSyn
happyIn79 x :: CDeclr
x = HappyWrap79 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CDeclr -> HappyWrap79
HappyWrap79 CDeclr
x)
{-# INLINE happyIn79 #-}
happyOut79 :: (HappyAbsSyn ) -> HappyWrap79
happyOut79 :: HappyAbsSyn -> HappyWrap79
happyOut79 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap79
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut79 #-}
newtype HappyWrap80 = HappyWrap80 (CDeclr -> CDeclr)
happyIn80 :: (CDeclr -> CDeclr) -> (HappyAbsSyn )
happyIn80 :: (CDeclr -> CDeclr) -> HappyAbsSyn
happyIn80 x :: CDeclr -> CDeclr
x = HappyWrap80 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# ((CDeclr -> CDeclr) -> HappyWrap80
HappyWrap80 CDeclr -> CDeclr
x)
{-# INLINE happyIn80 #-}
happyOut80 :: (HappyAbsSyn ) -> HappyWrap80
happyOut80 :: HappyAbsSyn -> HappyWrap80
happyOut80 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap80
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut80 #-}
newtype HappyWrap81 = HappyWrap81 (CDeclr -> CDeclr)
happyIn81 :: (CDeclr -> CDeclr) -> (HappyAbsSyn )
happyIn81 :: (CDeclr -> CDeclr) -> HappyAbsSyn
happyIn81 x :: CDeclr -> CDeclr
x = HappyWrap81 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# ((CDeclr -> CDeclr) -> HappyWrap81
HappyWrap81 CDeclr -> CDeclr
x)
{-# INLINE happyIn81 #-}
happyOut81 :: (HappyAbsSyn ) -> HappyWrap81
happyOut81 :: HappyAbsSyn -> HappyWrap81
happyOut81 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap81
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut81 #-}
newtype HappyWrap82 = HappyWrap82 (CDeclr -> CDeclr)
happyIn82 :: (CDeclr -> CDeclr) -> (HappyAbsSyn )
happyIn82 :: (CDeclr -> CDeclr) -> HappyAbsSyn
happyIn82 x :: CDeclr -> CDeclr
x = HappyWrap82 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# ((CDeclr -> CDeclr) -> HappyWrap82
HappyWrap82 CDeclr -> CDeclr
x)
{-# INLINE happyIn82 #-}
happyOut82 :: (HappyAbsSyn ) -> HappyWrap82
happyOut82 :: HappyAbsSyn -> HappyWrap82
happyOut82 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap82
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut82 #-}
newtype HappyWrap83 = HappyWrap83 (CDeclr)
happyIn83 :: (CDeclr) -> (HappyAbsSyn )
happyIn83 :: CDeclr -> HappyAbsSyn
happyIn83 x :: CDeclr
x = HappyWrap83 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CDeclr -> HappyWrap83
HappyWrap83 CDeclr
x)
{-# INLINE happyIn83 #-}
happyOut83 :: (HappyAbsSyn ) -> HappyWrap83
happyOut83 :: HappyAbsSyn -> HappyWrap83
happyOut83 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap83
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut83 #-}
newtype HappyWrap84 = HappyWrap84 (CDeclr)
happyIn84 :: (CDeclr) -> (HappyAbsSyn )
happyIn84 :: CDeclr -> HappyAbsSyn
happyIn84 x :: CDeclr
x = HappyWrap84 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CDeclr -> HappyWrap84
HappyWrap84 CDeclr
x)
{-# INLINE happyIn84 #-}
happyOut84 :: (HappyAbsSyn ) -> HappyWrap84
happyOut84 :: HappyAbsSyn -> HappyWrap84
happyOut84 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap84
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut84 #-}
newtype HappyWrap85 = HappyWrap85 (CInit)
happyIn85 :: (CInit) -> (HappyAbsSyn )
happyIn85 :: CInit -> HappyAbsSyn
happyIn85 x :: CInit
x = HappyWrap85 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CInit -> HappyWrap85
HappyWrap85 CInit
x)
{-# INLINE happyIn85 #-}
happyOut85 :: (HappyAbsSyn ) -> HappyWrap85
happyOut85 :: HappyAbsSyn -> HappyWrap85
happyOut85 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap85
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut85 #-}
newtype HappyWrap86 = HappyWrap86 (Maybe CInit)
happyIn86 :: (Maybe CInit) -> (HappyAbsSyn )
happyIn86 :: Maybe CInit -> HappyAbsSyn
happyIn86 x :: Maybe CInit
x = HappyWrap86 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (Maybe CInit -> HappyWrap86
HappyWrap86 Maybe CInit
x)
{-# INLINE happyIn86 #-}
happyOut86 :: (HappyAbsSyn ) -> HappyWrap86
happyOut86 :: HappyAbsSyn -> HappyWrap86
happyOut86 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap86
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut86 #-}
newtype HappyWrap87 = HappyWrap87 (Reversed CInitList)
happyIn87 :: (Reversed CInitList) -> (HappyAbsSyn )
happyIn87 :: Reversed CInitList -> HappyAbsSyn
happyIn87 x :: Reversed CInitList
x = HappyWrap87 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (Reversed CInitList -> HappyWrap87
HappyWrap87 Reversed CInitList
x)
{-# INLINE happyIn87 #-}
happyOut87 :: (HappyAbsSyn ) -> HappyWrap87
happyOut87 :: HappyAbsSyn -> HappyWrap87
happyOut87 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap87
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut87 #-}
newtype HappyWrap88 = HappyWrap88 ([CDesignator])
happyIn88 :: ([CDesignator]) -> (HappyAbsSyn )
happyIn88 :: [CDesignator] -> HappyAbsSyn
happyIn88 x :: [CDesignator]
x = HappyWrap88 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# ([CDesignator] -> HappyWrap88
HappyWrap88 [CDesignator]
x)
{-# INLINE happyIn88 #-}
happyOut88 :: (HappyAbsSyn ) -> HappyWrap88
happyOut88 :: HappyAbsSyn -> HappyWrap88
happyOut88 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap88
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut88 #-}
newtype HappyWrap89 = HappyWrap89 (Reversed [CDesignator])
happyIn89 :: (Reversed [CDesignator]) -> (HappyAbsSyn )
happyIn89 :: Reversed [CDesignator] -> HappyAbsSyn
happyIn89 x :: Reversed [CDesignator]
x = HappyWrap89 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (Reversed [CDesignator] -> HappyWrap89
HappyWrap89 Reversed [CDesignator]
x)
{-# INLINE happyIn89 #-}
happyOut89 :: (HappyAbsSyn ) -> HappyWrap89
happyOut89 :: HappyAbsSyn -> HappyWrap89
happyOut89 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap89
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut89 #-}
newtype HappyWrap90 = HappyWrap90 (CDesignator)
happyIn90 :: (CDesignator) -> (HappyAbsSyn )
happyIn90 :: CDesignator -> HappyAbsSyn
happyIn90 x :: CDesignator
x = HappyWrap90 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CDesignator -> HappyWrap90
HappyWrap90 CDesignator
x)
{-# INLINE happyIn90 #-}
happyOut90 :: (HappyAbsSyn ) -> HappyWrap90
happyOut90 :: HappyAbsSyn -> HappyWrap90
happyOut90 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap90
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut90 #-}
newtype HappyWrap91 = HappyWrap91 (CDesignator)
happyIn91 :: (CDesignator) -> (HappyAbsSyn )
happyIn91 :: CDesignator -> HappyAbsSyn
happyIn91 x :: CDesignator
x = HappyWrap91 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CDesignator -> HappyWrap91
HappyWrap91 CDesignator
x)
{-# INLINE happyIn91 #-}
happyOut91 :: (HappyAbsSyn ) -> HappyWrap91
happyOut91 :: HappyAbsSyn -> HappyWrap91
happyOut91 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap91
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut91 #-}
newtype HappyWrap92 = HappyWrap92 (CExpr)
happyIn92 :: (CExpr) -> (HappyAbsSyn )
happyIn92 :: CExpr -> HappyAbsSyn
happyIn92 x :: CExpr
x = HappyWrap92 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CExpr -> HappyWrap92
HappyWrap92 CExpr
x)
{-# INLINE happyIn92 #-}
happyOut92 :: (HappyAbsSyn ) -> HappyWrap92
happyOut92 :: HappyAbsSyn -> HappyWrap92
happyOut92 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap92
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut92 #-}
newtype HappyWrap93 = HappyWrap93 (())
happyIn93 :: (()) -> (HappyAbsSyn )
happyIn93 :: () -> HappyAbsSyn
happyIn93 x :: ()
x = HappyWrap93 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (() -> HappyWrap93
HappyWrap93 ()
x)
{-# INLINE happyIn93 #-}
happyOut93 :: (HappyAbsSyn ) -> HappyWrap93
happyOut93 :: HappyAbsSyn -> HappyWrap93
happyOut93 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap93
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut93 #-}
newtype HappyWrap94 = HappyWrap94 (CExpr)
happyIn94 :: (CExpr) -> (HappyAbsSyn )
happyIn94 :: CExpr -> HappyAbsSyn
happyIn94 x :: CExpr
x = HappyWrap94 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CExpr -> HappyWrap94
HappyWrap94 CExpr
x)
{-# INLINE happyIn94 #-}
happyOut94 :: (HappyAbsSyn ) -> HappyWrap94
happyOut94 :: HappyAbsSyn -> HappyWrap94
happyOut94 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap94
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut94 #-}
newtype HappyWrap95 = HappyWrap95 (Reversed [CExpr])
happyIn95 :: (Reversed [CExpr]) -> (HappyAbsSyn )
happyIn95 :: Reversed [CExpr] -> HappyAbsSyn
happyIn95 x :: Reversed [CExpr]
x = HappyWrap95 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (Reversed [CExpr] -> HappyWrap95
HappyWrap95 Reversed [CExpr]
x)
{-# INLINE happyIn95 #-}
happyOut95 :: (HappyAbsSyn ) -> HappyWrap95
happyOut95 :: HappyAbsSyn -> HappyWrap95
happyOut95 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap95
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut95 #-}
newtype HappyWrap96 = HappyWrap96 (CExpr)
happyIn96 :: (CExpr) -> (HappyAbsSyn )
happyIn96 :: CExpr -> HappyAbsSyn
happyIn96 x :: CExpr
x = HappyWrap96 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CExpr -> HappyWrap96
HappyWrap96 CExpr
x)
{-# INLINE happyIn96 #-}
happyOut96 :: (HappyAbsSyn ) -> HappyWrap96
happyOut96 :: HappyAbsSyn -> HappyWrap96
happyOut96 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap96
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut96 #-}
newtype HappyWrap97 = HappyWrap97 (Located CUnaryOp)
happyIn97 :: (Located CUnaryOp) -> (HappyAbsSyn )
happyIn97 :: Located CUnaryOp -> HappyAbsSyn
happyIn97 x :: Located CUnaryOp
x = HappyWrap97 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (Located CUnaryOp -> HappyWrap97
HappyWrap97 Located CUnaryOp
x)
{-# INLINE happyIn97 #-}
happyOut97 :: (HappyAbsSyn ) -> HappyWrap97
happyOut97 :: HappyAbsSyn -> HappyWrap97
happyOut97 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap97
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut97 #-}
newtype HappyWrap98 = HappyWrap98 (CExpr)
happyIn98 :: (CExpr) -> (HappyAbsSyn )
happyIn98 :: CExpr -> HappyAbsSyn
happyIn98 x :: CExpr
x = HappyWrap98 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CExpr -> HappyWrap98
HappyWrap98 CExpr
x)
{-# INLINE happyIn98 #-}
happyOut98 :: (HappyAbsSyn ) -> HappyWrap98
happyOut98 :: HappyAbsSyn -> HappyWrap98
happyOut98 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap98
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut98 #-}
newtype HappyWrap99 = HappyWrap99 (CExpr)
happyIn99 :: (CExpr) -> (HappyAbsSyn )
happyIn99 :: CExpr -> HappyAbsSyn
happyIn99 x :: CExpr
x = HappyWrap99 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CExpr -> HappyWrap99
HappyWrap99 CExpr
x)
{-# INLINE happyIn99 #-}
happyOut99 :: (HappyAbsSyn ) -> HappyWrap99
happyOut99 :: HappyAbsSyn -> HappyWrap99
happyOut99 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap99
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut99 #-}
newtype HappyWrap100 = HappyWrap100 (CExpr)
happyIn100 :: (CExpr) -> (HappyAbsSyn )
happyIn100 :: CExpr -> HappyAbsSyn
happyIn100 x :: CExpr
x = HappyWrap100 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CExpr -> HappyWrap100
HappyWrap100 CExpr
x)
{-# INLINE happyIn100 #-}
happyOut100 :: (HappyAbsSyn ) -> HappyWrap100
happyOut100 :: HappyAbsSyn -> HappyWrap100
happyOut100 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap100
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut100 #-}
newtype HappyWrap101 = HappyWrap101 (CExpr)
happyIn101 :: (CExpr) -> (HappyAbsSyn )
happyIn101 :: CExpr -> HappyAbsSyn
happyIn101 x :: CExpr
x = HappyWrap101 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CExpr -> HappyWrap101
HappyWrap101 CExpr
x)
{-# INLINE happyIn101 #-}
happyOut101 :: (HappyAbsSyn ) -> HappyWrap101
happyOut101 :: HappyAbsSyn -> HappyWrap101
happyOut101 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap101
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut101 #-}
newtype HappyWrap102 = HappyWrap102 (CExpr)
happyIn102 :: (CExpr) -> (HappyAbsSyn )
happyIn102 :: CExpr -> HappyAbsSyn
happyIn102 x :: CExpr
x = HappyWrap102 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CExpr -> HappyWrap102
HappyWrap102 CExpr
x)
{-# INLINE happyIn102 #-}
happyOut102 :: (HappyAbsSyn ) -> HappyWrap102
happyOut102 :: HappyAbsSyn -> HappyWrap102
happyOut102 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap102
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut102 #-}
newtype HappyWrap103 = HappyWrap103 (CExpr)
happyIn103 :: (CExpr) -> (HappyAbsSyn )
happyIn103 :: CExpr -> HappyAbsSyn
happyIn103 x :: CExpr
x = HappyWrap103 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CExpr -> HappyWrap103
HappyWrap103 CExpr
x)
{-# INLINE happyIn103 #-}
happyOut103 :: (HappyAbsSyn ) -> HappyWrap103
happyOut103 :: HappyAbsSyn -> HappyWrap103
happyOut103 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap103
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut103 #-}
newtype HappyWrap104 = HappyWrap104 (CExpr)
happyIn104 :: (CExpr) -> (HappyAbsSyn )
happyIn104 :: CExpr -> HappyAbsSyn
happyIn104 x :: CExpr
x = HappyWrap104 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CExpr -> HappyWrap104
HappyWrap104 CExpr
x)
{-# INLINE happyIn104 #-}
happyOut104 :: (HappyAbsSyn ) -> HappyWrap104
happyOut104 :: HappyAbsSyn -> HappyWrap104
happyOut104 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap104
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut104 #-}
newtype HappyWrap105 = HappyWrap105 (CExpr)
happyIn105 :: (CExpr) -> (HappyAbsSyn )
happyIn105 :: CExpr -> HappyAbsSyn
happyIn105 x :: CExpr
x = HappyWrap105 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CExpr -> HappyWrap105
HappyWrap105 CExpr
x)
{-# INLINE happyIn105 #-}
happyOut105 :: (HappyAbsSyn ) -> HappyWrap105
happyOut105 :: HappyAbsSyn -> HappyWrap105
happyOut105 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap105
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut105 #-}
newtype HappyWrap106 = HappyWrap106 (CExpr)
happyIn106 :: (CExpr) -> (HappyAbsSyn )
happyIn106 :: CExpr -> HappyAbsSyn
happyIn106 x :: CExpr
x = HappyWrap106 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CExpr -> HappyWrap106
HappyWrap106 CExpr
x)
{-# INLINE happyIn106 #-}
happyOut106 :: (HappyAbsSyn ) -> HappyWrap106
happyOut106 :: HappyAbsSyn -> HappyWrap106
happyOut106 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap106
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut106 #-}
newtype HappyWrap107 = HappyWrap107 (CExpr)
happyIn107 :: (CExpr) -> (HappyAbsSyn )
happyIn107 :: CExpr -> HappyAbsSyn
happyIn107 x :: CExpr
x = HappyWrap107 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CExpr -> HappyWrap107
HappyWrap107 CExpr
x)
{-# INLINE happyIn107 #-}
happyOut107 :: (HappyAbsSyn ) -> HappyWrap107
happyOut107 :: HappyAbsSyn -> HappyWrap107
happyOut107 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap107
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut107 #-}
newtype HappyWrap108 = HappyWrap108 (CExpr)
happyIn108 :: (CExpr) -> (HappyAbsSyn )
happyIn108 :: CExpr -> HappyAbsSyn
happyIn108 x :: CExpr
x = HappyWrap108 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CExpr -> HappyWrap108
HappyWrap108 CExpr
x)
{-# INLINE happyIn108 #-}
happyOut108 :: (HappyAbsSyn ) -> HappyWrap108
happyOut108 :: HappyAbsSyn -> HappyWrap108
happyOut108 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap108
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut108 #-}
newtype HappyWrap109 = HappyWrap109 (CExpr)
happyIn109 :: (CExpr) -> (HappyAbsSyn )
happyIn109 :: CExpr -> HappyAbsSyn
happyIn109 x :: CExpr
x = HappyWrap109 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CExpr -> HappyWrap109
HappyWrap109 CExpr
x)
{-# INLINE happyIn109 #-}
happyOut109 :: (HappyAbsSyn ) -> HappyWrap109
happyOut109 :: HappyAbsSyn -> HappyWrap109
happyOut109 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap109
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut109 #-}
newtype HappyWrap110 = HappyWrap110 (CExpr)
happyIn110 :: (CExpr) -> (HappyAbsSyn )
happyIn110 :: CExpr -> HappyAbsSyn
happyIn110 x :: CExpr
x = HappyWrap110 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CExpr -> HappyWrap110
HappyWrap110 CExpr
x)
{-# INLINE happyIn110 #-}
happyOut110 :: (HappyAbsSyn ) -> HappyWrap110
happyOut110 :: HappyAbsSyn -> HappyWrap110
happyOut110 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap110
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut110 #-}
newtype HappyWrap111 = HappyWrap111 (Located CAssignOp)
happyIn111 :: (Located CAssignOp) -> (HappyAbsSyn )
happyIn111 :: Located CAssignOp -> HappyAbsSyn
happyIn111 x :: Located CAssignOp
x = HappyWrap111 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (Located CAssignOp -> HappyWrap111
HappyWrap111 Located CAssignOp
x)
{-# INLINE happyIn111 #-}
happyOut111 :: (HappyAbsSyn ) -> HappyWrap111
happyOut111 :: HappyAbsSyn -> HappyWrap111
happyOut111 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap111
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut111 #-}
newtype HappyWrap112 = HappyWrap112 (CExpr)
happyIn112 :: (CExpr) -> (HappyAbsSyn )
happyIn112 :: CExpr -> HappyAbsSyn
happyIn112 x :: CExpr
x = HappyWrap112 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CExpr -> HappyWrap112
HappyWrap112 CExpr
x)
{-# INLINE happyIn112 #-}
happyOut112 :: (HappyAbsSyn ) -> HappyWrap112
happyOut112 :: HappyAbsSyn -> HappyWrap112
happyOut112 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap112
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut112 #-}
newtype HappyWrap113 = HappyWrap113 (Reversed [CExpr])
happyIn113 :: (Reversed [CExpr]) -> (HappyAbsSyn )
happyIn113 :: Reversed [CExpr] -> HappyAbsSyn
happyIn113 x :: Reversed [CExpr]
x = HappyWrap113 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (Reversed [CExpr] -> HappyWrap113
HappyWrap113 Reversed [CExpr]
x)
{-# INLINE happyIn113 #-}
happyOut113 :: (HappyAbsSyn ) -> HappyWrap113
happyOut113 :: HappyAbsSyn -> HappyWrap113
happyOut113 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap113
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut113 #-}
newtype HappyWrap114 = HappyWrap114 (Maybe CExpr)
happyIn114 :: (Maybe CExpr) -> (HappyAbsSyn )
happyIn114 :: Maybe CExpr -> HappyAbsSyn
happyIn114 x :: Maybe CExpr
x = HappyWrap114 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (Maybe CExpr -> HappyWrap114
HappyWrap114 Maybe CExpr
x)
{-# INLINE happyIn114 #-}
happyOut114 :: (HappyAbsSyn ) -> HappyWrap114
happyOut114 :: HappyAbsSyn -> HappyWrap114
happyOut114 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap114
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut114 #-}
newtype HappyWrap115 = HappyWrap115 (Maybe CExpr)
happyIn115 :: (Maybe CExpr) -> (HappyAbsSyn )
happyIn115 :: Maybe CExpr -> HappyAbsSyn
happyIn115 x :: Maybe CExpr
x = HappyWrap115 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (Maybe CExpr -> HappyWrap115
HappyWrap115 Maybe CExpr
x)
{-# INLINE happyIn115 #-}
happyOut115 :: (HappyAbsSyn ) -> HappyWrap115
happyOut115 :: HappyAbsSyn -> HappyWrap115
happyOut115 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap115
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut115 #-}
newtype HappyWrap116 = HappyWrap116 (CExpr)
happyIn116 :: (CExpr) -> (HappyAbsSyn )
happyIn116 :: CExpr -> HappyAbsSyn
happyIn116 x :: CExpr
x = HappyWrap116 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CExpr -> HappyWrap116
HappyWrap116 CExpr
x)
{-# INLINE happyIn116 #-}
happyOut116 :: (HappyAbsSyn ) -> HappyWrap116
happyOut116 :: HappyAbsSyn -> HappyWrap116
happyOut116 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap116
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut116 #-}
newtype HappyWrap117 = HappyWrap117 (CConst)
happyIn117 :: (CConst) -> (HappyAbsSyn )
happyIn117 :: CConst -> HappyAbsSyn
happyIn117 x :: CConst
x = HappyWrap117 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CConst -> HappyWrap117
HappyWrap117 CConst
x)
{-# INLINE happyIn117 #-}
happyOut117 :: (HappyAbsSyn ) -> HappyWrap117
happyOut117 :: HappyAbsSyn -> HappyWrap117
happyOut117 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap117
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut117 #-}
newtype HappyWrap118 = HappyWrap118 (CConst)
happyIn118 :: (CConst) -> (HappyAbsSyn )
happyIn118 :: CConst -> HappyAbsSyn
happyIn118 x :: CConst
x = HappyWrap118 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (CConst -> HappyWrap118
HappyWrap118 CConst
x)
{-# INLINE happyIn118 #-}
happyOut118 :: (HappyAbsSyn ) -> HappyWrap118
happyOut118 :: HappyAbsSyn -> HappyWrap118
happyOut118 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap118
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut118 #-}
newtype HappyWrap119 = HappyWrap119 (Reversed [String])
happyIn119 :: (Reversed [String]) -> (HappyAbsSyn )
happyIn119 :: Reversed [String] -> HappyAbsSyn
happyIn119 x :: Reversed [String]
x = HappyWrap119 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (Reversed [String] -> HappyWrap119
HappyWrap119 Reversed [String]
x)
{-# INLINE happyIn119 #-}
happyOut119 :: (HappyAbsSyn ) -> HappyWrap119
happyOut119 :: HappyAbsSyn -> HappyWrap119
happyOut119 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap119
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut119 #-}
newtype HappyWrap120 = HappyWrap120 (Ident)
happyIn120 :: (Ident) -> (HappyAbsSyn )
happyIn120 :: Ident -> HappyAbsSyn
happyIn120 x :: Ident
x = HappyWrap120 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (Ident -> HappyWrap120
HappyWrap120 Ident
x)
{-# INLINE happyIn120 #-}
happyOut120 :: (HappyAbsSyn ) -> HappyWrap120
happyOut120 :: HappyAbsSyn -> HappyWrap120
happyOut120 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap120
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut120 #-}
newtype HappyWrap121 = HappyWrap121 (())
happyIn121 :: (()) -> (HappyAbsSyn )
happyIn121 :: () -> HappyAbsSyn
happyIn121 x :: ()
x = HappyWrap121 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (() -> HappyWrap121
HappyWrap121 ()
x)
{-# INLINE happyIn121 #-}
happyOut121 :: (HappyAbsSyn ) -> HappyWrap121
happyOut121 :: HappyAbsSyn -> HappyWrap121
happyOut121 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap121
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut121 #-}
newtype HappyWrap122 = HappyWrap122 (())
happyIn122 :: (()) -> (HappyAbsSyn )
happyIn122 :: () -> HappyAbsSyn
happyIn122 x :: ()
x = HappyWrap122 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (() -> HappyWrap122
HappyWrap122 ()
x)
{-# INLINE happyIn122 #-}
happyOut122 :: (HappyAbsSyn ) -> HappyWrap122
happyOut122 :: HappyAbsSyn -> HappyWrap122
happyOut122 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap122
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut122 #-}
newtype HappyWrap123 = HappyWrap123 (())
happyIn123 :: (()) -> (HappyAbsSyn )
happyIn123 :: () -> HappyAbsSyn
happyIn123 x :: ()
x = HappyWrap123 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (() -> HappyWrap123
HappyWrap123 ()
x)
{-# INLINE happyIn123 #-}
happyOut123 :: (HappyAbsSyn ) -> HappyWrap123
happyOut123 :: HappyAbsSyn -> HappyWrap123
happyOut123 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap123
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut123 #-}
newtype HappyWrap124 = HappyWrap124 (())
happyIn124 :: (()) -> (HappyAbsSyn )
happyIn124 :: () -> HappyAbsSyn
happyIn124 x :: ()
x = HappyWrap124 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (() -> HappyWrap124
HappyWrap124 ()
x)
{-# INLINE happyIn124 #-}
happyOut124 :: (HappyAbsSyn ) -> HappyWrap124
happyOut124 :: HappyAbsSyn -> HappyWrap124
happyOut124 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap124
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut124 #-}
newtype HappyWrap125 = HappyWrap125 (())
happyIn125 :: (()) -> (HappyAbsSyn )
happyIn125 :: () -> HappyAbsSyn
happyIn125 x :: ()
x = HappyWrap125 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (() -> HappyWrap125
HappyWrap125 ()
x)
{-# INLINE happyIn125 #-}
happyOut125 :: (HappyAbsSyn ) -> HappyWrap125
happyOut125 :: HappyAbsSyn -> HappyWrap125
happyOut125 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap125
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut125 #-}
newtype HappyWrap126 = HappyWrap126 (())
happyIn126 :: (()) -> (HappyAbsSyn )
happyIn126 :: () -> HappyAbsSyn
happyIn126 x :: ()
x = HappyWrap126 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (() -> HappyWrap126
HappyWrap126 ()
x)
{-# INLINE happyIn126 #-}
happyOut126 :: (HappyAbsSyn ) -> HappyWrap126
happyOut126 :: HappyAbsSyn -> HappyWrap126
happyOut126 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap126
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut126 #-}
newtype HappyWrap127 = HappyWrap127 (())
happyIn127 :: (()) -> (HappyAbsSyn )
happyIn127 :: () -> HappyAbsSyn
happyIn127 x :: ()
x = HappyWrap127 -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# (() -> HappyWrap127
HappyWrap127 ()
x)
{-# INLINE happyIn127 #-}
happyOut127 :: (HappyAbsSyn ) -> HappyWrap127
happyOut127 :: HappyAbsSyn -> HappyWrap127
happyOut127 x :: HappyAbsSyn
x = HappyAbsSyn -> HappyWrap127
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut127 #-}
happyInTok :: (CToken) -> (HappyAbsSyn )
happyInTok :: CToken -> HappyAbsSyn
happyInTok x :: CToken
x = CToken -> HappyAbsSyn
Happy_GHC_Exts.unsafeCoerce# CToken
x
{-# INLINE happyInTok #-}
happyOutTok :: (HappyAbsSyn ) -> (CToken)
happyOutTok :: HappyAbsSyn -> CToken
happyOutTok x :: HappyAbsSyn
x = HappyAbsSyn -> CToken
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOutTok #-}


happyExpList :: HappyAddr
happyExpList :: HappyAddr
happyExpList = Addr# -> HappyAddr
HappyA# "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x10\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x04\x00\x00\x00\x40\x2d\x3d\x6e\xdb\x1f\x1c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x60\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x40\x00\x00\x00\x00\xd4\xd2\xe3\xb6\xfd\xc1\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x30\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x2d\x39\x6e\x4b\x1d\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x6a\xc9\x71\x5b\xea\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x10\x02\x82\x18\x52\x04\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x10\x10\xc4\x90\x22\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x84\x80\x20\x86\x14\x01\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x04\x04\x31\xa4\x08\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x05\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x20\x00\x00\x00\x00\x6a\xe9\x71\xdb\xfe\xe0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x28\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x40\x00\x00\x00\x00\x80\x00\x20\x04\x00\x41\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\xe0\x4f\x00\x02\x00\x20\x00\x00\x00\x08\x80\xcf\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\xc0\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x80\x00\x00\x00\x00\x00\x01\x40\x08\x00\x82\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x04\x00\x00\x00\x00\x08\x00\x42\x00\x10\x14\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0a\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x42\x2d\x3d\x6e\xdb\x1f\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xd4\xd2\xe3\xb6\xfd\xc1\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x04\x00\x21\x06\xe8\xf3\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x70\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x70\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x80\x00\x00\x00\x00\x00\x01\x40\x08\x00\x82\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x50\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x28\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x40\x00\x00\x00\x00\x80\x00\x20\x04\x00\x41\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x04\x00\x00\x00\x00\x08\x00\x42\x00\x10\x1c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x6a\xe9\x71\xdb\xfe\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x00\x02\xe0\xf3\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\xb5\xf4\xb8\x6d\x7f\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x50\x4b\x8f\xdb\xf6\x07\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x00\x00\x00\x04\x00\x21\x00\x08\x0e\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x10\x00\x00\x00\x00\x20\x00\x08\x01\x40\x70\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x50\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x28\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\xc0\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\xb5\xf4\xb8\x6d\x7f\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x04\x00\x21\x06\xe8\xfb\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa8\x19\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf0\x7f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x20\x00\x3e\x0f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x38\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x30\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x60\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x3c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x60\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\xfc\x09\x40\x00\x80\x04\x00\x00\x00\x01\xf0\x79\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x00\x02\xe0\xf3\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xc1\x9f\x00\x04\x00\x40\x00\x00\x00\x10\x00\x9f\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x7f\x02\x10\x00\x00\x01\x00\x00\x40\x00\x7c\x1e\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x00\x02\xe0\xf3\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xc1\x9f\x00\x04\x00\x40\x20\x00\x08\x11\x40\x9f\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\xe0\x4f\x00\x02\x00\x20\x00\x00\x00\x08\x80\xcf\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x28\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x01\x04\x00\x00\x00\x40\x2d\x3d\x6e\xdb\x1f\x1c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0a\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x60\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x02\x82\x18\x52\x04\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x10\x10\xc4\x90\x22\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x14\x40\x00\x00\x00\x00\xd4\xd2\xe3\xb6\xfd\xc1\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x6a\xe9\x71\xdb\xfe\xc0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x30\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x80\x00\x00\x00\x00\xa8\xa5\xc7\x6d\xfb\x83\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x20\x00\x00\x00\x00\x6a\xe9\x71\xdb\xfe\xe0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\xfc\x09\x40\x00\x00\x04\x00\x00\x00\x01\xf0\x79\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x84\x5a\x7a\xdc\xb6\x3f\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x28\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0a\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x00\x00\x00\x04\x00\x21\x00\x08\x0a\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x60\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x96\x1a\xa7\x49\x0f\x0c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x14\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x96\x18\xa7\x01\x0e\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x08\x01\x40\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x40\x08\x00\x02\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x01\x04\x00\x00\x00\x00\x2d\x35\x4e\x93\x1e\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\xfc\x09\x40\x00\x00\x04\x00\x00\x00\x01\xf0\x79\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x48\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x14\x40\x00\x00\x00\x00\xd4\xd2\xe3\xb6\xfd\xc1\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa0\x00\x02\x00\x00\x00\x00\x04\x00\x21\x00\x08\x0a\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0a\x20\x00\x00\x00\x00\x6a\xe9\x71\xdb\xfe\xe0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x50\x00\x01\x00\x00\x00\x00\x02\x80\x10\x00\x04\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\xfc\x09\x40\x00\x00\x04\x00\x00\x00\x01\xf0\x79\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x04\x00\x21\x02\xe8\xfb\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\xf0\x27\x00\x01\x00\x12\x00\x00\x00\x04\xc0\xe7\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\xfc\x09\x40\x00\x80\x04\x00\x00\x00\x01\xf0\x79\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xc1\x9f\x00\x04\x00\x48\x00\x00\x00\x10\x00\x9f\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x7f\x02\x10\x00\x00\x01\x00\x00\x40\x00\x7c\x1e\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x04\x00\x08\x00\x00\x00\x02\xe0\xf3\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xc1\x9f\x00\x04\x00\x40\x00\x00\x00\x10\x00\x9f\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\xfe\x04\x20\x00\x00\x02\x00\x00\x80\x00\xf8\x3c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\xf0\x27\x00\x01\x00\x10\x00\x00\x00\x04\xc0\xe7\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x20\x00\x3e\x0f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\xfc\x09\x40\x00\x00\x04\x00\x00\x00\x01\xf0\x79\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\xe0\x4f\x00\x02\x00\x20\x00\x00\x00\x08\x80\xcf\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x7f\x02\x10\x00\x00\x01\x00\x00\x40\x00\x7c\x1e\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x00\x02\xe0\xf3\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xc1\x9f\x00\x04\x00\x40\x00\x00\x00\x10\x00\x9f\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\xfe\x04\x20\x00\x00\x02\x00\x00\x80\x00\xf8\x3c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\xf0\x27\x00\x01\x00\x10\x00\x00\x00\x04\xc0\xe7\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x20\x00\x3e\x0f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\xfc\x09\x40\x00\x00\x04\x00\x00\x00\x01\xf0\x79\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\xe0\x4f\x00\x02\x00\x20\x00\x00\x00\x08\x80\xcf\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x7f\x02\x10\x00\x00\x01\x00\x00\x40\x00\x7c\x1e\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x00\x02\xe0\xf3\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xc1\x9f\x00\x04\x00\x40\x00\x00\x00\x10\x00\x9f\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\xf0\x27\x00\x01\x00\x10\x00\x00\x00\x04\xc0\xe7\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0c\x7f\x02\x10\x00\x00\x01\x00\x00\x40\x00\x7c\x1e\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x00\x02\xe0\xf3\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x30\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x7f\x02\x10\x00\x00\x01\x00\x00\x40\x00\x7c\x1e\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x02\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0e\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x28\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x40\x00\x00\x00\x00\x80\x00\x20\x04\x00\xc1\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x05\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x28\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xc0\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x08\x00\x00\x00\x00\x10\x00\x84\x00\x20\x38\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\xc0\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x80\x00\x00\x00\x00\x00\x01\x40\x08\x00\x82\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0e\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x40\x00\x00\x00\x00\x80\x00\x20\x04\x00\x41\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xc1\x9f\x00\x04\x00\xcc\xff\xf7\xbf\xff\xff\xff\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x7f\x02\x10\x00\x30\xff\xdf\xff\xfe\xff\xff\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x40\x00\x00\x00\x00\xd4\xd2\xe3\xb6\xfd\xc1\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x10\x00\x00\x00\x00\xb5\xf4\xb8\x6d\x7f\x70\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x6a\xe9\x71\xdb\xfe\xc0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x84\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x00\x02\xe0\xf3\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\xf0\x27\x00\x01\x00\xb3\xd2\xc0\x81\x24\xe0\xef\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x7f\x02\x10\x00\x00\x01\x00\x00\x40\x00\x7c\x1e\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x6a\xe9\x71\xfb\xfe\xfe\x0f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\xc0\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xc1\x9f\x00\x04\x00\x48\x00\x00\x00\x10\x00\x9f\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x40\x00\x00\x00\x00\x80\x00\x20\x04\x00\xc1\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x00\x00\x00\x04\x00\x21\x00\x08\x0e\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x05\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x28\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x96\x1a\xa7\x49\x0f\x0c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x70\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x30\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x60\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x3c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe0\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x30\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x00\x02\xe0\xf3\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\xf0\x27\x00\x01\x00\x12\x00\x00\x00\x04\xc0\xe7\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa0\x00\x02\x00\x00\x00\x00\x04\x00\x21\x00\x08\x0e\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x28\x80\x00\x00\x00\x00\x00\x01\x40\x08\x00\x82\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x02\x08\x00\x00\x00\x80\x5a\x7a\xdc\xb6\x3f\x38\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x05\x10\x00\x00\x00\x00\x20\x00\x08\x01\x40\x50\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x28\x80\x00\x00\x00\x00\x00\x01\x40\x08\x00\x82\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x01\x04\x00\x00\x00\x40\x2d\x3d\x6e\xdb\x1f\x1c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xd4\xd2\xe3\xb6\xfd\x81\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x09\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x7f\x02\x10\x00\x00\x01\x00\x00\x40\x00\x7c\x1e\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x50\x00\x01\x00\x00\x00\x50\x4b\x8f\xdb\xf6\x07\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x02\x08\x00\x00\x00\x00\x10\x00\x84\x00\x20\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x60\xf8\x13\x80\x00\x00\x08\x00\x00\x00\x02\xe0\xf3\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x01\x04\x00\x00\x00\x00\x08\x00\x42\x00\x10\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0a\x20\x00\x00\x00\x00\x40\x00\x10\x02\x80\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x50\x00\x01\x00\x00\x00\x50\x4b\x8f\xdb\xf6\x07\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\xe0\x4f\x00\x02\x00\x20\x00\x00\x00\x08\x80\xcf\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x80\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa0\x00\x02\x00\x00\x00\x00\x04\x00\x21\x00\x08\x0a\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0a\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x02\x08\x00\x00\x00\x00\x10\x00\x84\x00\x20\x38\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x94\x7f\x02\x10\x00\x20\x01\x00\x00\x40\x00\xfc\x1e\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xc1\x9f\x00\x04\x00\x40\x00\x00\x00\x10\x00\x9f\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\xf0\x27\x00\x01\x00\x10\x00\x00\x00\x04\xc0\xe7\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x40\x00\x80\x00\x00\x00\x00\x00\x00\x00\xc0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x04\x00\x80\x96\x1a\xa7\x49\x0f\x0e\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x40\x00\x00\x00\x00\x80\x00\x20\x04\x00\xc1\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\xf2\x4f\x00\x02\x00\x24\x00\x00\x00\x08\x80\xdf\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\xfe\x04\x20\x00\x00\x02\x00\x00\x80\x00\xf8\x3c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\xf0\x27\x00\x01\x00\x10\x00\x00\x00\x04\xc0\xe7\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\xe0\x4f\x00\x02\x00\x20\x00\x00\x00\x08\x80\xcf\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x00\x02\xe0\xf3\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xc1\x9f\x00\x04\x00\x40\x00\x00\x00\x10\x00\x9f\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\xf0\x27\x00\x01\x00\xb3\xd2\xc0\x81\x24\xe0\xef\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x30\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\xf0\x27\x00\x01\x00\xb3\xd2\xc0\x81\x24\xe0\xff\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x20\x00\x3e\x0f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\xfc\x09\x40\x00\xc0\xac\x34\x70\x20\x09\xf8\x7b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\xe0\x4f\x00\x02\x00\x20\x00\x00\x00\x08\x80\xcf\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xb5\xf4\xb8\x6d\x7f\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x90\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\xf0\x27\x00\x01\x00\x12\x00\x00\x00\x04\xc0\xe7\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x48\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x00\x02\xe0\xf3\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x30\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x04\x00\x08\x00\x00\x00\x00\x00\x00\x00\x14\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x20\x00\x40\x00\x00\x00\x00\x00\x00\x00\xe0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x7f\x02\x10\x00\x00\x01\x00\x00\x40\x00\x7c\x1e\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\xfe\x04\x20\x00\x00\x02\x00\x00\x80\x00\xf8\x3c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x98\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x50\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x05\x10\x00\x00\x00\x00\x20\x00\x08\x01\x40\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x20\x00\x3e\x0f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\xfe\x04\x20\x00\x00\x02\x00\x00\x80\x00\xf8\x3c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x50\xfe\x09\x40\x00\x80\x05\x00\x00\x00\x01\xf0\x7b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x00\x02\xe0\xf3\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\xf0\x27\x00\x01\x00\x10\x00\x00\x00\x04\xc0\xe7\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\xf2\x4f\x00\x02\x00\x2c\x00\x00\x00\x08\x80\xdf\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x80\x59\x69\xe0\x40\x12\xf0\xf7\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xc1\x9f\x00\x04\x00\xcc\x4a\x03\x07\x92\x80\xbf\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\xfe\x04\x20\x00\x60\x56\x1a\x38\x90\x04\xfc\x3d\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x20\x00\x3e\x0f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\xfc\x09\x40\x00\x00\x04\x00\x00\x00\x01\xf0\x79\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\xe0\x4f\x00\x02\x00\x20\x00\x00\x00\x08\x80\xcf\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\xfc\x09\x40\x00\xc0\xac\x34\x70\x20\x09\xf8\x7b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\xfc\x09\x40\x00\x80\x04\x00\x00\x00\x01\xf0\x79\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x00\x02\xe0\xf3\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\xf0\x27\x00\x01\x00\xb3\xd2\xc0\x81\x24\xe0\xef\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x20\x00\x3e\x0f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\xfc\x09\x40\x00\x00\x04\x00\x00\x00\x01\xf0\x79\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x60\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x00\x02\xe0\xf3\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xc1\x9f\x00\x04\x00\xcc\x4a\x03\x07\x92\x80\xbf\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\xfe\x04\x20\x00\x60\x56\x1a\x38\x90\x04\xfc\x3d\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x20\x00\x3e\x0f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\xfc\x09\x40\x00\x00\x04\x00\x00\x00\x01\xf0\x79\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"#

{-# NOINLINE happyExpListPerState #-}
happyExpListPerState :: Int -> [String]
happyExpListPerState st :: Int
st =
    [String]
token_strs_expected
  where token_strs :: [String]
token_strs = ["error","%dummy","%start_header","header","translation_unit","external_declaration","function_definition","function_declarator","declaration_list","statement","labeled_statement","compound_statement","enter_scope","leave_scope","block_item_list","block_item","nested_declaration","nested_function_definition","label_declarations","expression_statement","selection_statement","iteration_statement","jump_statement","asm_statement","maybe_type_qualifier","asm_operands","nonnull_asm_operands","asm_operand","asm_clobbers","declaration","default_declaring_list","declaring_list","declaration_specifier","declaration_qualifier_list","declaration_qualifier","storage_class","type_specifier","basic_type_name","basic_declaration_specifier","basic_type_specifier","sue_declaration_specifier","sue_type_specifier","typedef_declaration_specifier","typedef_type_specifier","elaborated_type_name","struct_or_union_specifier","struct_or_union","struct_declaration_list","struct_declaration","struct_default_declaring_list","struct_declaring_list","struct_declarator","struct_identifier_declarator","enum_specifier","enumerator_list","enumerator","type_qualifier","declarator","asm_opt","typedef_declarator","parameter_typedef_declarator","clean_typedef_declarator","clean_postfix_typedef_declarator","paren_typedef_declarator","paren_postfix_typedef_declarator","simple_paren_typedef_declarator","identifier_declarator","unary_identifier_declarator","postfix_identifier_declarator","paren_identifier_declarator","old_function_declarator","postfix_old_function_declarator","type_qualifier_list","parameter_type_list","parameter_list","parameter_declaration","identifier_list","type_name","abstract_declarator","postfixing_abstract_declarator","array_abstract_declarator","postfix_array_abstract_declarator","unary_abstract_declarator","postfix_abstract_declarator","initializer","initializer_opt","initializer_list","designation","designator_list","designator","array_designator","primary_expression","offsetof_member_designator","postfix_expression","argument_expression_list","unary_expression","unary_operator","cast_expression","multiplicative_expression","additive_expression","shift_expression","relational_expression","equality_expression","and_expression","exclusive_or_expression","inclusive_or_expression","logical_and_expression","logical_or_expression","conditional_expression","assignment_expression","assignment_operator","expression","comma_expression","expression_opt","assignment_expression_opt","constant_expression","constant","string_literal","string_literal_list","identifier","attrs_opt","attrs","attr","attribute_list","attribute","attribute_params","attribute_param","'('","')'","'['","']'","\"->\"","'.'","'!'","'~'","\"++\"","\"--\"","'+'","'-'","'*'","'/'","'%'","'&'","\"<<\"","\">>\"","'<'","\"<=\"","'>'","\">=\"","\"==\"","\"!=\"","'^'","'|'","\"&&\"","\"||\"","'?'","':'","'='","\"+=\"","\"-=\"","\"*=\"","\"/=\"","\"%=\"","\"&=\"","\"^=\"","\"|=\"","\"<<=\"","\">>=\"","','","';'","'{'","'}'","\"...\"","alignof","asm","auto","break","\"_Bool\"","case","char","const","continue","\"_Complex\"","default","do","double","else","enum","extern","float","\"__float128\"","for","goto","if","inline","int","long","\"__label__\"","register","restrict","return","short","signed","sizeof","static","struct","switch","typedef","typeof","\"__thread\"","union","unsigned","void","volatile","while","cchar","cint","cfloat","cstr","ident","tyident","\"__attribute__\"","\"__extension__\"","\"__builtin_va_arg\"","\"__builtin_offsetof\"","\"__builtin_types_compatible_p\"","%eof"]
        bit_start :: Int
bit_start = Int
st Int -> Int -> Int
forall a. Num a => a -> a -> a
* 227
        bit_end :: Int
bit_end = (Int
st Int -> Int -> Int
forall a. Num a => a -> a -> a
+ 1) Int -> Int -> Int
forall a. Num a => a -> a -> a
* 227
        read_bit :: Int -> Bool
read_bit = HappyAddr -> Int -> Bool
readArrayBit HappyAddr
happyExpList
        bits :: [Bool]
bits = (Int -> Bool) -> [Int] -> [Bool]
forall a b. (a -> b) -> [a] -> [b]
map Int -> Bool
read_bit [Int
bit_start..Int
bit_end Int -> Int -> Int
forall a. Num a => a -> a -> a
- 1]
        bits_indexed :: [(Bool, Int)]
bits_indexed = [Bool] -> [Int] -> [(Bool, Int)]
forall a b. [a] -> [b] -> [(a, b)]
zip [Bool]
bits [0..226]
        token_strs_expected :: [String]
token_strs_expected = ((Bool, Int) -> [String]) -> [(Bool, Int)] -> [String]
forall (t :: * -> *) a b. Foldable t => (a -> [b]) -> t a -> [b]
concatMap (Bool, Int) -> [String]
f [(Bool, Int)]
bits_indexed
        f :: (Bool, Int) -> [String]
f (False, _) = []
        f (True, nr :: Int
nr) = [[String]
token_strs [String] -> Int -> String
forall a. [a] -> Int -> a
!! Int
nr]

happyActOffsets :: HappyAddr
happyActOffsets :: HappyAddr
happyActOffsets = Addr# -> HappyAddr
HappyA# "\x00\x00\x00\x00\xe1\x00\xc9\xff\x00\x00\x69\x0b\x00\x00\x5c\x00\x4d\x00\x00\x00\x16\x00\x00\x00\x6f\x00\x00\x00\xe6\x01\x87\x02\x4c\x00\x9f\x0b\x00\x00\x4c\x00\x00\x00\x55\x13\x55\x13\x91\x12\xad\x12\x71\x13\x71\x13\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x11\x00\x00\x00\x00\x00\xce\x0b\x00\x00\xa1\x00\x7d\x0d\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa5\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xea\x00\xf2\x00\x24\x09\x0f\x01\x00\x00\x00\x00\x7d\x0d\xba\x0d\x00\x00\xf6\x00\x7e\x02\xff\x00\x68\x01\xdd\x00\x00\x00\x00\x00\x00\x00\x00\x00\x4b\x01\x00\x00\x00\x00\x41\x01\x00\x00\xd0\x12\x00\x00\x6d\x01\x00\x00\xf7\x12\x83\x06\x23\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x4c\x01\x50\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x7f\x01\x00\x00\x72\x00\xb0\x00\x92\x02\xb8\x01\x00\x00\x00\x00\x00\x00\x4b\x01\x00\x00\x00\x00\xee\x01\x00\x00\xbe\x01\xd7\x01\x00\x00\x1d\x04\x00\x00\x2a\x00\x00\x00\x00\x00\x00\x00\x26\x02\xce\x01\xe4\x01\x00\x00\x2b\x02\x24\x02\x40\x02\x92\x02\x68\x01\xba\x0d\x40\x02\x00\x00\xa6\x00\xfa\x03\xd0\x12\x00\x00\x91\x02\x00\x00\x24\x09\xd0\x12\x00\x00\x00\x00\x00\x00\x26\x13\x00\x00\x00\x00\x48\x04\xe6\x05\x72\x01\x75\x02\x95\x02\x92\x02\x70\x02\x72\x01\x00\x00\xd0\x12\x00\x00\x00\x00\x80\x02\x00\x00\x00\x00\x00\x00\x63\x06\x00\x00\x2e\x04\x3f\x1a\x24\x09\x00\x00\x8c\x03\xe7\x02\xe8\x02\x76\x02\x01\x03\x97\x02\xa0\x02\xb6\x02\xb7\x02\x36\x03\x00\x00\x00\x00\xd4\x02\x00\x00\x00\x00\xf5\x07\x00\x00\x00\x00\x3c\x09\x3c\x09\x00\x00\x00\x00\xf8\x02\x00\x00\x03\x03\x99\x09\xb0\x09\x77\x07\x00\x00\x00\x00\x00\x00\x00\x00\xc8\x09\xfd\x02\x12\x03\x15\x03\x2e\x00\x70\x0a\x2e\x00\x71\x13\x71\x13\x9f\x0a\xe6\x02\xf5\x02\x00\x00\x33\x01\x26\x13\x00\x00\x00\x00\x00\x00\x00\x00\x1d\x04\x04\x0c\x1d\x04\x33\x0c\xc8\x09\xd0\x12\x00\x00\x00\x00\x1f\x03\x92\x02\x00\x00\x92\x02\x00\x00\x92\x02\x00\x00\xba\x0d\x00\x00\x00\x00\x0b\x03\x03\x03\x39\x03\x13\x03\x3d\x03\xb9\x13\x00\x00\xd9\xff\x59\x01\x00\x00\x00\x00\x56\x03\x7b\x02\xde\x13\x4c\x04\x4c\x04\x2e\x0d\x00\x00\xc8\x09\x00\x00\x21\x00\x00\x00\x3c\x03\x03\x03\x00\x00\x00\x00\x00\x00\x92\x02\xeb\xff\x00\x00\x5c\x03\x61\x03\x4d\x03\x4d\x03\x00\x00\x00\x00\x22\x03\x58\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x25\x03\xd5\x0a\xd5\x06\x00\x00\x00\x00\x00\x00\x04\x0b\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xc8\x09\x00\x00\x00\x00\xe0\x06\xa1\x03\x00\x00\xf5\x07\x00\x00\xf5\x07\x00\x00\x00\x00\x00\x00\xf5\x07\x00\x00\xa5\x03\xb5\x03\xc4\x03\x00\x00\xc8\x09\x0c\x08\xc8\x09\xc8\x09\xc8\x09\xc8\x09\xc8\x09\xc8\x09\xc8\x09\xc8\x09\xc8\x09\xc8\x09\xc8\x09\xc8\x09\xc8\x09\xc8\x09\xc8\x09\xc8\x09\xc8\x09\x00\x00\xc8\x09\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x24\x08\xc8\x09\x03\x03\x03\x03\x00\x00\x00\x00\xd8\x03\x00\x04\xc8\x09\xc5\x00\x00\x00\xeb\xff\x00\x00\xa0\x03\xc8\x03\x70\x02\x42\x0d\xe9\x03\x92\x02\x92\x02\xb9\x03\x00\x00\x00\x00\x4b\x0d\x75\x01\x00\x00\x00\x00\x78\x01\xeb\xff\x00\x00\x04\x04\x1b\x04\x6c\x03\xeb\xff\x00\x00\x5a\x0d\xdc\x03\xe4\x03\xdc\x03\x00\x00\xba\x0d\x00\x00\x7e\x04\xda\x03\xc2\x03\x00\x00\x00\x00\x4f\x03\x7e\x04\xc2\x03\x00\x00\x00\x00\x00\x00\xfe\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1d\x04\x69\x0c\x1d\x04\x98\x0c\x07\x04\x1f\x04\x26\x13\x00\x00\xf8\x03\x20\x04\xc8\x09\x2b\x04\x32\x04\x05\x06\x5c\x04\x28\x00\x6c\x04\xc8\x09\x7c\x04\x80\x04\x6f\x04\x71\x04\xe1\x04\xeb\xff\xeb\xff\xdc\x03\x00\x00\x81\x08\x07\x00\x00\x00\x00\x00\x00\x00\x51\x04\x62\x04\x00\x00\x00\x00\xdc\x03\x00\x00\x00\x00\x00\x00\x00\x00\x7a\x0d\x7a\x0d\x92\x02\x00\x00\x00\x00\xfc\x00\x00\x00\x74\x03\x95\x03\xb9\x13\x00\x00\x00\x00\x34\x04\x8e\x04\x00\x00\x00\x00\x00\x00\x00\x00\xa0\x04\xe9\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x89\x04\x89\x04\xd3\x03\xd3\x03\xd1\x03\xd1\x03\xd1\x03\xd1\x03\x76\x02\x76\x02\xe8\x03\x98\x04\x93\x04\xc9\x04\x9c\x04\xc8\x09\xcc\x04\x00\x00\x98\x08\x00\x00\xed\x04\xee\x04\xf9\x04\x00\x00\xfe\x04\xe5\x04\xe7\x04\xe9\x04\xbe\x04\xbe\x04\xbe\x04\x03\x00\x00\x00\x03\x00\x2f\x05\x37\x05\x05\x00\x04\x0b\xf4\x04\xf4\x04\x97\x0d\x97\x0d\x3a\x0b\x00\x00\xf4\x04\xf4\x04\x26\x13\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x54\x01\xc8\x09\x02\x01\x00\x00\x00\x00\x2b\x05\x00\x00\xce\x0c\xb1\x00\x00\x00\xb0\x08\x54\x05\xd9\xff\x00\x00\x00\x00\x00\x00\x00\x00\xeb\x01\x00\x00\x00\x00\x41\x05\xb1\x00\xb1\x00\xce\x0c\xc8\x09\x00\x00\x00\x00\x00\x00\x7c\x01\x00\x00\x00\x00\x56\x05\x5f\x05\x0c\x00\x97\x0d\x00\x00\x00\x00\x00\x00\x92\x02\x00\x00\x03\x00\x00\x00\x09\x05\x00\x00\x00\x00\x3b\x05\x3b\x05\x3b\x05\x00\x00\x97\x07\x00\x00\xc8\x09\x00\x00\xc8\x09\x00\x00\x00\x00\x00\x00\x02\x04\xf3\x0c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x9a\x0d\x99\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x97\x07\x00\x00\x00\x00\x00\x00\xc8\x09\xc8\x09\x00\x00\x43\x05\xc8\x09\x47\x05\xc8\x09\x44\x05\x1c\x05\x05\x06\x00\x00\x8f\x01\x00\x00\x6e\x05\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x4a\x05\x4a\x05\x4a\x05\x4a\x05\x00\x00\xde\x03\x4b\x05\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa2\x05\xc8\x09\x05\x06\xc8\x09\x00\x00\x7a\x05\x94\x13\x52\x05\x53\x05\x00\x00\x7e\x05\x00\x00\x89\x05\x8c\x05\x00\x00\x1e\x02\x0d\x09\x32\x03\x00\x00\x59\x03\x8a\x05\xc8\x09\xc6\x03\x00\x00\x10\x00\x2b\x00\x00\x00\xa7\x05\xc8\x09\x00\x00\xa8\x05\xc8\x09\x00\x00\x00\x00\x27\x02\x9a\x05\x57\x03\x00\x00\xae\x05\x00\x00\x00\x00\x00\x00\x92\x02\x00\x00\x00\x00\x00\x00\xb1\x00\x6d\x05\x00\x00\x25\x0a\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x3c\x0a\x6c\x05\x00\x00\xf9\x06\x00\x00\x00\x00\x3c\x0a\x70\x05\x00\x00\x3c\x0a\x70\x05\x00\x00\x00\x00\x00\x00\x30\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x5c\x07\x00\x00\x05\x06\x05\x06\x05\x06\x00\x00\x3c\x0a\x3c\x0a\x3c\x0a\xb2\x05\x00\x00\xe8\x00\x00\x00\xa1\x05\x37\x00\x05\x06\xd1\x05\xaa\x05\xac\x05\x9e\x05\x00\x00\x00\x00\x00\x00\x0d\x09\x00\x00\x00\x00\x3c\x0a\x79\x05\x79\x05\x00\x00\x00\x00\x00\x00\x00\x00\xe2\x05\x00\x00\xe7\x05\x00\x00\x05\x06\x3c\x0a\x3c\x0a\xc2\x05\x00\x00\x69\x01\xc4\x05\x00\x00\xef\x05\xe2\x03\x00\x00\xed\x05\xf0\x05\x3c\x0a\x37\x00\xdc\x05\x37\x00\x00\x00\x06\x06\x08\x06\x00\x00\x00\x00\x05\x06\x05\x06\x50\x02\x00\x00\x00\x00\x09\x06\xb7\x05\xb7\x05\x13\x06\x15\x06\x00\x00\xee\x05\xbf\x05\x00\x00\x00\x00\x00\x00\xfd\x01\x00\x00\x00\x00\x3c\x0a\x3c\x0a\x2c\x06\x30\x06\x0d\x06\xd7\x05\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"#

happyGotoOffsets :: HappyAddr
happyGotoOffsets :: HappyAddr
happyGotoOffsets = Addr# -> HappyAddr
HappyA# "\x5a\x04\x35\x06\x01\x00\x00\x00\x00\x00\xfe\xff\x00\x00\x00\x00\x06\x00\x00\x00\xc8\x05\x00\x00\x33\x06\x00\x00\x00\x00\x00\x00\xd3\x0e\x26\x00\x00\x00\x73\x11\x00\x00\x62\x00\xf3\x00\xb3\x00\x10\x02\x48\x01\x46\x02\x00\x00\x00\x00\xcc\x05\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x54\x04\x3d\x06\x00\x00\x4e\x00\x00\x00\xa9\x07\x04\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xd4\x05\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe2\x13\x44\x02\x00\x00\x00\x00\xe5\x05\x90\x08\x00\x00\x00\x00\x54\x04\x00\x00\x38\x02\x46\x06\x00\x00\x00\x00\x00\x00\x00\x00\x1a\x06\x64\x06\x00\x00\x00\x00\x00\x00\xc3\x11\x00\x00\x2e\x06\x00\x00\x3d\x0f\x60\x11\x79\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x72\x06\x4c\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x84\x06\xac\x08\x7f\x05\xac\x04\x80\x06\x00\x00\x00\x00\x00\x00\x5a\x06\x91\x06\x00\x00\x00\x00\x00\x00\x90\x06\x68\x06\x95\x06\xaf\x09\x00\x00\x83\x03\x00\x00\x00\x00\x97\x06\x00\x00\x32\x06\x00\x00\x00\x00\x00\x00\x77\x02\x6f\x06\xb1\x04\xa4\x04\x1f\x08\x74\x06\x00\x00\xc4\x08\x08\x0f\xe9\x11\x38\x06\x00\x00\x00\x00\x03\x14\x0f\x12\x3a\x06\x00\x00\x00\x00\x6a\x0f\x00\x00\x00\x00\x38\x10\xea\x10\x38\x09\x00\x00\x00\x00\xd6\x04\x37\x06\x50\x09\x00\x00\x35\x12\x79\x06\x00\x00\x00\x00\x8f\x06\x00\x00\x00\x00\xf7\x0f\x00\x00\x00\x00\x56\x06\x59\x05\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x2b\x03\x00\x00\x00\x00\x23\x06\xdb\x07\x00\x00\x00\x00\x00\x00\x00\x00\x7b\x06\x15\x0e\x62\x0f\x2c\x12\x00\x00\x00\x00\x00\x00\x00\x00\xc2\x09\x00\x00\x00\x00\x00\x00\xe8\x19\x97\x0f\x00\x1a\x0d\x04\xee\x02\xc9\x0f\x00\x00\x00\x00\x00\x00\x00\x00\xe3\x04\x00\x00\x00\x00\x00\x00\x00\x00\x33\x12\x3a\x0a\x1b\x1a\x9b\x0f\x24\x14\x8f\x12\x82\x06\x00\x00\x00\x00\xfa\x04\x00\x00\x17\x05\x00\x00\x39\x05\x00\x00\xe7\x03\x00\x00\x00\x00\x00\x00\xc3\x00\x00\x00\x00\x00\x00\x00\xdb\x0f\x00\x00\x25\x04\x00\x00\x00\x00\x00\x00\x00\x00\xa7\x04\x22\x00\xfd\xff\x27\x00\xbd\x0d\x00\x00\xe7\x15\x00\x00\x00\x00\x00\x00\x00\x00\xd7\x00\x00\x00\x00\x00\x00\x00\x9c\x05\x20\x01\x00\x00\x00\x00\x00\x00\xa0\x06\xc1\x06\x00\x00\x00\x00\x00\x00\x88\x06\x00\x00\x89\x06\x00\x00\x92\x06\x00\x00\x96\x06\x35\x0e\x0b\x06\x99\x06\x9b\x06\x00\x00\xfd\x0d\x67\x10\x9c\x06\x00\x00\x9d\x06\x9e\x06\x00\x00\x4a\x00\x79\x00\x61\x17\x00\x00\x00\x00\x2d\x10\x00\x00\x00\x00\x4c\x03\x00\x00\x6f\x03\x00\x00\x00\x00\x00\x00\x90\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x11\x19\x02\x16\x2c\x19\x47\x19\x62\x19\x2f\x11\x6f\x19\x7d\x19\x8a\x19\x98\x19\xa5\x19\xb3\x19\x3c\x19\xc0\x19\xff\x04\x03\x0a\xf5\x09\xa3\x0d\x7e\x11\x00\x00\x7c\x17\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1d\x16\x38\x16\x85\x06\x94\x06\x00\x00\x00\x00\x00\x00\x00\x00\x97\x17\xde\xff\xe9\x06\x22\x01\x00\x00\xab\x05\x00\x00\xdd\x05\x1d\x11\x00\x00\xd5\x05\xdf\x05\x28\x06\x00\x00\x00\x00\x0f\x07\xa0\x09\x00\x00\x00\x00\xc4\x09\x28\x01\x00\x00\x00\x00\x00\x00\xa4\x06\x2a\x01\x00\x00\x2b\x11\x52\x0a\x39\x06\x5d\x11\xa3\x06\x93\x06\xa5\x06\xba\x00\x01\x07\xd2\x06\x00\x00\x00\x00\x00\x00\x2c\x01\xd3\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x54\x07\x76\x00\x23\x09\x7a\x00\x00\x00\x00\x00\x4e\x04\x00\x00\xb4\x00\x00\x00\xb2\x17\x00\x00\x00\x00\x94\x01\x00\x00\xab\x06\x00\x00\x60\x15\x00\x00\x00\x00\x00\x00\x00\x00\xf0\x03\xb2\x01\xd3\x01\x0b\x12\x00\x00\x0f\x15\x00\x00\x00\x00\x00\x00\x00\x00\x5c\x06\x5c\x06\x00\x00\x00\x00\x65\x12\x00\x00\x00\x00\x00\x00\x00\x00\x62\x06\x3a\x11\x67\x06\x00\x00\x00\x00\xde\xff\x00\x00\x00\x00\x00\x00\xf9\x0f\x00\x00\x00\x00\xce\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xdb\x18\x00\x00\x00\x00\xa4\x11\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa9\x06\xa9\x06\xa9\x06\xa0\x10\x00\x00\x83\x10\x00\x00\x00\x00\xaa\x06\x6d\x0e\xac\x06\xac\x06\xfb\x10\xce\x10\xa1\x0e\x00\x00\xac\x06\xac\x06\x83\x0f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xcd\x17\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\xd5\x0e\x93\x01\x00\x00\xc9\x14\x00\x00\xae\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x92\x05\x1d\x05\x09\x0f\xe8\x17\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\xb3\x06\x01\x11\x00\x00\x00\x00\x00\x00\x6a\x06\x00\x00\xbc\x10\xb8\x00\xc9\x06\xfa\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x6a\x14\x00\x00\xf6\x18\x00\x00\x03\x18\x00\x00\x00\x00\x00\x00\x3b\x0f\x06\x10\xb6\x06\x00\x00\xb9\x06\x00\x00\x00\x00\x00\x00\x3a\x07\x7d\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x8c\x14\x00\x00\x00\x00\x00\x00\x53\x16\x6e\x16\x00\x00\x00\x00\x89\x16\x00\x00\xa4\x16\xc8\x02\x00\x00\xba\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xba\x06\x00\x00\x28\x07\x29\x07\x2b\x07\x2d\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x52\x01\xbf\x16\xd5\x01\x1e\x18\x00\x00\x00\x00\x80\x14\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x2a\x15\xf3\x04\x00\x00\x00\x00\x00\x00\x39\x18\xc2\x06\x00\x00\x05\x04\xa6\x07\xc3\x06\x00\x00\x54\x18\xd0\x06\x00\x00\x6f\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x81\x06\x00\x00\x00\x00\x00\x00\xa6\x06\x00\x00\x00\x00\xed\x14\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xda\x16\x00\x00\x00\x00\xae\x14\x00\x00\x00\x00\x8a\x18\xc7\x06\x00\x00\xa5\x18\xc7\x06\xd8\x06\xeb\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xae\x14\x00\x00\xfb\x01\x3c\x02\x62\x02\x00\x00\x7b\x15\x96\x15\xf5\x16\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xff\xff\x7d\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x45\x15\x00\x00\x00\x00\xc0\x18\xe7\x06\xe7\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa3\x02\xb1\x15\xcc\x15\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x17\xed\xff\x00\x00\x3e\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe4\x02\x0a\x03\x00\x00\x00\x00\x00\x00\x00\x00\xef\x06\xf8\x06\x00\x00\x00\x00\x00\x00\x00\x00\xfa\xff\x3d\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x2b\x17\x46\x17\x00\x00\x00\x00\x00\x00\xfb\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"#

happyAdjustOffset :: Happy_GHC_Exts.Int# -> Happy_GHC_Exts.Int#
happyAdjustOffset :: Int# -> Int#
happyAdjustOffset off :: Int#
off = Int#
off

happyDefActions :: HappyAddr
happyDefActions :: HappyAddr
happyDefActions = Addr# -> HappyAddr
HappyA# "\xfd\xff\x00\x00\x57\xfe\x00\x00\xfb\xff\x00\x00\xfc\xff\x00\x00\x57\xfe\xf8\xff\x00\x00\xfa\xff\x00\x00\xf9\xff\x00\x00\x00\x00\x00\x00\x00\x00\xa1\xff\x00\x00\x81\xff\xa4\xff\x95\xff\xa3\xff\x94\xff\xa2\xff\x93\xff\x78\xff\x66\xff\x57\xfe\x65\xff\x0d\xff\xec\xff\x21\xff\x1f\xff\x20\xff\xeb\xff\x13\xff\x00\x00\x56\xfe\x00\x00\x00\x00\x98\xff\x88\xff\x91\xff\x45\xff\x87\xff\x8b\xff\x57\xfe\x9a\xff\x8d\xff\x8c\xff\x42\xff\x8f\xff\x8e\xff\x97\xff\x43\xff\x90\xff\x8a\xff\x99\xff\x61\xff\x9b\xff\x00\x00\x96\xff\x60\xff\x89\xff\x92\xff\x44\xff\x15\xff\x6e\xff\x00\x00\x00\x00\x57\xfe\x00\x00\x1e\xff\x12\xff\x00\x00\x00\x00\x55\xfe\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa0\xff\x80\xff\x77\xff\x0c\xff\x3f\xff\xeb\xff\x0b\xff\x00\x00\x6b\xff\x00\x00\x1a\xff\xed\xfe\xeb\xfe\x0a\xff\x63\xfe\x00\x00\x74\xff\x68\xff\x67\xff\x70\xff\x9d\xff\x9c\xff\x6f\xff\x7b\xff\x76\xff\x75\xff\xad\xff\x7a\xff\x79\xff\xae\xff\x85\xff\x7e\xff\x7f\xff\x7d\xff\x84\xff\x83\xff\x82\xff\x00\x00\x3f\xff\x40\xff\x3c\xff\x39\xff\x38\xff\x3d\xff\x2f\xff\x41\xff\xeb\xff\x00\x00\x00\x00\x3b\xff\x00\x00\x9f\xff\x86\xff\x7c\xff\x3f\xff\xeb\xff\x9e\xff\x00\x00\x73\xff\x00\x00\x3f\xff\xeb\xff\x00\x00\xac\xff\x00\x00\xab\xff\xf6\xff\xdc\xff\x00\x00\x5d\xfe\x5c\xfe\x5b\xfe\x00\x00\xda\xff\x3f\xff\x20\xff\x00\x00\x00\x00\x3f\xff\x41\xff\x00\x00\x00\x00\x00\x00\x57\xfe\x00\x00\xf5\xff\x57\xfe\x00\x00\x57\xfe\xf3\xff\x3a\xff\x0a\xff\x37\xff\x2c\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x23\xff\x00\x00\x57\xfe\xf4\xff\x62\xff\x5f\xff\x59\xfe\x58\xfe\x63\xfe\xb3\xfe\xa7\xfe\x97\xfe\x00\x00\x95\xfe\x91\xfe\x8e\xfe\x8b\xfe\x86\xfe\x83\xfe\x81\xfe\x7f\xfe\x7d\xfe\x7b\xfe\x79\xfe\x76\xfe\x62\xfe\x00\x00\xbd\xfe\xbc\xfe\x57\xfe\x98\xfe\x99\xfe\x00\x00\x00\x00\x9b\xfe\x9a\xfe\x9c\xfe\x9d\xfe\x00\x00\x00\x00\x00\x00\x00\x00\x5f\xfe\x60\xfe\x5e\xfe\xbe\xfe\x00\x00\x00\x00\x00\x00\x00\x00\x04\xff\x00\xff\xfd\xfe\xa3\xff\x94\xff\xf9\xfe\x00\x00\x09\xff\x07\xff\x00\x00\x00\x00\xf6\xfe\xea\xfe\xf1\xff\xea\xff\x00\x00\x00\x00\x00\x00\x00\x00\x57\xfe\x00\x00\x57\xfe\xf2\xff\x00\x00\x00\x00\x54\xfe\x0f\xff\x14\xff\x19\xff\x1c\xff\x00\x00\x1d\xff\x11\xff\x4a\xff\x00\x00\x00\x00\x69\xfe\x00\x00\x00\x00\x9c\xfe\x50\xfe\x00\x00\x52\xfe\x4e\xfe\x4f\xfe\xf4\xfe\x95\xff\x94\xff\x93\xff\xf2\xfe\x6d\xff\x00\x00\x6c\xff\x00\x00\x49\xff\x47\xff\x00\x00\x1b\xff\x18\xff\x0e\xff\x17\xff\xce\xfe\xed\xff\x00\x00\x00\x00\x3f\xff\x3f\xff\x06\xff\x10\xff\x00\x00\x57\xfe\xec\xfe\x57\xfe\xf8\xfe\x57\xfe\xf0\xfe\xef\xfe\x0a\xff\xe2\xfe\x57\xfe\x57\xfe\xfc\xfe\x0a\xff\xe2\xfe\x57\xfe\xff\xfe\x57\xfe\x57\xfe\x03\xff\x57\xfe\x57\xfe\x00\x00\x97\xfe\xa4\xfe\x00\x00\x00\x00\xa2\xfe\x57\xfe\xa0\xfe\x57\xfe\x9e\xfe\xe4\xfe\xa5\xfe\x57\xfe\xa6\xfe\x00\x00\x00\x00\x00\x00\xe9\xfe\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa3\xfe\x00\x00\x74\xfe\x70\xfe\x6f\xfe\x73\xfe\x72\xfe\x71\xfe\x6c\xfe\x6b\xfe\x6a\xfe\x6e\xfe\x6d\xfe\x00\x00\x00\x00\x00\x00\x00\x00\xad\xfe\xac\xfe\x00\x00\x9c\xfe\x00\x00\x57\xfe\x5f\xff\xce\xfe\xef\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x26\xff\x33\xff\x00\x00\x35\xff\x28\xff\x00\x00\x00\x00\x36\xff\x2b\xff\x00\x00\xce\xfe\xee\xff\x00\x00\x00\x00\x00\x00\xce\xfe\xf0\xff\x00\x00\x00\x00\x00\x00\x00\x00\x57\xfe\x00\x00\x57\xfe\xdb\xff\xda\xff\x00\x00\xf7\xff\x5a\xfe\x00\x00\xdb\xff\x00\x00\xd8\xff\xe9\xff\xe8\xff\x00\x00\xd9\xff\xd7\xff\xd4\xff\xe7\xff\xe6\xff\xe5\xff\xe4\xff\xe3\xff\xd6\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xcb\xff\xb9\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x65\xfe\x00\x00\x00\x00\xbe\xfe\x6e\xff\x00\x00\xce\xfe\xce\xfe\x00\x00\xa7\xff\x00\x00\x00\x00\x72\xff\x71\xff\xaa\xff\x00\x00\x00\x00\x34\xff\x27\xff\x00\x00\x2e\xff\x31\xff\x24\xff\x25\xff\x00\x00\x00\x00\x32\xff\x22\xff\xa6\xff\x57\xfe\x5d\xff\x00\x00\x00\x00\x00\x00\x5e\xff\x63\xff\x57\xfe\x00\x00\xe3\xfe\xe8\xfe\xaf\xfe\xae\xfe\x00\x00\x00\x00\xa9\xfe\xb1\xfe\x75\xfe\x92\xfe\x93\xfe\x94\xfe\x8f\xfe\x90\xfe\x8c\xfe\x8d\xfe\x87\xfe\x89\xfe\x88\xfe\x8a\xfe\x84\xfe\x85\xfe\x82\xfe\x80\xfe\x7e\xfe\x7c\xfe\x00\x00\x00\x00\x7a\xfe\xbb\xfe\x00\x00\xba\xfe\x00\x00\x00\x00\x00\x00\xe7\xfe\x00\x00\x00\x00\x00\x00\x00\x00\x02\xff\x01\xff\xfe\xfe\xe1\xfe\xe0\xfe\xde\xfe\x00\x00\x00\x00\x00\x00\x00\x00\xfb\xfe\xfa\xfe\xe1\xfe\xde\xfe\x00\x00\xd2\xfe\xee\xfe\xf7\xfe\x00\x00\x08\xff\xf5\xfe\x6a\xff\x69\xff\xa9\xff\x16\xff\x00\x00\x00\x00\x00\x00\x4e\xff\x67\xfe\x68\xfe\xf1\xfe\x0a\xff\xe2\xfe\xf3\xfe\x00\x00\x00\x00\x50\xfe\x51\xfe\x53\xfe\x61\xfe\x49\xfe\x00\x00\x4b\xfe\x4c\xfe\xbe\xfe\xe1\xfe\xde\xfe\x00\x00\x00\x00\x48\xff\x4d\xff\x46\xff\x00\x00\x4c\xff\x05\xff\x00\x00\x00\x00\x00\x00\xdd\xfe\xdc\xfe\xdf\xfe\xd9\xfe\xda\xfe\xd8\xfe\xdd\xfe\x57\xfe\x00\x00\x57\xfe\xe6\xfe\xa1\xfe\x9f\xfe\x00\x00\x96\xfe\xcc\xfe\x77\xfe\x00\x00\xb0\xfe\x00\x00\xb2\xfe\xe5\xfe\x5a\xff\x55\xff\x00\x00\x57\xfe\x5c\xff\x57\xfe\x5b\xff\x64\xff\x30\xff\x00\x00\x00\x00\x2a\xff\x2d\xff\x3e\xff\xcd\xfe\xd1\xfe\xcc\xfe\xa5\xff\xa8\xff\xd2\xff\x00\x00\x00\x00\x64\xfe\x00\x00\x00\x00\x00\x00\x00\x00\x65\xfe\x00\x00\x00\x00\xc0\xff\x00\x00\xbf\xff\x00\x00\xb8\xff\xd3\xff\xd5\xff\x57\xfe\xca\xff\x00\x00\x00\x00\x00\x00\x00\x00\xde\xff\x00\x00\x00\x00\xcd\xff\xdd\xff\xcc\xff\xd1\xff\xcf\xff\xd0\xff\xce\xff\x00\x00\x00\x00\x00\x00\x00\x00\xe0\xff\x00\x00\x00\x00\x00\x00\x00\x00\xc2\xff\x00\x00\xbe\xff\x00\x00\x00\x00\xcb\xfe\x00\x00\x00\x00\x00\x00\xc4\xfe\xc5\xfe\x00\x00\x00\x00\x00\x00\x29\xff\x00\x00\x00\x00\x57\xfe\x51\xff\x00\x00\x57\xfe\x54\xff\x00\x00\xa8\xfe\x78\xfe\x00\x00\x00\x00\x00\x00\xb6\xfe\x00\x00\xdb\xfe\xd7\xfe\xd5\xfe\xd6\xfe\xd4\xfe\x4b\xff\x66\xfe\xdd\xfe\x00\x00\x4d\xfe\x00\x00\x4a\xfe\x48\xfe\xd3\xfe\xb7\xfe\xb8\xfe\x00\x00\x00\x00\xb9\xfe\x00\x00\xab\xfe\x53\xff\x00\x00\x57\xff\x50\xff\x00\x00\x59\xff\x57\xfe\x57\xfe\xc1\xfe\x00\x00\xc6\xfe\xc3\xfe\xc0\xfe\xc7\xfe\xca\xfe\x00\x00\xd0\xfe\x00\x00\x00\x00\x00\x00\xc1\xff\x65\xfe\x65\xfe\x00\x00\x00\x00\xe1\xff\x00\x00\xe2\xff\x00\x00\xb7\xff\x00\x00\x00\x00\x00\x00\x00\x00\xc9\xff\xc7\xff\xc6\xff\xc9\xfe\x00\x00\xcf\xfe\xc2\xfe\x00\x00\x58\xff\x56\xff\x4f\xff\x52\xff\xaa\xfe\xb5\xfe\x00\x00\xb4\xfe\x00\x00\xc8\xfe\x00\x00\x65\xfe\x65\xfe\x00\x00\xdf\xff\x00\x00\xb6\xff\xb5\xff\x00\x00\x00\x00\xbd\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xb7\xff\xc5\xff\x00\x00\x00\x00\xc8\xff\xbf\xfe\x00\x00\x00\x00\x00\x00\xbc\xff\xb4\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xb3\xff\x00\x00\x00\x00\xdb\xff\xc4\xff\xc3\xff\x00\x00\xb0\xff\xbb\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xaf\xff\xba\xff\xb1\xff\xb2\xff"#

happyCheck :: HappyAddr
happyCheck :: HappyAddr
happyCheck = Addr# -> HappyAddr
HappyA# "\xff\xff\x03\x00\x04\x00\x02\x00\x01\x00\x18\x00\x03\x00\x02\x00\x02\x00\x02\x00\x1f\x00\x2d\x00\x2e\x00\x2f\x00\x02\x00\x36\x00\x0d\x00\x01\x00\x01\x00\x19\x00\x03\x00\x16\x00\x17\x00\x18\x00\x1a\x00\x1b\x00\x1c\x00\x1d\x00\x1e\x00\x0d\x00\x20\x00\x21\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x04\x00\x01\x00\x01\x00\x64\x00\x1e\x00\x01\x00\x32\x00\x03\x00\x35\x00\x35\x00\x04\x00\x0d\x00\x5d\x00\x0d\x00\x0d\x00\x36\x00\x03\x00\x0d\x00\x34\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x22\x00\x1f\x00\x20\x00\x44\x00\x22\x00\x1e\x00\x5f\x00\x2a\x00\x49\x00\x01\x00\x2d\x00\x29\x00\x2a\x00\x2b\x00\x04\x00\x75\x00\x16\x00\x17\x00\x18\x00\x35\x00\x32\x00\x0d\x00\x57\x00\x35\x00\x35\x00\x01\x00\x2e\x00\x72\x00\x5d\x00\x5e\x00\x5f\x00\x5c\x00\x5f\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x5f\x00\x72\x00\x5d\x00\x20\x00\x5f\x00\x22\x00\x72\x00\x5c\x00\x01\x00\x77\x00\x77\x00\x75\x00\x29\x00\x2a\x00\x2b\x00\x04\x00\x75\x00\x74\x00\x30\x00\x04\x00\x0d\x00\x32\x00\x1f\x00\x20\x00\x35\x00\x22\x00\x5d\x00\x5e\x00\x5d\x00\x5d\x00\x5e\x00\x5f\x00\x5d\x00\x5e\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x5c\x00\x4a\x00\x1f\x00\x20\x00\x35\x00\x22\x00\x77\x00\x20\x00\x2c\x00\x22\x00\x77\x00\x77\x00\x29\x00\x2a\x00\x2b\x00\x01\x00\x29\x00\x2a\x00\x2b\x00\x01\x00\x01\x00\x32\x00\x5d\x00\x5e\x00\x35\x00\x32\x00\x60\x00\x0d\x00\x35\x00\x72\x00\x01\x00\x01\x00\x0d\x00\x03\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x0d\x00\x0d\x00\x75\x00\x06\x00\x07\x00\x08\x00\x4a\x00\x0a\x00\x77\x00\x0c\x00\x0d\x00\x0e\x00\x15\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x5d\x00\x5e\x00\x5f\x00\x1f\x00\x20\x00\x1a\x00\x1b\x00\x1c\x00\x1d\x00\x1e\x00\x77\x00\x20\x00\x21\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x36\x00\x36\x00\x35\x00\x35\x00\x02\x00\x01\x00\x32\x00\x77\x00\x75\x00\x35\x00\x2b\x00\x77\x00\x2d\x00\x01\x00\x44\x00\x44\x00\x33\x00\x34\x00\x02\x00\x49\x00\x49\x00\x2d\x00\x2e\x00\x2f\x00\x5d\x00\x45\x00\x5f\x00\x02\x00\x4a\x00\x5d\x00\x5e\x00\x5f\x00\x1e\x00\x57\x00\x57\x00\x2c\x00\x33\x00\x34\x00\x2b\x00\x5d\x00\x5e\x00\x5f\x00\x5f\x00\x30\x00\x58\x00\x20\x00\x5a\x00\x22\x00\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x60\x00\x6c\x00\x2b\x00\x35\x00\x2d\x00\x77\x00\x71\x00\x72\x00\x75\x00\x74\x00\x2d\x00\x76\x00\x77\x00\x06\x00\x07\x00\x08\x00\x02\x00\x0a\x00\x74\x00\x0c\x00\x0d\x00\x0e\x00\x2c\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x60\x00\x01\x00\x75\x00\x4a\x00\x64\x00\x1a\x00\x1b\x00\x1c\x00\x1d\x00\x1e\x00\x74\x00\x20\x00\x21\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x06\x00\x07\x00\x08\x00\x02\x00\x60\x00\x2a\x00\x32\x00\x5d\x00\x5e\x00\x35\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x1f\x00\x20\x00\x01\x00\x77\x00\x02\x00\x5d\x00\x5e\x00\x5f\x00\x75\x00\x03\x00\x45\x00\x52\x00\x01\x00\x52\x00\x0d\x00\x01\x00\x2c\x00\x2c\x00\x01\x00\x52\x00\x30\x00\x52\x00\x35\x00\x2a\x00\x0d\x00\x30\x00\x2d\x00\x0d\x00\x2a\x00\x58\x00\x0d\x00\x5a\x00\x1e\x00\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x77\x00\x6c\x00\x77\x00\x06\x00\x07\x00\x08\x00\x71\x00\x72\x00\x77\x00\x74\x00\x77\x00\x76\x00\x77\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x2d\x00\x58\x00\x2c\x00\x5a\x00\x1e\x00\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x2e\x00\x6c\x00\x77\x00\x06\x00\x07\x00\x08\x00\x71\x00\x72\x00\x5d\x00\x74\x00\x5f\x00\x35\x00\x77\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x5d\x00\x5e\x00\x5f\x00\x5d\x00\x5e\x00\x5f\x00\x5d\x00\x5e\x00\x5f\x00\x45\x00\x5d\x00\x5e\x00\x06\x00\x07\x00\x08\x00\x4b\x00\x4c\x00\x4d\x00\x4e\x00\x4f\x00\x50\x00\x2c\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x2c\x00\x02\x00\x58\x00\x02\x00\x5a\x00\x01\x00\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x02\x00\x6c\x00\x06\x00\x07\x00\x08\x00\x52\x00\x71\x00\x72\x00\x30\x00\x74\x00\x76\x00\x77\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x2a\x00\x2b\x00\x58\x00\x2a\x00\x5a\x00\x2a\x00\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x52\x00\x6c\x00\x2a\x00\x02\x00\x77\x00\x5c\x00\x71\x00\x72\x00\x58\x00\x74\x00\x5a\x00\x20\x00\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x5c\x00\x6c\x00\x06\x00\x07\x00\x08\x00\x35\x00\x71\x00\x72\x00\x2a\x00\x74\x00\x77\x00\x2d\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x2a\x00\x02\x00\x58\x00\x2d\x00\x5a\x00\x2b\x00\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x20\x00\x6c\x00\x06\x00\x07\x00\x08\x00\x47\x00\x71\x00\x72\x00\x1e\x00\x74\x00\x30\x00\x01\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x02\x00\x40\x00\x41\x00\x42\x00\x35\x00\x01\x00\x0d\x00\x03\x00\x01\x00\x02\x00\x03\x00\x0b\x00\x06\x00\x07\x00\x08\x00\x0f\x00\x77\x00\x0d\x00\x13\x00\x14\x00\x15\x00\x16\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x01\x00\x01\x00\x58\x00\x03\x00\x5a\x00\x02\x00\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x10\x00\x6c\x00\x06\x00\x07\x00\x08\x00\x2c\x00\x71\x00\x72\x00\x77\x00\x74\x00\x2a\x00\x2b\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x74\x00\x19\x00\x58\x00\x77\x00\x5a\x00\x77\x00\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x5d\x00\x6c\x00\x5f\x00\x1a\x00\x09\x00\x1b\x00\x71\x00\x72\x00\x58\x00\x74\x00\x5a\x00\x04\x00\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x02\x00\x6c\x00\x06\x00\x07\x00\x08\x00\x74\x00\x71\x00\x72\x00\x77\x00\x74\x00\x0b\x00\x0c\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x11\x00\x12\x00\x58\x00\x04\x00\x5a\x00\x01\x00\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x20\x00\x6c\x00\x06\x00\x07\x00\x08\x00\x01\x00\x71\x00\x72\x00\x01\x00\x74\x00\x17\x00\x18\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x2a\x00\x58\x00\x02\x00\x5a\x00\x35\x00\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x08\x00\x6c\x00\x03\x00\x6e\x00\x2c\x00\x06\x00\x71\x00\x72\x00\x02\x00\x58\x00\x2a\x00\x5a\x00\x02\x00\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x2c\x00\x6c\x00\x1f\x00\x1c\x00\x1d\x00\x08\x00\x71\x00\x72\x00\x01\x00\x74\x00\x02\x00\x03\x00\x1f\x00\x03\x00\x06\x00\x02\x00\x06\x00\x5d\x00\x5e\x00\x58\x00\x02\x00\x5a\x00\x77\x00\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x4a\x00\x6c\x00\x08\x00\x1f\x00\x2a\x00\x2b\x00\x71\x00\x72\x00\x30\x00\x74\x00\x5d\x00\x5d\x00\x5e\x00\x5f\x00\x58\x00\x5f\x00\x5a\x00\x2e\x00\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x4a\x00\x6c\x00\x08\x00\x0d\x00\x0e\x00\x0f\x00\x71\x00\x72\x00\x2a\x00\x2b\x00\x75\x00\x01\x00\x02\x00\x03\x00\x58\x00\x04\x00\x5a\x00\x02\x00\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x02\x00\x6c\x00\x4a\x00\x01\x00\x02\x00\x03\x00\x71\x00\x72\x00\x2a\x00\x2b\x00\x75\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x02\x00\x58\x00\x5c\x00\x5a\x00\x02\x00\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x4a\x00\x6c\x00\x04\x00\x01\x00\x0b\x00\x0c\x00\x71\x00\x72\x00\x11\x00\x12\x00\x75\x00\x01\x00\x02\x00\x03\x00\x58\x00\x0d\x00\x5a\x00\x02\x00\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x01\x00\x6c\x00\x0d\x00\x0e\x00\x17\x00\x18\x00\x71\x00\x72\x00\x01\x00\x04\x00\x75\x00\x02\x00\x0d\x00\x2a\x00\x2b\x00\x1a\x00\x1b\x00\x1c\x00\x1d\x00\x1e\x00\x0d\x00\x20\x00\x21\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x35\x00\x02\x00\x01\x00\x5d\x00\x1e\x00\x47\x00\x32\x00\x5d\x00\x5e\x00\x35\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x0d\x00\x2d\x00\x1f\x00\x20\x00\x36\x00\x01\x00\x36\x00\x03\x00\x2b\x00\x05\x00\x06\x00\x45\x00\x31\x00\x09\x00\x0a\x00\x5d\x00\x5e\x00\x5f\x00\x44\x00\x1e\x00\x44\x00\x5d\x00\x5e\x00\x49\x00\x35\x00\x49\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x58\x00\x01\x00\x5a\x00\x2b\x00\x5c\x00\x5d\x00\x5e\x00\x57\x00\x1e\x00\x57\x00\x01\x00\x02\x00\x03\x00\x0d\x00\x2b\x00\x5d\x00\x5e\x00\x5f\x00\x00\x00\x01\x00\x0e\x00\x01\x00\x77\x00\x5d\x00\x5e\x00\x71\x00\x72\x00\x01\x00\x02\x00\x03\x00\x76\x00\x77\x00\x1a\x00\x1b\x00\x1c\x00\x1d\x00\x1e\x00\x01\x00\x20\x00\x21\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x5d\x00\x5e\x00\x77\x00\x01\x00\x36\x00\x01\x00\x32\x00\x01\x00\x36\x00\x35\x00\x77\x00\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x44\x00\x1e\x00\x10\x00\x1e\x00\x44\x00\x49\x00\x04\x00\x45\x00\x60\x00\x49\x00\x0d\x00\x0e\x00\x0f\x00\x1b\x00\x01\x00\x02\x00\x03\x00\x78\x00\x79\x00\x57\x00\x4c\x00\x4d\x00\x4e\x00\x57\x00\x04\x00\x5d\x00\x5e\x00\x5f\x00\x10\x00\x2b\x00\x2c\x00\x5f\x00\x19\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x34\x00\x35\x00\x36\x00\x37\x00\x38\x00\x39\x00\x3a\x00\x3b\x00\x1e\x00\x3d\x00\x3e\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x77\x00\x48\x00\x49\x00\x4a\x00\x4b\x00\x4c\x00\x4d\x00\x4e\x00\x4f\x00\x50\x00\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\x57\x00\x58\x00\x59\x00\x5a\x00\x5b\x00\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x01\x00\x1a\x00\x40\x00\x41\x00\x42\x00\x1b\x00\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x02\x00\x02\x00\x10\x00\x4b\x00\x4c\x00\x4d\x00\x4e\x00\x4f\x00\x50\x00\x4c\x00\x4d\x00\x4e\x00\x02\x00\x1b\x00\x4c\x00\x4d\x00\x4e\x00\x1d\x00\x1e\x00\x04\x00\x20\x00\x21\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2a\x00\x2f\x00\x2a\x00\x31\x00\x2a\x00\x33\x00\x32\x00\x35\x00\x36\x00\x35\x00\x38\x00\x76\x00\x77\x00\x3b\x00\x5f\x00\x3d\x00\x3e\x00\x3f\x00\x40\x00\x4c\x00\x4d\x00\x4e\x00\x44\x00\x45\x00\x46\x00\x45\x00\x48\x00\x49\x00\x48\x00\x4b\x00\x4c\x00\x4d\x00\x4e\x00\x4f\x00\x02\x00\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\x57\x00\x02\x00\x59\x00\x5a\x00\x5b\x00\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x01\x00\x4c\x00\x4d\x00\x4e\x00\x56\x00\x57\x00\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x35\x00\x5f\x00\x10\x00\x2a\x00\x02\x00\x58\x00\x02\x00\x5a\x00\x77\x00\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x1b\x00\x1f\x00\x02\x00\x45\x00\x4c\x00\x4d\x00\x4e\x00\x5d\x00\x2c\x00\x4b\x00\x4c\x00\x4d\x00\x4e\x00\x4f\x00\x50\x00\x2b\x00\x01\x00\x71\x00\x72\x00\x2b\x00\x2f\x00\x58\x00\x31\x00\x2c\x00\x33\x00\x2d\x00\x35\x00\x36\x00\x01\x00\x38\x00\x2b\x00\x2b\x00\x3b\x00\x02\x00\x3d\x00\x3e\x00\x3f\x00\x40\x00\x4c\x00\x4d\x00\x4e\x00\x44\x00\x45\x00\x46\x00\x02\x00\x48\x00\x49\x00\x02\x00\x4b\x00\x4c\x00\x4d\x00\x4e\x00\x4f\x00\x77\x00\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\x57\x00\x02\x00\x59\x00\x5a\x00\x5b\x00\x5c\x00\x5d\x00\x5e\x00\x01\x00\x60\x00\x61\x00\x62\x00\x63\x00\x1e\x00\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x02\x00\x58\x00\x10\x00\x5a\x00\x35\x00\x5c\x00\x5d\x00\x5e\x00\x39\x00\x3a\x00\x3b\x00\x3c\x00\x3d\x00\x1b\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x1e\x00\x1e\x00\x35\x00\x5b\x00\x5d\x00\x71\x00\x72\x00\x2b\x00\x2b\x00\x2c\x00\x5f\x00\x1e\x00\x2f\x00\x30\x00\x02\x00\x32\x00\x2b\x00\x34\x00\x2b\x00\x5f\x00\x37\x00\x3c\x00\x39\x00\x3a\x00\x4b\x00\x4c\x00\x4d\x00\x4e\x00\x4f\x00\x50\x00\x41\x00\x42\x00\x43\x00\x04\x00\x01\x00\x4c\x00\x4d\x00\x4e\x00\x04\x00\x4a\x00\x2b\x00\x2a\x00\x4d\x00\x01\x00\x04\x00\x50\x00\x0d\x00\x04\x00\x76\x00\x77\x00\x4c\x00\x4d\x00\x4e\x00\x58\x00\x59\x00\x5a\x00\x5b\x00\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x01\x00\x2b\x00\x02\x00\x77\x00\x02\x00\x02\x00\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x5c\x00\x01\x00\x10\x00\x01\x00\x3a\x00\x3b\x00\x2b\x00\x35\x00\x5c\x00\x36\x00\x40\x00\x41\x00\x42\x00\x1b\x00\x4c\x00\x4d\x00\x4e\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x44\x00\x4c\x00\x4d\x00\x4e\x00\x02\x00\x49\x00\x2b\x00\x2c\x00\x02\x00\x5c\x00\x2f\x00\x30\x00\x01\x00\x32\x00\x2b\x00\x34\x00\x72\x00\x08\x00\x37\x00\x57\x00\x39\x00\x3a\x00\x35\x00\x75\x00\x05\x00\x5d\x00\x5e\x00\x5f\x00\x41\x00\x42\x00\x43\x00\x75\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x08\x00\x4a\x00\x45\x00\x37\x00\x4d\x00\x76\x00\x77\x00\x50\x00\x4b\x00\x4c\x00\x4d\x00\x4e\x00\x4f\x00\x50\x00\x77\x00\x58\x00\x59\x00\x5a\x00\x5b\x00\x5c\x00\x5d\x00\x5e\x00\x01\x00\x60\x00\x61\x00\x62\x00\x63\x00\x05\x00\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x3a\x00\x3b\x00\x10\x00\x4c\x00\x4d\x00\x4e\x00\x40\x00\x41\x00\x42\x00\x08\x00\x58\x00\x4e\x00\x5a\x00\x1b\x00\x5c\x00\x5d\x00\x76\x00\x77\x00\x37\x00\x01\x00\x4c\x00\x4d\x00\x4e\x00\x08\x00\x05\x00\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x37\x00\x2f\x00\x10\x00\x71\x00\x72\x00\x05\x00\x35\x00\x08\x00\x36\x00\x05\x00\x39\x00\x3a\x00\x3b\x00\x1b\x00\x37\x00\x09\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x73\x00\x37\x00\x44\x00\x4c\x00\x4d\x00\x4e\x00\x37\x00\x49\x00\x75\x00\x77\x00\x75\x00\x4d\x00\x4e\x00\x2f\x00\x4c\x00\x4d\x00\x4e\x00\x4c\x00\x4d\x00\x4e\x00\x36\x00\x57\x00\x2c\x00\x59\x00\x5a\x00\x5b\x00\x5c\x00\x5d\x00\x6b\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x44\x00\x35\x00\x4c\x00\x4d\x00\x4e\x00\x49\x00\x4c\x00\x4d\x00\x4e\x00\x4d\x00\x4e\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x01\x00\x37\x00\x03\x00\x77\x00\x57\x00\x35\x00\x59\x00\x5a\x00\x5b\x00\x5c\x00\x5d\x00\x01\x00\x0d\x00\x60\x00\x61\x00\x62\x00\x63\x00\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x75\x00\x74\x00\x10\x00\x4b\x00\x4c\x00\x4d\x00\x4e\x00\x4f\x00\x50\x00\x75\x00\x37\x00\x74\x00\x01\x00\x1b\x00\x03\x00\x75\x00\x75\x00\x06\x00\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x75\x00\x74\x00\x10\x00\x77\x00\x36\x00\x0b\x00\x77\x00\x75\x00\x2f\x00\x75\x00\x75\x00\x75\x00\x75\x00\x1b\x00\x2c\x00\x36\x00\x73\x00\x75\x00\x44\x00\x75\x00\x49\x00\x49\x00\x77\x00\x49\x00\x74\x00\x77\x00\x77\x00\x59\x00\x77\x00\x44\x00\x2c\x00\x2d\x00\x79\x00\x2f\x00\x49\x00\x77\x00\x75\x00\x57\x00\x4d\x00\x75\x00\x75\x00\x08\x00\x08\x00\x5d\x00\x08\x00\x5f\x00\x08\x00\x74\x00\x57\x00\x75\x00\x59\x00\x5a\x00\x5b\x00\x5c\x00\x5d\x00\x77\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x35\x00\x75\x00\x4d\x00\x0a\x00\x39\x00\x3a\x00\x3b\x00\x3c\x00\x3d\x00\x75\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x59\x00\x5a\x00\x5b\x00\x5c\x00\x5d\x00\x5e\x00\x04\x00\x60\x00\x61\x00\x62\x00\x63\x00\x01\x00\x77\x00\x03\x00\x75\x00\x72\x00\x06\x00\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x72\x00\xff\xff\x10\x00\x72\x00\xff\xff\x35\x00\xff\xff\xff\xff\xff\xff\x39\x00\x3a\x00\x3b\x00\xff\xff\x1b\x00\x01\x00\x3f\x00\x40\x00\x41\x00\x42\x00\xff\xff\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\xff\xff\x77\x00\x10\x00\x2c\x00\x2d\x00\x36\x00\x2f\x00\x38\x00\x39\x00\x3a\x00\x3b\x00\x3c\x00\x3d\x00\x1b\x00\x3f\x00\x40\x00\x41\x00\x42\x00\xff\xff\x01\x00\xff\xff\x03\x00\xff\xff\xff\xff\x06\x00\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\xff\xff\x2f\x00\x10\x00\xff\xff\x4d\x00\xff\xff\xff\xff\xff\xff\x36\x00\xff\xff\xff\xff\xff\xff\x77\x00\x1b\x00\xff\xff\xff\xff\x59\x00\x5a\x00\x5b\x00\x5c\x00\x5d\x00\x5e\x00\x44\x00\x60\x00\x61\x00\x62\x00\x63\x00\x49\x00\xff\xff\xff\xff\x2c\x00\x4d\x00\xff\xff\x2f\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x57\x00\xff\xff\x59\x00\x5a\x00\x5b\x00\x5c\x00\x5d\x00\xff\xff\x30\x00\x60\x00\x61\x00\x62\x00\x63\x00\xff\xff\x36\x00\xff\xff\x38\x00\x39\x00\x3a\x00\x3b\x00\x3c\x00\x3d\x00\x4d\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\xff\xff\xff\xff\x59\x00\x5a\x00\x5b\x00\x5c\x00\x5d\x00\x5e\x00\x01\x00\x60\x00\x61\x00\x62\x00\x63\x00\xff\xff\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\xff\xff\xff\xff\x10\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x01\x00\xff\xff\xff\xff\x1b\x00\xff\xff\xff\xff\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\xff\xff\xff\xff\x10\x00\x77\x00\xff\xff\x76\x00\x77\x00\x2c\x00\xff\xff\xff\xff\x2f\x00\x01\x00\x02\x00\x1b\x00\xff\xff\xff\xff\x1e\x00\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\xff\xff\x58\x00\x10\x00\x5a\x00\xff\xff\x5c\x00\x5d\x00\x35\x00\xff\xff\x2f\x00\xff\xff\xff\xff\xff\xff\x1b\x00\xff\xff\xff\xff\x4d\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\xff\xff\xff\xff\x71\x00\x72\x00\x59\x00\x5a\x00\x5b\x00\x5c\x00\x5d\x00\x2f\x00\x35\x00\x60\x00\x61\x00\x62\x00\x63\x00\x4d\x00\xff\xff\xff\xff\xff\xff\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\xff\xff\xff\xff\x45\x00\x59\x00\x5a\x00\x5b\x00\x5c\x00\x5d\x00\xff\xff\xff\xff\x60\x00\x61\x00\x62\x00\x63\x00\xff\xff\x4d\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x76\x00\x77\x00\xff\xff\x59\x00\x5a\x00\x5b\x00\x5c\x00\x5d\x00\x01\x00\xff\xff\x60\x00\x61\x00\x62\x00\x63\x00\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\xff\xff\xff\xff\x10\x00\xff\xff\xff\xff\xff\xff\x76\x00\x77\x00\xff\xff\xff\xff\x01\x00\xff\xff\xff\xff\x1b\x00\xff\xff\xff\xff\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\xff\xff\xff\xff\x10\x00\xff\xff\xff\xff\xff\xff\xff\xff\x2c\x00\xff\xff\xff\xff\x2f\x00\x01\x00\x02\x00\x1b\x00\xff\xff\xff\xff\xff\xff\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\xff\xff\xff\xff\x10\x00\xff\xff\xff\xff\xff\xff\x2c\x00\x35\x00\xff\xff\x2f\x00\xff\xff\xff\xff\xff\xff\x1b\x00\xff\xff\xff\xff\x4d\x00\x3f\x00\x40\x00\x41\x00\x42\x00\xff\xff\xff\xff\x45\x00\xff\xff\xff\xff\xff\xff\xff\xff\x59\x00\x5a\x00\x5b\x00\x5c\x00\x5d\x00\x2f\x00\xff\xff\x60\x00\x61\x00\x62\x00\x63\x00\x4d\x00\x3a\x00\x3b\x00\x3c\x00\x3d\x00\x3e\x00\xff\xff\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x59\x00\x5a\x00\x5b\x00\x5c\x00\x5d\x00\xff\xff\xff\xff\x60\x00\x61\x00\x62\x00\x63\x00\xff\xff\x4d\x00\x3a\x00\x3b\x00\x3c\x00\x3d\x00\x3e\x00\xff\xff\x40\x00\x41\x00\x42\x00\x77\x00\xff\xff\x59\x00\x5a\x00\x5b\x00\x5c\x00\x5d\x00\x01\x00\xff\xff\x60\x00\x61\x00\x62\x00\x63\x00\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\xff\xff\xff\xff\x10\x00\xff\xff\xff\xff\xff\xff\xff\xff\x76\x00\x77\x00\xff\xff\x01\x00\xff\xff\x04\x00\x1b\x00\xff\xff\xff\xff\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\xff\xff\xff\xff\x10\x00\xff\xff\xff\xff\xff\xff\xff\xff\x2c\x00\x76\x00\x77\x00\x2f\x00\x01\x00\xff\xff\x1b\x00\xff\xff\xff\xff\xff\xff\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\xff\xff\xff\xff\x10\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x2f\x00\xff\xff\xff\xff\xff\xff\x1b\x00\xff\xff\x36\x00\x4d\x00\x38\x00\x39\x00\x3a\x00\x3b\x00\x3c\x00\x3d\x00\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\x59\x00\x5a\x00\x5b\x00\x5c\x00\x5d\x00\x2f\x00\xff\xff\x60\x00\x61\x00\x62\x00\x63\x00\x4d\x00\x3a\x00\x3b\x00\x3c\x00\x3d\x00\x3e\x00\xff\xff\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x59\x00\x5a\x00\x5b\x00\x5c\x00\x5d\x00\xff\xff\xff\xff\x60\x00\x61\x00\x62\x00\x63\x00\xff\xff\x4d\x00\x3a\x00\x3b\x00\x3c\x00\x3d\x00\x3e\x00\xff\xff\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x59\x00\x5a\x00\x5b\x00\x5c\x00\x5d\x00\x01\x00\xff\xff\x60\x00\x61\x00\x62\x00\x63\x00\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\xff\xff\xff\xff\x10\x00\xff\xff\xff\xff\xff\xff\xff\xff\x76\x00\x77\x00\xff\xff\x01\x00\xff\xff\xff\xff\x1b\x00\xff\xff\xff\xff\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\xff\xff\xff\xff\x10\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x76\x00\x77\x00\x2f\x00\x01\x00\xff\xff\x1b\x00\xff\xff\xff\xff\xff\xff\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\xff\xff\xff\xff\x10\x00\xff\xff\x3a\x00\x3b\x00\x3c\x00\x3d\x00\x3e\x00\x2f\x00\x40\x00\x41\x00\x42\x00\x1b\x00\xff\xff\x36\x00\x4d\x00\x38\x00\x39\x00\x3a\x00\x3b\x00\x3c\x00\x3d\x00\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\x59\x00\x5a\x00\x5b\x00\x5c\x00\x5d\x00\x2f\x00\xff\xff\x60\x00\x61\x00\x62\x00\x63\x00\x4d\x00\x3a\x00\x3b\x00\x3c\x00\x3d\x00\x3e\x00\xff\xff\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x59\x00\x5a\x00\x5b\x00\x5c\x00\x5d\x00\xff\xff\xff\xff\x60\x00\x61\x00\x62\x00\x63\x00\xff\xff\x4d\x00\x76\x00\x77\x00\xff\xff\xff\xff\x58\x00\xff\xff\x5a\x00\xff\xff\x5c\x00\x5d\x00\x5e\x00\x59\x00\x5a\x00\x5b\x00\x5c\x00\x5d\x00\x01\x00\xff\xff\x60\x00\x61\x00\x62\x00\x63\x00\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x71\x00\x72\x00\x10\x00\xff\xff\xff\xff\xff\xff\xff\xff\x76\x00\x77\x00\xff\xff\x01\x00\xff\xff\xff\xff\x1b\x00\xff\xff\xff\xff\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\xff\xff\xff\xff\x10\x00\x58\x00\xff\xff\x5a\x00\xff\xff\x5c\x00\x5d\x00\x5e\x00\x2f\x00\xff\xff\xff\xff\x1b\x00\xff\xff\x1f\x00\x20\x00\x58\x00\x22\x00\x5a\x00\xff\xff\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x29\x00\x2a\x00\x2b\x00\x71\x00\x72\x00\xff\xff\xff\xff\xff\xff\x2f\x00\x32\x00\xff\xff\xff\xff\x35\x00\xff\xff\x01\x00\x4d\x00\x03\x00\x71\x00\x72\x00\xff\xff\xff\xff\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\x0d\x00\x59\x00\x5a\x00\x5b\x00\x5c\x00\x5d\x00\xff\xff\xff\xff\x60\x00\x61\x00\x62\x00\x63\x00\x4d\x00\xff\xff\xff\xff\x3a\x00\x3b\x00\x3c\x00\x3d\x00\x3e\x00\xff\xff\x40\x00\x41\x00\x42\x00\x59\x00\x5a\x00\x5b\x00\x5c\x00\x5d\x00\xff\xff\xff\xff\x60\x00\x61\x00\x62\x00\x63\x00\x01\x00\x31\x00\x03\x00\x33\x00\xff\xff\x35\x00\x36\x00\xff\xff\x38\x00\xff\xff\xff\xff\x3b\x00\x0d\x00\x3d\x00\x3e\x00\x3f\x00\x40\x00\x77\x00\xff\xff\xff\xff\x44\x00\x45\x00\x46\x00\xff\xff\x48\x00\x49\x00\xff\xff\x4b\x00\x4c\x00\xff\xff\x4e\x00\x4f\x00\xff\xff\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\x57\x00\x76\x00\x77\x00\xff\xff\xff\xff\xff\xff\x5d\x00\x5e\x00\x5f\x00\x31\x00\xff\xff\x33\x00\xff\xff\x35\x00\x36\x00\x01\x00\x38\x00\x03\x00\xff\xff\x3b\x00\xff\xff\x3d\x00\x3e\x00\x3f\x00\x40\x00\xff\xff\xff\xff\x0d\x00\x44\x00\x45\x00\x46\x00\xff\xff\x48\x00\x49\x00\xff\xff\x4b\x00\x4c\x00\xff\xff\x4e\x00\x4f\x00\xff\xff\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\x57\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\x5e\x00\x5f\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x01\x00\x31\x00\x03\x00\x33\x00\xff\xff\x35\x00\x36\x00\xff\xff\x38\x00\xff\xff\xff\xff\x3b\x00\x0d\x00\x3d\x00\x3e\x00\x3f\x00\x40\x00\xff\xff\xff\xff\xff\xff\x44\x00\x45\x00\x46\x00\xff\xff\x48\x00\x49\x00\xff\xff\x4b\x00\x4c\x00\xff\xff\x4e\x00\x4f\x00\xff\xff\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\x57\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\x5e\x00\x5f\x00\x31\x00\xff\xff\x33\x00\xff\xff\x35\x00\x36\x00\x01\x00\x38\x00\x03\x00\xff\xff\x3b\x00\xff\xff\x3d\x00\x3e\x00\x3f\x00\x40\x00\xff\xff\xff\xff\x0d\x00\x44\x00\x45\x00\x46\x00\xff\xff\x48\x00\x49\x00\xff\xff\x4b\x00\x4c\x00\xff\xff\x4e\x00\x4f\x00\xff\xff\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\x57\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\x5e\x00\x5f\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x01\x00\x31\x00\xff\xff\x33\x00\xff\xff\x35\x00\x36\x00\xff\xff\x38\x00\xff\xff\xff\xff\x3b\x00\x0d\x00\x3d\x00\x3e\x00\x3f\x00\x40\x00\xff\xff\xff\xff\xff\xff\x44\x00\x45\x00\x46\x00\xff\xff\x48\x00\x49\x00\xff\xff\x4b\x00\x4c\x00\xff\xff\x4e\x00\x4f\x00\xff\xff\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\x57\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\x5e\x00\x5f\x00\x31\x00\xff\xff\x33\x00\xff\xff\x35\x00\x36\x00\x01\x00\x38\x00\xff\xff\xff\xff\x3b\x00\xff\xff\x3d\x00\x3e\x00\x3f\x00\x40\x00\xff\xff\xff\xff\x0d\x00\x44\x00\x45\x00\x46\x00\xff\xff\x48\x00\x49\x00\xff\xff\x4b\x00\x4c\x00\xff\xff\x4e\x00\x4f\x00\xff\xff\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\x57\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\x5e\x00\x5f\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x01\x00\x31\x00\xff\xff\x33\x00\xff\xff\x35\x00\x36\x00\xff\xff\x38\x00\xff\xff\xff\xff\x3b\x00\x0d\x00\x3d\x00\x3e\x00\x3f\x00\x40\x00\xff\xff\xff\xff\xff\xff\x44\x00\x45\x00\x46\x00\xff\xff\x48\x00\x49\x00\xff\xff\x4b\x00\x4c\x00\xff\xff\x4e\x00\x4f\x00\xff\xff\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\x57\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\x5e\x00\x5f\x00\x31\x00\xff\xff\x33\x00\xff\xff\x35\x00\x36\x00\x01\x00\x38\x00\xff\xff\xff\xff\x3b\x00\xff\xff\x3d\x00\x3e\x00\x3f\x00\x40\x00\xff\xff\xff\xff\x0d\x00\x44\x00\x45\x00\x46\x00\xff\xff\x48\x00\x49\x00\xff\xff\x4b\x00\x4c\x00\xff\xff\x4e\x00\x4f\x00\xff\xff\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\x57\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\x5e\x00\x5f\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x01\x00\x31\x00\xff\xff\x33\x00\xff\xff\x35\x00\x36\x00\xff\xff\x38\x00\xff\xff\xff\xff\x3b\x00\x0d\x00\x3d\x00\x3e\x00\x3f\x00\x40\x00\xff\xff\xff\xff\xff\xff\x44\x00\x45\x00\x46\x00\xff\xff\x48\x00\x49\x00\xff\xff\x4b\x00\x4c\x00\xff\xff\x4e\x00\x4f\x00\xff\xff\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\x57\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\x5e\x00\x5f\x00\x31\x00\xff\xff\x33\x00\xff\xff\x35\x00\x36\x00\x01\x00\x38\x00\xff\xff\xff\xff\x3b\x00\xff\xff\x3d\x00\x3e\x00\x3f\x00\x40\x00\xff\xff\xff\xff\x0d\x00\x44\x00\x45\x00\x46\x00\xff\xff\x48\x00\x49\x00\xff\xff\x4b\x00\x4c\x00\xff\xff\x4e\x00\x4f\x00\xff\xff\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\x57\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\x5e\x00\x5f\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x01\x00\x31\x00\xff\xff\x33\x00\xff\xff\x35\x00\x36\x00\xff\xff\x38\x00\xff\xff\xff\xff\x3b\x00\x0d\x00\x3d\x00\x3e\x00\x3f\x00\x40\x00\xff\xff\xff\xff\xff\xff\x44\x00\x45\x00\x46\x00\xff\xff\x48\x00\x49\x00\xff\xff\x4b\x00\x4c\x00\xff\xff\x4e\x00\x4f\x00\xff\xff\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\x57\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\x5e\x00\x5f\x00\x31\x00\xff\xff\x33\x00\xff\xff\x35\x00\x36\x00\x01\x00\x38\x00\x03\x00\xff\xff\x3b\x00\xff\xff\x3d\x00\x3e\x00\x3f\x00\x40\x00\xff\xff\xff\xff\x0d\x00\x44\x00\x45\x00\x46\x00\xff\xff\x48\x00\x49\x00\xff\xff\x4b\x00\x4c\x00\xff\xff\x4e\x00\x4f\x00\xff\xff\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\x57\x00\xff\xff\xff\xff\xff\xff\xff\xff\x01\x00\x5d\x00\x5e\x00\x5f\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x31\x00\x0d\x00\x33\x00\xff\xff\x35\x00\x36\x00\xff\xff\x38\x00\xff\xff\xff\xff\x3b\x00\xff\xff\x3d\x00\x3e\x00\x3f\x00\x40\x00\xff\xff\xff\xff\x1e\x00\x44\x00\x45\x00\x46\x00\xff\xff\x48\x00\x49\x00\xff\xff\x4b\x00\x4c\x00\xff\xff\x4e\x00\x4f\x00\xff\xff\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\x57\x00\x33\x00\xff\xff\x35\x00\x36\x00\xff\xff\x38\x00\x5e\x00\x5f\x00\x3b\x00\x01\x00\x3d\x00\x03\x00\x3f\x00\x40\x00\xff\xff\xff\xff\xff\xff\x44\x00\x45\x00\x46\x00\xff\xff\x0d\x00\x49\x00\xff\xff\x4b\x00\x4c\x00\xff\xff\xff\xff\x4f\x00\x01\x00\xff\xff\x52\x00\xff\xff\x54\x00\x55\x00\x56\x00\x57\x00\xff\xff\x01\x00\xff\xff\xff\xff\x0d\x00\x5d\x00\x5e\x00\x5f\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x0d\x00\xff\xff\xff\xff\x01\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x33\x00\xff\xff\x35\x00\x36\x00\xff\xff\x38\x00\x0d\x00\xff\xff\x3b\x00\xff\xff\x3d\x00\xff\xff\x3f\x00\x40\x00\xff\xff\xff\xff\xff\xff\x44\x00\x45\x00\x46\x00\xff\xff\xff\xff\x49\x00\x36\x00\x4b\x00\x4c\x00\x01\x00\xff\xff\x4f\x00\x01\x00\xff\xff\x52\x00\x36\x00\x54\x00\x55\x00\x56\x00\x57\x00\x44\x00\x0d\x00\xff\xff\xff\xff\x0d\x00\x49\x00\x5e\x00\x5f\x00\xff\xff\x44\x00\x36\x00\xff\xff\xff\xff\xff\xff\x49\x00\xff\xff\xff\xff\xff\xff\x01\x00\x57\x00\x03\x00\x01\x00\xff\xff\xff\xff\x44\x00\x5d\x00\x5e\x00\x5f\x00\x57\x00\x49\x00\x0d\x00\xff\xff\xff\xff\x0d\x00\x5d\x00\x5e\x00\x5f\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x36\x00\x57\x00\xff\xff\x36\x00\xff\xff\xff\xff\xff\xff\x5d\x00\x5e\x00\x5f\x00\xff\xff\x01\x00\xff\xff\xff\xff\x44\x00\xff\xff\xff\xff\x44\x00\xff\xff\x49\x00\xff\xff\xff\xff\x49\x00\x0d\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x36\x00\xff\xff\xff\xff\x36\x00\x57\x00\xff\xff\xff\xff\x57\x00\xff\xff\xff\xff\x5d\x00\x5e\x00\x5f\x00\x5d\x00\x44\x00\x5f\x00\xff\xff\x44\x00\x22\x00\x49\x00\xff\xff\xff\xff\x49\x00\xff\xff\xff\xff\x29\x00\x2a\x00\x2b\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x57\x00\x32\x00\x36\x00\x57\x00\x35\x00\xff\xff\x5d\x00\xff\xff\x5f\x00\x5d\x00\x5e\x00\x5f\x00\xff\xff\x58\x00\xff\xff\x5a\x00\x44\x00\x5c\x00\x5d\x00\x5e\x00\xff\xff\x49\x00\xff\xff\xff\xff\xff\xff\xff\xff\x4b\x00\x4c\x00\x4d\x00\x4e\x00\x4f\x00\x50\x00\xff\xff\xff\xff\xff\xff\x57\x00\xff\xff\xff\xff\x71\x00\x72\x00\xff\xff\x5d\x00\xff\xff\x5f\x00\x1d\x00\x1e\x00\xff\xff\x20\x00\x21\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x32\x00\xff\xff\xff\xff\x35\x00\xff\xff\x77\x00\xff\xff\xff\xff\x3a\x00\x3b\x00\xff\xff\xff\xff\xff\xff\xff\xff\x40\x00\x41\x00\x42\x00\xff\xff\xff\xff\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\x4c\x00\x4d\x00\x4e\x00\x4f\x00\x50\x00\xff\xff\xff\xff\xff\xff\xff\xff\x1d\x00\x1e\x00\xff\xff\x20\x00\x21\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x32\x00\xff\xff\xff\xff\x35\x00\xff\xff\xff\xff\x58\x00\xff\xff\x5a\x00\xff\xff\x5c\x00\x5d\x00\x76\x00\x77\x00\x40\x00\x41\x00\x42\x00\xff\xff\xff\xff\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\x4c\x00\x4d\x00\x4e\x00\x4f\x00\x50\x00\x71\x00\x72\x00\xff\xff\xff\xff\x1d\x00\x1e\x00\xff\xff\x20\x00\x21\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x32\x00\xff\xff\xff\xff\x35\x00\xff\xff\xff\xff\xff\xff\xff\xff\x3a\x00\x3b\x00\xff\xff\xff\xff\x76\x00\x77\x00\x40\x00\x41\x00\x42\x00\xff\xff\xff\xff\x45\x00\xff\xff\xff\xff\x48\x00\xff\xff\xff\xff\xff\xff\x4c\x00\x4d\x00\x4e\x00\x4f\x00\x50\x00\x1d\x00\x1e\x00\xff\xff\x20\x00\x21\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x32\x00\xff\xff\xff\xff\x35\x00\x04\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x40\x00\x41\x00\x42\x00\x77\x00\xff\xff\x45\x00\xff\xff\xff\xff\x48\x00\xff\xff\xff\xff\xff\xff\x4c\x00\x4d\x00\x4e\x00\x4f\x00\x50\x00\x1d\x00\x1e\x00\xff\xff\x20\x00\x21\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x32\x00\xff\xff\x36\x00\x35\x00\x38\x00\x39\x00\x3a\x00\x3b\x00\x3c\x00\x3d\x00\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x77\x00\xff\xff\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\x4c\x00\x4d\x00\x4e\x00\x4f\x00\x50\x00\x1d\x00\x1e\x00\xff\xff\x20\x00\x21\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x32\x00\xff\xff\x35\x00\x35\x00\xff\xff\xff\xff\x39\x00\x3a\x00\x3b\x00\x3c\x00\x3d\x00\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\x76\x00\x77\x00\x45\x00\x45\x00\xff\xff\xff\xff\x48\x00\xff\xff\xff\xff\xff\xff\x4c\x00\x4d\x00\x4e\x00\x4f\x00\x50\x00\x1d\x00\x1e\x00\xff\xff\x20\x00\x21\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\xff\xff\xff\xff\x30\x00\xff\xff\xff\xff\xff\xff\x32\x00\xff\xff\x36\x00\x35\x00\x38\x00\x39\x00\x3a\x00\x3b\x00\x3c\x00\x3d\x00\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\x76\x00\x77\x00\x77\x00\xff\xff\x45\x00\x46\x00\x47\x00\x48\x00\x49\x00\x1d\x00\x1e\x00\xff\xff\x20\x00\x21\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x32\x00\xff\xff\xff\xff\x35\x00\x1d\x00\x1e\x00\xff\xff\x20\x00\x21\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x45\x00\x46\x00\x47\x00\x48\x00\x76\x00\x77\x00\x32\x00\x1f\x00\x20\x00\x35\x00\x22\x00\x58\x00\x20\x00\x5a\x00\x22\x00\x5c\x00\x5d\x00\x29\x00\x2a\x00\x2b\x00\xff\xff\x29\x00\x2a\x00\x2b\x00\xff\xff\x45\x00\x32\x00\xff\xff\x48\x00\x35\x00\x32\x00\xff\xff\xff\xff\x35\x00\xff\xff\xff\xff\x71\x00\x72\x00\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\x3f\x00\x40\x00\x41\x00\x42\x00\xff\xff\xff\xff\x76\x00\x77\x00\x4b\x00\x4c\x00\x4d\x00\x4e\x00\x4f\x00\x50\x00\xff\xff\x20\x00\xff\xff\x22\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x29\x00\x2a\x00\x2b\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x77\x00\x32\x00\x21\x00\x22\x00\x35\x00\x24\x00\xff\xff\x26\x00\xff\xff\x28\x00\x29\x00\x2a\x00\x2b\x00\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\xff\xff\x32\x00\x77\x00\xff\xff\x35\x00\xff\xff\x77\x00\xff\xff\x4b\x00\x4c\x00\x4d\x00\x4e\x00\x4f\x00\x50\x00\x21\x00\x22\x00\xff\xff\x24\x00\xff\xff\x26\x00\x45\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\xff\xff\xff\xff\xff\xff\x22\x00\xff\xff\xff\xff\x32\x00\x35\x00\xff\xff\x35\x00\x29\x00\x2a\x00\x2b\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x31\x00\x32\x00\xff\xff\xff\xff\x35\x00\xff\xff\xff\xff\x45\x00\xff\xff\x77\x00\xff\xff\xff\xff\xff\xff\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x58\x00\xff\xff\x5a\x00\x77\x00\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x35\x00\xff\xff\xff\xff\xff\xff\x6f\x00\xff\xff\x71\x00\x72\x00\xff\xff\xff\xff\xff\xff\x35\x00\x77\x00\xff\xff\x77\x00\x39\x00\x3a\x00\x3b\x00\x3c\x00\x3d\x00\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x77\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x58\x00\xff\xff\x5a\x00\xff\xff\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\xff\xff\xff\xff\xff\xff\xff\xff\x35\x00\xff\xff\x71\x00\x72\x00\x39\x00\x3a\x00\x3b\x00\xff\xff\x77\x00\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\xff\xff\xff\xff\x45\x00\xff\xff\xff\xff\x77\x00\xff\xff\xff\xff\x4b\x00\x4c\x00\x4d\x00\x4e\x00\x4f\x00\x50\x00\x35\x00\xff\xff\xff\xff\xff\xff\x39\x00\x3a\x00\x3b\x00\xff\xff\xff\xff\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\xff\xff\xff\xff\x45\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x4b\x00\x4c\x00\x4d\x00\x4e\x00\x4f\x00\x50\x00\xff\xff\x35\x00\xff\xff\xff\xff\xff\xff\x39\x00\x3a\x00\x3b\x00\xff\xff\x76\x00\x77\x00\x3f\x00\x40\x00\x41\x00\x42\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x4b\x00\x4c\x00\x4d\x00\x4e\x00\x4f\x00\x50\x00\x35\x00\xff\xff\xff\xff\xff\xff\x39\x00\x3a\x00\x3b\x00\xff\xff\xff\xff\x77\x00\x3f\x00\x40\x00\x41\x00\x42\x00\xff\xff\xff\xff\xff\xff\xff\xff\x35\x00\xff\xff\xff\xff\xff\xff\x4b\x00\x4c\x00\x4d\x00\x4e\x00\x4f\x00\x50\x00\x3f\x00\x40\x00\x41\x00\x42\x00\xff\xff\xff\xff\x45\x00\xff\xff\xff\xff\xff\xff\x77\x00\xff\xff\x4b\x00\x4c\x00\x4d\x00\x4e\x00\x4f\x00\x50\x00\x35\x00\xff\xff\xff\xff\xff\xff\x39\x00\x3a\x00\x3b\x00\x3c\x00\x3d\x00\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\xff\xff\xff\xff\x45\x00\x35\x00\xff\xff\xff\xff\x77\x00\xff\xff\xff\xff\x35\x00\xff\xff\xff\xff\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\xff\xff\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\xff\xff\x77\x00\x4b\x00\x4c\x00\x4d\x00\x4e\x00\x4f\x00\x50\x00\x4b\x00\x4c\x00\x4d\x00\x4e\x00\x4f\x00\x50\x00\x35\x00\xff\xff\xff\xff\xff\xff\x39\x00\x3a\x00\x3b\x00\xff\xff\xff\xff\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\x35\x00\x77\x00\x45\x00\xff\xff\x39\x00\x3a\x00\x3b\x00\x3c\x00\x3d\x00\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\xff\xff\x35\x00\xff\xff\xff\xff\x77\x00\x39\x00\x3a\x00\x3b\x00\xff\xff\x04\x00\x77\x00\x3f\x00\x40\x00\x41\x00\x42\x00\xff\xff\xff\xff\x45\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x58\x00\xff\xff\x5a\x00\xff\xff\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x76\x00\x77\x00\x35\x00\xff\xff\x3a\x00\x3b\x00\x3c\x00\x3d\x00\x3e\x00\xff\xff\x40\x00\x41\x00\x42\x00\x71\x00\x72\x00\x77\x00\xff\xff\xff\xff\x45\x00\xff\xff\xff\xff\xff\xff\x36\x00\xff\xff\x38\x00\x39\x00\x3a\x00\x3b\x00\x3c\x00\x3d\x00\x77\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x58\x00\xff\xff\x5a\x00\xff\xff\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x08\x00\xff\xff\xff\xff\xff\xff\x6f\x00\xff\xff\x71\x00\x72\x00\x76\x00\x77\x00\xff\xff\x58\x00\xff\xff\x5a\x00\xff\xff\x5c\x00\x5d\x00\x5e\x00\x1a\x00\x1b\x00\x1c\x00\x1d\x00\x1e\x00\xff\xff\x20\x00\x21\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x71\x00\x72\x00\x08\x00\xff\xff\xff\xff\xff\xff\x32\x00\xff\xff\xff\xff\x35\x00\xff\xff\xff\xff\xff\xff\x58\x00\xff\xff\x5a\x00\xff\xff\x5c\x00\x5d\x00\x5e\x00\x1a\x00\x1b\x00\x1c\x00\x1d\x00\x1e\x00\x45\x00\x20\x00\x21\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x71\x00\x72\x00\x08\x00\xff\xff\xff\xff\xff\xff\x32\x00\xff\xff\xff\xff\x35\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x1a\x00\x1b\x00\x1c\x00\x1d\x00\x1e\x00\x45\x00\x20\x00\x21\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\xff\xff\xff\xff\x08\x00\xff\xff\xff\xff\xff\xff\x32\x00\xff\xff\xff\xff\x35\x00\x3a\x00\x3b\x00\x3c\x00\x3d\x00\x3e\x00\xff\xff\x40\x00\x41\x00\x42\x00\xff\xff\x1a\x00\x1b\x00\x1c\x00\x1d\x00\x1e\x00\x45\x00\x20\x00\x21\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x35\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x32\x00\xff\xff\x36\x00\x35\x00\x38\x00\x39\x00\x3a\x00\x3b\x00\x3c\x00\x3d\x00\x45\x00\x3f\x00\x40\x00\x41\x00\x42\x00\xff\xff\xff\xff\xff\xff\xff\xff\x45\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x76\x00\x77\x00\xff\xff\x58\x00\xff\xff\x5a\x00\xff\xff\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x08\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x71\x00\x72\x00\x3a\x00\x3b\x00\x3c\x00\x3d\x00\x3e\x00\xff\xff\x40\x00\x41\x00\x42\x00\xff\xff\x1a\x00\x1b\x00\x1c\x00\x1d\x00\x1e\x00\xff\xff\x20\x00\x21\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\xff\xff\x2b\x00\xff\xff\xff\xff\xff\xff\xff\xff\x32\x00\x31\x00\xff\xff\x35\x00\xff\xff\xff\xff\x36\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x3e\x00\xff\xff\xff\xff\xff\xff\xff\xff\x45\x00\x44\x00\xff\xff\xff\xff\x2b\x00\x48\x00\x49\x00\x76\x00\x77\x00\xff\xff\x31\x00\x4e\x00\xff\xff\xff\xff\x51\x00\x36\x00\x53\x00\xff\xff\xff\xff\xff\xff\x57\x00\xff\xff\xff\xff\x3e\x00\xff\xff\xff\xff\xff\xff\xff\xff\x5f\x00\x44\x00\xff\xff\xff\xff\xff\xff\x48\x00\x49\x00\xff\xff\xff\xff\xff\xff\xff\xff\x4e\x00\x2c\x00\xff\xff\x51\x00\xff\xff\x53\x00\x31\x00\xff\xff\x33\x00\x57\x00\x35\x00\x36\x00\xff\xff\x38\x00\xff\xff\xff\xff\x3b\x00\x5f\x00\x3d\x00\x3e\x00\x3f\x00\x40\x00\xff\xff\xff\xff\xff\xff\x44\x00\x45\x00\x46\x00\xff\xff\x48\x00\x49\x00\xff\xff\x4b\x00\x4c\x00\xff\xff\x4e\x00\x4f\x00\xff\xff\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\x57\x00\x31\x00\xff\xff\x33\x00\xff\xff\x35\x00\x36\x00\x5e\x00\x38\x00\xff\xff\xff\xff\x3b\x00\xff\xff\x3d\x00\x3e\x00\x3f\x00\x40\x00\xff\xff\xff\xff\xff\xff\x44\x00\x45\x00\x46\x00\xff\xff\x48\x00\x49\x00\xff\xff\x4b\x00\x4c\x00\xff\xff\x4e\x00\x4f\x00\xff\xff\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\x57\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x5d\x00\x5e\x00\x5f\x00\x31\x00\xff\xff\x33\x00\xff\xff\x35\x00\x36\x00\xff\xff\x38\x00\xff\xff\xff\xff\x3b\x00\xff\xff\x3d\x00\x3e\x00\x3f\x00\x40\x00\xff\xff\xff\xff\xff\xff\x44\x00\x45\x00\x46\x00\xff\xff\x48\x00\x49\x00\xff\xff\x4b\x00\x4c\x00\xff\xff\x4e\x00\x4f\x00\xff\xff\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\x57\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x5e\x00\x5f\x00\x31\x00\xff\xff\x33\x00\xff\xff\x35\x00\x36\x00\xff\xff\x38\x00\xff\xff\xff\xff\x3b\x00\xff\xff\xff\xff\x3e\x00\x3f\x00\x40\x00\xff\xff\xff\xff\xff\xff\x44\x00\x45\x00\x46\x00\xff\xff\x48\x00\x49\x00\xff\xff\x4b\x00\x4c\x00\x31\x00\x4e\x00\xff\xff\xff\xff\x51\x00\x36\x00\x53\x00\xff\xff\x55\x00\x56\x00\x57\x00\xff\xff\xff\xff\x3e\x00\xff\xff\xff\xff\xff\xff\xff\xff\x5f\x00\x44\x00\xff\xff\xff\xff\xff\xff\x48\x00\x49\x00\xff\xff\xff\xff\xff\xff\xff\xff\x4e\x00\xff\xff\xff\xff\x51\x00\xff\xff\x53\x00\x31\x00\xff\xff\x33\x00\x57\x00\x35\x00\x36\x00\xff\xff\x38\x00\xff\xff\xff\xff\x3b\x00\x5f\x00\x3d\x00\x3e\x00\x3f\x00\x40\x00\xff\xff\xff\xff\xff\xff\x44\x00\x45\x00\x46\x00\xff\xff\x48\x00\x49\x00\xff\xff\x4b\x00\x4c\x00\xff\xff\x4e\x00\x4f\x00\xff\xff\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\x57\x00\x33\x00\xff\xff\x35\x00\x36\x00\xff\xff\x38\x00\x5e\x00\xff\xff\x3b\x00\xff\xff\x3d\x00\xff\xff\x3f\x00\x40\x00\xff\xff\xff\xff\xff\xff\x44\x00\x45\x00\x46\x00\xff\xff\xff\xff\x49\x00\xff\xff\x4b\x00\x4c\x00\xff\xff\xff\xff\x4f\x00\xff\xff\xff\xff\x52\x00\xff\xff\x54\x00\x55\x00\x56\x00\x57\x00\x33\x00\xff\xff\x35\x00\x36\x00\xff\xff\x38\x00\x5e\x00\x5f\x00\x3b\x00\xff\xff\xff\xff\xff\xff\x3f\x00\x40\x00\xff\xff\xff\xff\xff\xff\x44\x00\x45\x00\x46\x00\xff\xff\xff\xff\x49\x00\xff\xff\x4b\x00\x4c\x00\xff\xff\x4a\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x55\x00\x56\x00\x57\x00\xff\xff\xff\xff\xff\xff\xff\xff\x58\x00\xff\xff\x5a\x00\x5f\x00\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x4a\x00\x6c\x00\xff\xff\xff\xff\xff\xff\xff\xff\x71\x00\x72\x00\xff\xff\xff\xff\x75\x00\xff\xff\xff\xff\xff\xff\x58\x00\xff\xff\x5a\x00\xff\xff\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x4a\x00\x6c\x00\xff\xff\xff\xff\xff\xff\xff\xff\x71\x00\x72\x00\xff\xff\xff\xff\x75\x00\xff\xff\xff\xff\xff\xff\x58\x00\xff\xff\x5a\x00\xff\xff\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\xff\xff\x6c\x00\xff\xff\xff\xff\xff\xff\xff\xff\x71\x00\x72\x00\xff\xff\xff\xff\x75\x00\x1a\x00\x1b\x00\x1c\x00\x1d\x00\x1e\x00\xff\xff\x20\x00\x21\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x32\x00\xff\xff\xff\xff\x35\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x51\x00\xff\xff\x53\x00\x54\x00\x55\x00\x56\x00\x57\x00\x58\x00\xff\xff\x5a\x00\x45\x00\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x71\x00\x72\x00\x51\x00\x74\x00\x53\x00\x54\x00\x55\x00\x56\x00\x57\x00\x58\x00\xff\xff\x5a\x00\xff\xff\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x71\x00\x72\x00\x51\x00\x74\x00\xff\xff\x54\x00\x55\x00\x56\x00\x57\x00\x58\x00\xff\xff\x5a\x00\xff\xff\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x71\x00\x72\x00\x58\x00\x74\x00\x5a\x00\xff\xff\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x70\x00\x71\x00\x72\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x7a\x00\x7b\x00\x58\x00\xff\xff\x5a\x00\xff\xff\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x70\x00\x71\x00\x72\x00\x51\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x58\x00\x7b\x00\x5a\x00\xff\xff\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\xff\xff\x51\x00\xff\xff\xff\xff\xff\xff\xff\xff\x71\x00\x72\x00\x58\x00\xff\xff\x5a\x00\xff\xff\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\xff\xff\x51\x00\xff\xff\xff\xff\xff\xff\xff\xff\x71\x00\x72\x00\x58\x00\xff\xff\x5a\x00\xff\xff\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x71\x00\x72\x00\x58\x00\xff\xff\x5a\x00\xff\xff\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\xff\xff\x6c\x00\xff\xff\x6e\x00\xff\xff\xff\xff\x71\x00\x72\x00\x58\x00\xff\xff\x5a\x00\xff\xff\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\xff\xff\x6c\x00\xff\xff\x6e\x00\xff\xff\xff\xff\x71\x00\x72\x00\x58\x00\xff\xff\x5a\x00\xff\xff\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\xff\xff\x6c\x00\xff\xff\x6e\x00\xff\xff\xff\xff\x71\x00\x72\x00\x58\x00\xff\xff\x5a\x00\xff\xff\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\xff\xff\x6c\x00\xff\xff\x6e\x00\xff\xff\xff\xff\x71\x00\x72\x00\x58\x00\xff\xff\x5a\x00\xff\xff\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\xff\xff\x6c\x00\xff\xff\x6e\x00\xff\xff\xff\xff\x71\x00\x72\x00\x58\x00\xff\xff\x5a\x00\xff\xff\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\xff\xff\xff\xff\x6d\x00\xff\xff\xff\xff\xff\xff\x71\x00\x72\x00\x58\x00\xff\xff\x5a\x00\xff\xff\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\xff\xff\x6c\x00\xff\xff\xff\xff\xff\xff\xff\xff\x71\x00\x72\x00\x58\x00\xff\xff\x5a\x00\x5b\x00\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x71\x00\x72\x00\x58\x00\xff\xff\x5a\x00\xff\xff\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\xff\xff\x6c\x00\xff\xff\xff\xff\xff\xff\xff\xff\x71\x00\x72\x00\x58\x00\xff\xff\x5a\x00\xff\xff\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\xff\xff\x6c\x00\xff\xff\xff\xff\xff\xff\xff\xff\x71\x00\x72\x00\x58\x00\xff\xff\x5a\x00\xff\xff\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\xff\xff\x6c\x00\xff\xff\xff\xff\xff\xff\xff\xff\x71\x00\x72\x00\x58\x00\xff\xff\x5a\x00\xff\xff\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\xff\xff\x6c\x00\xff\xff\xff\xff\xff\xff\xff\xff\x71\x00\x72\x00\x58\x00\xff\xff\x5a\x00\xff\xff\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\xff\xff\x6c\x00\xff\xff\xff\xff\xff\xff\xff\xff\x71\x00\x72\x00\x58\x00\xff\xff\x5a\x00\xff\xff\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\xff\xff\x6c\x00\xff\xff\xff\xff\xff\xff\xff\xff\x71\x00\x72\x00\x58\x00\xff\xff\x5a\x00\xff\xff\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\xff\xff\x6c\x00\xff\xff\xff\xff\xff\xff\xff\xff\x71\x00\x72\x00\x58\x00\xff\xff\x5a\x00\xff\xff\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\xff\xff\x6c\x00\xff\xff\xff\xff\xff\xff\xff\xff\x71\x00\x72\x00\x58\x00\xff\xff\x5a\x00\xff\xff\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\xff\xff\x6c\x00\xff\xff\xff\xff\xff\xff\xff\xff\x71\x00\x72\x00\x58\x00\xff\xff\x5a\x00\xff\xff\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\xff\xff\x6c\x00\xff\xff\xff\xff\xff\xff\xff\xff\x71\x00\x72\x00\x58\x00\xff\xff\x5a\x00\xff\xff\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\xff\xff\x6c\x00\xff\xff\xff\xff\xff\xff\xff\xff\x71\x00\x72\x00\x58\x00\xff\xff\x5a\x00\xff\xff\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x71\x00\x72\x00\x58\x00\xff\xff\x5a\x00\xff\xff\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x71\x00\x72\x00\x58\x00\xff\xff\x5a\x00\xff\xff\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x71\x00\x72\x00\x58\x00\xff\xff\x5a\x00\xff\xff\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x70\x00\x71\x00\x72\x00\x58\x00\xff\xff\x5a\x00\xff\xff\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x70\x00\x71\x00\x72\x00\x58\x00\xff\xff\x5a\x00\xff\xff\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x71\x00\x72\x00\x58\x00\xff\xff\x5a\x00\xff\xff\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x71\x00\x72\x00\x58\x00\xff\xff\x5a\x00\xff\xff\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x70\x00\x71\x00\x72\x00\x58\x00\xff\xff\x5a\x00\xff\xff\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x70\x00\x71\x00\x72\x00\x58\x00\xff\xff\x5a\x00\xff\xff\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x70\x00\x71\x00\x72\x00\x58\x00\xff\xff\x5a\x00\xff\xff\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x70\x00\x71\x00\x72\x00\x58\x00\xff\xff\x5a\x00\xff\xff\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x70\x00\x71\x00\x72\x00\x58\x00\xff\xff\x5a\x00\xff\xff\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x70\x00\x71\x00\x72\x00\x58\x00\xff\xff\x5a\x00\xff\xff\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x70\x00\x71\x00\x72\x00\x58\x00\xff\xff\x5a\x00\xff\xff\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x71\x00\x72\x00\x58\x00\xff\xff\x5a\x00\xff\xff\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x71\x00\x72\x00\x58\x00\xff\xff\x5a\x00\xff\xff\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x71\x00\x72\x00\x58\x00\xff\xff\x5a\x00\xff\xff\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x66\x00\xff\xff\x58\x00\xff\xff\x5a\x00\xff\xff\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x71\x00\x72\x00\x58\x00\xff\xff\x5a\x00\xff\xff\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x65\x00\x71\x00\x72\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x71\x00\x72\x00\x58\x00\xff\xff\x5a\x00\xff\xff\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x58\x00\xff\xff\x5a\x00\xff\xff\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\xff\xff\x71\x00\x72\x00\x58\x00\xff\xff\x5a\x00\xff\xff\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x71\x00\x72\x00\x58\x00\xff\xff\x5a\x00\xff\xff\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\xff\xff\xff\xff\x71\x00\x72\x00\x58\x00\xff\xff\x5a\x00\xff\xff\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\xff\xff\x71\x00\x72\x00\x58\x00\xff\xff\x5a\x00\xff\xff\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\xff\xff\xff\xff\x71\x00\x72\x00\x58\x00\xff\xff\x5a\x00\xff\xff\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\xff\xff\x71\x00\x72\x00\x58\x00\xff\xff\x5a\x00\xff\xff\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x39\x00\x3a\x00\x3b\x00\x71\x00\x72\x00\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x71\x00\x72\x00\x4b\x00\x4c\x00\x4d\x00\x4e\x00\x4f\x00\x50\x00\x39\x00\x3a\x00\x3b\x00\xff\xff\xff\xff\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x4b\x00\x4c\x00\x4d\x00\x4e\x00\x4f\x00\x50\x00\x36\x00\xff\xff\x38\x00\x39\x00\x3a\x00\x3b\x00\x3c\x00\x3d\x00\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff"#

happyTable :: HappyAddr
happyTable :: HappyAddr
happyTable = Addr# -> HappyAddr
HappyA# "\x00\x00\x0b\x00\x0c\x00\x04\x00\x3f\x01\x27\x03\x63\x00\x56\x02\x09\x00\x76\x02\xd4\x01\xe7\x01\xe8\x01\xe9\x01\xc7\x02\x18\x01\x40\x01\xa1\x00\x62\x00\x33\x03\x63\x00\x12\x03\x13\x03\x14\x03\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\xa2\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x17\x00\x18\x00\x19\x00\x1a\x00\x1b\x00\x1c\x00\x1d\x00\x86\x00\xa1\x00\xa5\x00\xff\xff\xba\x02\x3f\x01\x1e\x00\x63\x00\x6c\x00\x1f\x00\x02\x03\x83\x02\x19\x01\xa2\x00\xa6\x00\x2e\x00\x17\x03\x40\x01\x49\x02\x20\x00\x21\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x73\x00\x87\x00\x68\x00\x35\x00\x88\x00\xbd\x02\x47\x00\x33\x02\x39\x00\x84\x00\x34\x02\x89\x00\x1c\x00\x1d\x00\x53\x00\xea\x01\x25\x03\x13\x03\x14\x03\x74\x00\x1e\x00\x85\x00\x44\x00\x69\x00\x65\x00\x0b\x00\x03\x03\x15\x03\x45\x00\x86\x00\x47\x00\xa8\x01\x47\x00\x8a\x00\x21\x00\x22\x00\x23\x00\x8b\x00\x25\x00\x47\x00\x34\x03\x45\x00\x54\x00\x47\x00\x55\x00\x15\x03\x9a\x00\xba\x00\x6d\x00\x27\x00\x05\x00\x56\x00\x1c\x00\x1d\x00\x91\x02\x05\x00\x23\x01\x08\x00\x8f\x02\x85\x00\x1e\x00\x76\x00\x68\x00\x57\x00\x77\x00\xc1\x00\xc2\x00\x45\x00\x45\x00\x86\x00\x47\x00\x45\x00\x86\x00\x58\x00\x21\x00\x22\x00\x23\x00\x59\x00\x25\x00\x9a\x00\x16\x02\x87\x00\x68\x00\x69\x00\x88\x00\x75\x00\x54\x00\x98\x00\x55\x00\x8c\x00\x66\x00\x89\x00\x1c\x00\x1d\x00\x29\x00\x56\x00\x1c\x00\x1d\x00\x49\x00\xa0\x01\x1e\x00\x45\x00\x86\x00\x69\x00\x1e\x00\x09\x00\x2a\x00\x57\x00\x15\x03\xb5\x00\x38\x02\xa6\x00\x63\x00\x8a\x00\x21\x00\x22\x00\x9f\x00\x58\x00\x21\x00\x22\x00\x9f\x00\x85\x00\x39\x02\x12\x01\xab\x01\xac\x01\xad\x01\x15\x02\xae\x01\x5a\x00\xaf\x01\xb0\x01\xb1\x01\x89\x02\xb2\x01\xb3\x01\xb4\x01\xb5\x01\xb6\x01\x45\x00\xbb\x00\x47\x00\x6f\x00\x68\x00\xb7\x01\x0e\x00\x0f\x00\xb8\x01\xb9\x01\x78\x00\x12\x00\xba\x01\x14\x00\x15\x00\x16\x00\x17\x00\x18\x00\x19\x00\x1a\x00\x1b\x00\x1c\x00\x1d\x00\x2e\x00\x2e\x00\x69\x00\x8a\x02\xf6\x02\x48\x00\x1e\x00\x8c\x00\x12\x01\x1f\x00\xec\x01\x5a\x00\xed\x01\x15\x01\x35\x00\x35\x00\x21\x01\x22\x01\x09\x01\x39\x00\x39\x00\x68\x02\xe8\x01\xe9\x01\x45\x00\xbb\x01\x47\x00\x07\x01\xc3\x02\x45\x00\xbb\x00\x47\x00\xf7\x02\x44\x00\x44\x00\x98\x00\x30\x02\x22\x01\x07\x00\x45\x00\x86\x00\x47\x00\x47\x00\x08\x00\xc3\x00\x72\x00\xc4\x00\x73\x00\xc5\x00\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xca\x00\xcb\x00\xcc\x00\xcd\x00\xce\x00\xcf\x00\xd0\x00\xd1\x00\xd2\x00\x10\x01\xee\x01\xbc\x01\xec\x01\x74\x00\x70\x02\x70\x00\xd5\x00\xd6\x00\x12\x01\xbd\x01\x4b\x02\xbe\x01\x4e\x00\xab\x01\xac\x01\xad\x01\x31\x01\x95\x02\x23\x01\xaf\x01\xb0\x01\xb1\x01\x0f\x01\xb2\x01\xb3\x01\xb4\x01\xb5\x01\xb6\x01\x09\x00\x00\x01\xea\x01\xc0\x02\xfe\xff\xb7\x01\x0e\x00\x0f\x00\xb8\x01\xb9\x01\x23\x01\x12\x00\xba\x01\x14\x00\x15\x00\x16\x00\x17\x00\x18\x00\x19\x00\x1a\x00\x1b\x00\x1c\x00\x1d\x00\xf4\x02\xac\x01\xad\x01\x3c\x02\xee\x01\x32\x01\x1e\x00\xc1\x00\xc2\x00\x1f\x00\xb2\x01\xb3\x01\xb4\x01\xb5\x01\xb6\x01\x67\x00\x68\x00\xa1\x00\x75\x00\x1d\x03\xc1\x00\xc2\x00\x47\x00\x12\x01\x63\x00\xbb\x01\x2e\x02\xba\x00\xe5\x01\xa2\x00\xa0\x01\xec\xff\x98\x00\xba\x00\xd7\x01\xa9\x00\xd2\x01\x69\x00\x4d\x02\x85\x00\xa9\x00\x4e\x02\xa6\x00\x3d\x02\xc3\x00\x85\x00\xc4\x00\x1e\x03\xc5\x00\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xca\x00\xcb\x00\xcc\x00\xcd\x00\xce\x00\xcf\x00\xd0\x00\xd1\x00\xd2\x00\x10\x01\x27\x00\xbc\x01\x27\x00\x84\x02\xac\x01\xad\x01\xd5\x00\xd6\x00\x27\x00\xbd\x01\x27\x00\xbe\x01\x4e\x00\xb2\x01\xb3\x01\xb4\x01\xb5\x01\xb6\x01\xca\x02\xc3\x00\xec\xff\xc4\x00\xa0\x02\xc5\x00\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xca\x00\xcb\x00\xcc\x00\xcd\x00\xce\x00\xcf\x00\xd0\x00\xd1\x00\xd2\x00\x10\x01\xa1\x02\xbc\x01\x6a\x00\xa1\x02\xac\x01\xad\x01\xd5\x00\xd6\x00\x45\x00\xbd\x01\x47\x00\x1f\x00\x27\x00\xb2\x01\xb3\x01\xb4\x01\xb5\x01\xb6\x01\x45\x00\xbb\x00\x47\x00\x45\x00\xbb\x00\x47\x00\x45\x00\xbb\x00\x47\x00\x45\x02\xc1\x00\xc2\x00\xf2\x02\xac\x01\xad\x01\x1b\x02\x36\x01\x5f\x00\x60\x00\x37\x01\x38\x01\x98\x00\xb2\x01\xb3\x01\xb4\x01\xb5\x01\xb6\x01\x98\x00\x65\x02\xc3\x00\xce\x02\xc4\x00\xab\x00\xc5\x00\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xca\x00\xcb\x00\xcc\x00\xcd\x00\xce\x00\xcf\x00\xd0\x00\xd1\x00\xd2\x00\x10\x01\x3b\x03\xbc\x01\xfd\x02\xac\x01\xad\x01\x7a\x02\xd5\x00\xd6\x00\xa9\x00\xbd\x01\x46\x02\x4e\x00\xb2\x01\xb3\x01\xb4\x01\xb5\x01\xb6\x01\x95\x00\x96\x00\xc3\x00\x66\x02\xc4\x00\xcf\x02\xc5\x00\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xca\x00\xcb\x00\xcc\x00\xcd\x00\xce\x00\xcf\x00\xd0\x00\xd1\x00\xd2\x00\x10\x01\x79\x02\xbc\x01\x3c\x03\x9d\x00\x27\x00\x9c\x00\xd5\x00\xd6\x00\xc3\x00\xbd\x01\xc4\x00\x6b\x00\xc5\x00\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xca\x00\xcb\x00\xcc\x00\xcd\x00\xce\x00\xcf\x00\xd0\x00\xd1\x00\xd2\x00\x10\x01\xa8\x01\xbc\x01\xfc\x02\xac\x01\xad\x01\x6c\x00\xd5\x00\xd6\x00\xe9\x02\xbd\x01\x27\x00\xea\x02\xb2\x01\xb3\x01\xb4\x01\xb5\x01\xb6\x01\xd8\x02\x2f\x03\xc3\x00\xd9\x02\xc4\x00\xa7\x01\xc5\x00\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xca\x00\xcb\x00\xcc\x00\xcd\x00\xce\x00\xcf\x00\xd0\x00\xd1\x00\xd2\x00\x10\x01\x64\x00\xbc\x01\xfb\x02\xac\x01\xad\x01\xa6\x01\xd5\x00\xd6\x00\x30\x03\xbd\x01\xa9\x00\x89\x01\xb2\x01\xb3\x01\xb4\x01\xb5\x01\xb6\x01\x8d\x01\x03\x01\x22\x00\x04\x01\x65\x00\x38\x02\x8a\x01\x63\x00\x62\x00\x08\x01\x63\x00\xa3\x01\x11\x03\xac\x01\xad\x01\xa4\x01\x6d\x00\x39\x02\x62\x01\x63\x01\x64\x01\x65\x01\xb2\x01\xb3\x01\xb4\x01\xb5\x01\xb6\x01\x9a\x01\xb0\x00\xc3\x00\x63\x00\xc4\x00\x8c\x01\xc5\x00\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xca\x00\xcb\x00\xcc\x00\xcd\x00\xce\x00\xcf\x00\xd0\x00\xd1\x00\xd2\x00\x10\x01\x5f\x01\xbc\x01\x21\x03\xac\x01\xad\x01\x84\x01\xd5\x00\xd6\x00\x05\x01\xbd\x01\x93\x00\x94\x00\xb2\x01\xb3\x01\xb4\x01\xb5\x01\xb6\x01\x0d\x01\x5e\x01\xc3\x00\x27\x00\xc4\x00\x66\x00\xc5\x00\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xca\x00\xcb\x00\xcc\x00\xcd\x00\xce\x00\xcf\x00\xd0\x00\xd1\x00\xd2\x00\x10\x01\x45\x00\xbc\x01\x47\x00\x5d\x01\xa3\x02\x5c\x01\xd5\x00\xd6\x00\xc3\x00\xbd\x01\xc4\x00\x59\x01\xc5\x00\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xca\x00\xcb\x00\xcc\x00\xcd\x00\xce\x00\xcf\x00\xd0\x00\xd1\x00\xd2\x00\x10\x01\x34\x01\xbc\x01\x31\x03\xac\x01\xad\x01\xbe\x00\xd5\x00\xd6\x00\x27\x00\xbd\x01\x68\x01\x69\x01\xb2\x01\xb3\x01\xb4\x01\xb5\x01\xb6\x01\x66\x01\x67\x01\xc3\x00\x52\x01\xc4\x00\x48\x01\xc5\x00\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xca\x00\xcb\x00\xcc\x00\xcd\x00\xce\x00\xcf\x00\xd0\x00\xd1\x00\xd2\x00\x10\x01\x6b\x00\xbc\x01\x30\x03\xac\x01\xad\x01\x47\x01\xd5\x00\xd6\x00\x46\x01\xbd\x01\x60\x01\x61\x01\xb2\x01\xb3\x01\xb4\x01\xb5\x01\xb6\x01\x33\x01\xc3\x00\x29\x01\xc4\x00\x6c\x00\xc5\x00\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xca\x00\xcb\x00\xcc\x00\xcd\x00\xce\x00\xcf\x00\xd0\x00\xd1\x00\xd2\x00\x10\x01\x55\x01\x7e\x02\xb3\x02\xa4\x02\x25\x01\xb4\x02\xd5\x00\xd6\x00\x21\x01\xc3\x00\x20\x01\xc4\x00\x1f\x01\xc5\x00\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xca\x00\xcb\x00\xcc\x00\xcd\x00\xce\x00\xcf\x00\xd0\x00\xd1\x00\xd2\x00\x10\x01\xc0\x00\xbc\x01\xe7\x02\x5a\x01\x5b\x01\x55\x01\xd5\x00\xd6\x00\x3b\x02\xbd\x01\xd4\x02\xd5\x02\x32\x02\xc0\xfe\xd6\x02\x2e\x02\xc0\xfe\xc1\x00\xc2\x00\xc3\x00\x2d\x02\xc4\x00\x6d\x00\xc5\x00\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xca\x00\xcb\x00\xcc\x00\xcd\x00\xce\x00\xcf\x00\xd0\x00\xd1\x00\xd2\x00\x10\x01\x56\x01\xbc\x01\x55\x01\xc0\xfe\x32\x01\x97\x02\xd5\x00\xd6\x00\xa9\x00\xbd\x01\x2c\x02\xc1\x00\xc2\x00\x47\x00\xc3\x00\x47\x00\xc4\x00\x2b\x02\xc5\x00\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xca\x00\xcb\x00\xcc\x00\xcd\x00\xce\x00\xcf\x00\xd0\x00\xd1\x00\xd2\x00\x10\x01\x11\x02\x57\x01\x55\x01\x6a\x01\x6b\x01\x6c\x01\xd5\x00\xd6\x00\x6e\x02\x6f\x02\x12\x01\xb0\x00\xe5\x01\x63\x00\xc3\x00\x13\x02\xc4\x00\x0f\x02\xc5\x00\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xca\x00\xcb\x00\xcc\x00\xcd\x00\xce\x00\xcf\x00\xd0\x00\xd1\x00\xd2\x00\x10\x01\x0e\x02\x57\x01\x10\x02\xb0\x00\xde\x01\x63\x00\xd5\x00\xd6\x00\x6c\x02\x6d\x02\x12\x01\x9e\x00\x21\x00\x22\x00\x9f\x00\x0d\x02\xc3\x00\x9c\x00\xc4\x00\xe4\x01\xc5\x00\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xca\x00\xcb\x00\xcc\x00\xcd\x00\xce\x00\xcf\x00\xd0\x00\xd1\x00\xd2\x00\x10\x01\x0f\x02\x57\x01\xf1\x01\xa0\x01\x68\x01\x69\x01\xd5\x00\xd6\x00\x66\x01\x67\x01\x12\x01\xb0\x00\x08\x01\x63\x00\xc3\x00\xa6\x00\xc4\x00\xe1\x01\xc5\x00\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xca\x00\xcb\x00\xcc\x00\xcd\x00\xce\x00\xcf\x00\xd0\x00\xd1\x00\xd2\x00\x10\x01\x9e\x01\x57\x01\x7b\x02\xb1\x01\x60\x01\x61\x01\xd5\x00\xd6\x00\xa5\x00\xf0\x01\x12\x01\xd7\x01\xa6\x00\x32\x01\x99\x02\xb7\x01\x0e\x00\x0f\x00\xb8\x01\xb9\x01\xa6\x00\x12\x00\xba\x01\x14\x00\x15\x00\x16\x00\x17\x00\x18\x00\x19\x00\x1a\x00\x1b\x00\x1c\x00\x1d\x00\x57\x00\xd6\x01\xa5\x00\xf8\x00\xbd\x02\xab\x01\x1e\x00\xc1\x00\xc2\x00\x1f\x00\x25\x01\x21\x00\x22\x00\x9f\x00\xa6\x00\x94\x02\x6f\x00\x68\x00\x2e\x00\x7a\x01\x2e\x00\x7b\x01\x8f\x02\x7c\x01\x7d\x01\xbb\x01\xe0\x02\x7e\x01\x7f\x01\x45\x00\xbb\x00\x47\x00\x35\x00\x8e\x02\x35\x00\x19\x03\x1a\x03\x39\x00\x69\x00\x39\x00\xb8\x02\x21\x00\x22\x00\x9f\x00\xc3\x00\x95\x01\xc4\x00\x89\x02\x48\x01\xc6\x00\x49\x01\x44\x00\x86\x02\x44\x00\xb0\x00\x75\x02\x63\x00\x85\x00\x87\x02\x45\x00\x86\x00\x47\x00\x03\x00\x02\x00\x8b\x02\x84\x02\x5a\x00\x45\x00\x86\x00\xd5\x00\xd6\x00\xb0\x00\x74\x02\x63\x00\xbe\x01\x4e\x00\x8c\x02\x0e\x00\x0f\x00\xb8\x01\xb9\x01\x81\x02\x12\x00\xba\x01\x14\x00\x15\x00\x16\x00\x17\x00\x18\x00\x19\x00\x1a\x00\x1b\x00\x1c\x00\x1d\x00\x45\x00\x86\x00\x27\x00\x7e\x02\x2e\x00\xd8\x00\x1e\x00\x7d\x02\x2e\x00\x1f\x00\x70\x00\xd9\x00\xda\x00\xdb\x00\xdc\x00\xdd\x00\xde\x00\x14\x01\x35\x00\x59\xfe\xe0\x00\x58\xfe\x35\x00\x39\x00\x68\x02\xbb\x01\xee\x01\x39\x00\x6a\x01\x6b\x01\x6c\x01\xe1\x00\xb0\x00\xb5\x02\x63\x00\x15\x01\x16\x01\x44\x00\x5e\x00\x5f\x00\x60\x00\x44\x00\x67\x02\x45\x00\x86\x00\x47\x00\x5f\x01\xc0\x01\x98\x00\x47\x00\x5e\x01\xe2\x00\xc1\x01\x2b\x00\xc2\x01\x2c\x00\xc3\x01\x2d\x00\x2e\x00\xc4\x01\x2f\x00\xc5\x01\xc6\x01\x30\x00\x64\x02\x31\x00\x32\x00\x33\x00\x34\x00\xc7\x01\xc8\x01\xc9\x01\x35\x00\x36\x00\x37\x00\x05\x01\x38\x00\x39\x00\xca\x01\x3a\x00\x3b\x00\xe3\x00\x3c\x00\x3d\x00\xcb\x01\x3e\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\xcc\x01\xe5\x00\xe6\x00\xe7\x00\x9a\x00\xcd\x01\xce\x01\x47\x00\xcf\x01\xea\x00\xeb\x00\xec\x00\xd8\x00\x5d\x01\x4f\x00\x22\x00\x9e\x01\x5c\x01\xd9\x00\xda\x00\xdb\x00\xdc\x00\xdd\x00\xde\x00\x14\x01\x60\x02\x5f\x02\xe0\x00\x39\x02\x36\x01\x5f\x00\x60\x00\x37\x01\x38\x01\xae\x00\x5f\x00\x60\x00\x5e\x02\xe1\x00\x5e\x00\x5f\x00\x60\x00\xec\x00\xed\x00\x5d\x02\x12\x00\xee\x00\x14\x00\x15\x00\x16\x00\xef\x00\xf0\x00\x19\x00\x1a\x00\x1b\x00\x1c\x00\x1d\x00\x5c\x02\xe2\x00\x5b\x02\x2b\x00\x5a\x02\x2c\x00\x1e\x00\x2d\x00\x2e\x00\x1f\x00\x2f\x00\x52\x00\x4e\x00\x30\x00\x47\x00\x31\x00\x32\x00\x33\x00\x34\x00\x8a\x01\x5f\x00\x60\x00\x35\x00\x36\x00\x37\x00\xf1\x00\x38\x00\x39\x00\x2f\x01\x3a\x00\x3b\x00\xe3\x00\x3c\x00\x3d\x00\x58\x02\x3e\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x57\x02\xe5\x00\xe6\x00\xe7\x00\x9a\x00\xe8\x00\x46\x00\x47\x00\xcf\x01\xea\x00\xeb\x00\xec\x00\xd8\x00\x5e\x00\x5f\x00\x60\x00\xe4\x02\xe5\x02\xd9\x00\xda\x00\xdb\x00\xdc\x00\xdd\x00\xde\x00\x14\x01\x1f\x00\x47\x00\xe0\x00\x49\x02\x3f\x02\xc3\x00\xc9\x02\xc4\x00\x05\x01\x48\x01\xc6\x00\xc7\x00\xfc\x01\xe1\x00\xcd\x02\xc8\x02\xcb\x02\x27\x01\x5f\x00\x60\x00\xc3\x02\x62\x02\x53\x02\x36\x01\x5f\x00\x60\x00\x37\x01\x38\x01\xa9\x02\x9f\x02\xd5\x00\xd6\x00\xa7\x02\xe2\x00\xa3\x02\xdc\xff\x98\x00\xdc\xff\x98\x02\xdc\xff\xdc\xff\xf1\x02\xdc\xff\xef\x02\xee\x02\xdc\xff\xed\x02\xdc\xff\xdc\xff\xdc\xff\xdc\xff\x26\x01\x5f\x00\x60\x00\xdc\xff\xdc\xff\xdc\xff\xec\x02\xdc\xff\xdc\xff\xeb\x02\xdc\xff\xdc\xff\xe3\x00\xdc\xff\xdc\xff\x05\x01\xdc\xff\xdc\xff\xdc\xff\xdc\xff\xdc\xff\xdc\xff\xdc\xff\xd7\x02\xe5\x00\xe6\x00\xe7\x00\x9a\x00\xe8\x00\xdc\xff\xd8\x00\xe9\x00\xea\x00\xeb\x00\xec\x00\xe4\x02\xd9\x00\xda\x00\xdb\x00\xdc\x00\xdd\x00\xde\x00\x14\x01\xd3\x02\xc3\x00\xe0\x00\xc4\x00\x1f\x00\x48\x01\xc6\x00\x6c\x01\xb0\x00\x7d\x00\x7e\x00\xb1\x00\x80\x00\xe1\x00\x4a\x00\x21\x00\x22\x00\x23\x00\x4b\x00\x25\x00\xb2\x00\xde\x02\xdb\x02\x57\x00\xd1\x02\x09\x03\xd5\x00\xd6\x00\x18\x03\xc0\x01\x98\x00\x47\x00\xf8\x02\xe2\x00\xc1\x01\x11\x03\xc2\x01\x10\x03\xc3\x01\x0f\x03\x47\x00\xc4\x01\x0e\x03\xc5\x01\xc6\x01\x54\x02\x36\x01\x5f\x00\x60\x00\x37\x01\x38\x01\xc7\x01\xc8\x01\xc9\x01\x0b\x03\x92\x01\x2f\x02\x5f\x00\x60\x00\x23\x03\xca\x01\x1f\x03\x1c\x03\xe3\x00\x1b\x03\x2b\x03\xcb\x01\xa6\x00\x2a\x03\xb3\x00\x4e\x00\x8a\x01\x5f\x00\x60\x00\xcc\x01\xe5\x00\xe6\x00\xe7\x00\x9a\x00\xcd\x01\xc2\x00\x47\x00\xe9\x00\xea\x00\xeb\x00\xec\x00\xd8\x00\x27\x03\x25\x03\x5a\x00\x24\x03\x2e\x03\xd9\x00\xda\x00\xdb\x00\xdc\x00\xdd\x00\xde\x00\x14\x01\x9a\x00\x38\x03\xe0\x00\x37\x03\xb5\x00\x7e\x00\x36\x03\x57\x00\x9a\x00\x2e\x00\x4f\x00\x22\x00\x9e\x01\xe1\x00\xdf\x01\x5f\x00\x60\x00\x0b\x01\x21\x00\x22\x00\x23\x00\x0c\x01\x25\x00\x35\x00\xde\x01\x5f\x00\x60\x00\x40\x03\x39\x00\xc0\x01\x98\x00\x3f\x03\x9a\x00\xe2\x00\xc1\x01\x02\x00\xc2\x01\x3e\x03\xc3\x01\x98\x00\x96\x00\xc4\x01\x44\x00\xc5\x01\xc6\x01\x1f\x00\x63\x00\x5d\x00\x45\x00\x86\x00\x47\x00\xc7\x01\xc8\x01\xc9\x01\x49\x00\x4a\x00\x21\x00\x22\x00\x9f\x00\x02\x01\xca\x01\x23\x02\x01\x01\xe3\x00\xb8\x00\x4e\x00\xcb\x01\x1b\x02\x36\x01\x5f\x00\x60\x00\x37\x01\x38\x01\x5a\x00\xcc\x01\xe5\x00\xe6\x00\xe7\x00\x9a\x00\xcd\x01\xc2\x00\xd8\x00\xe9\x00\xea\x00\xeb\x00\xec\x00\x00\x01\xd9\x00\xda\x00\xdb\x00\xdc\x00\xdd\x00\xde\x00\x81\x01\x87\x01\x7e\x00\xe0\x00\x8a\x01\x5f\x00\x60\x00\x03\x01\x22\x00\x04\x01\xbd\x00\xc3\x00\xf8\x00\xc4\x00\xe1\x00\x54\x01\xc6\x00\x24\x02\x4e\x00\xbc\x00\xd8\x00\x5e\x00\x5f\x00\x60\x00\xad\x00\xbb\x00\xd9\x00\xda\x00\xdb\x00\xdc\x00\xdd\x00\xde\x00\xdf\x00\xac\x00\xe2\x00\xe0\x00\xd5\x00\xd6\x00\xab\x00\x57\x00\xa9\x00\x2e\x00\xa6\x00\x92\x01\x7d\x00\x7e\x00\xe1\x00\xa7\x00\x9d\x00\x0b\x01\x21\x00\x22\x00\x9f\x00\x9a\x00\xa2\x01\x35\x00\x8a\x01\x5f\x00\x60\x00\xa0\x01\x39\x00\x9a\x01\x05\x01\x95\x01\xe3\x00\x82\x01\xe2\x00\x70\x02\x5f\x00\x60\x00\xc5\x02\x5f\x00\x60\x00\x2e\x00\x44\x00\x82\x01\xe5\x00\xe6\x00\xe7\x00\x9a\x00\xe8\x00\x6d\x01\x47\x00\xe9\x00\xea\x00\xeb\x00\xec\x00\x35\x00\x57\x00\x8a\x01\x5f\x00\x60\x00\x39\x00\xd1\x02\x5f\x00\x60\x00\xe3\x00\xe4\x00\x0b\x01\x21\x00\x22\x00\x9f\x00\x3a\x01\x01\x01\x63\x00\x5a\x00\x44\x00\x57\x00\xe5\x00\xe6\x00\xe7\x00\x9a\x00\xe8\x00\xd8\x00\x3b\x01\xe9\x00\xea\x00\xeb\x00\xec\x00\xd9\x00\xda\x00\xdb\x00\xdc\x00\xdd\x00\xde\x00\x14\x01\x84\x01\x50\x01\xe0\x00\xc4\x02\x36\x01\x5f\x00\x60\x00\x37\x01\x38\x01\x29\x01\xac\x00\xf2\x01\xd8\x00\xe1\x00\xb3\x02\x29\x02\x28\x02\xb4\x02\xd9\x00\xda\x00\xdb\x00\xdc\x00\xdd\x00\xde\x00\x14\x01\x27\x02\xf1\x01\xe0\x00\x5a\x00\x2e\x00\xa9\x01\x26\x02\x22\x02\xe2\x00\x21\x02\x19\x02\x18\x02\x17\x02\xe1\x00\xe6\x01\x2e\x00\xd4\x01\xd0\x01\x35\x00\xcf\x01\xa8\x01\x94\x02\x5a\x00\x39\x00\x81\x02\x27\x00\x26\x02\xc1\x02\x27\x00\x35\x00\x79\x02\x08\x03\x3d\x02\xe2\x00\x39\x00\x26\x02\xb6\x02\x44\x00\xe3\x00\xb5\x02\x9d\x02\x9c\x02\x9b\x02\x45\x00\x9a\x02\x47\x00\x99\x02\xe1\x02\x44\x00\xde\x02\xe5\x00\xe6\x00\xe7\x00\x9a\x00\xe8\x00\x27\x00\x47\x00\xe9\x00\xea\x00\xeb\x00\xec\x00\x57\x00\xdb\x02\xe3\x00\x32\x03\xda\x01\x7d\x00\x7e\x00\xdb\x01\x80\x00\x04\x03\x25\x01\x21\x00\x22\x00\x9f\x00\xe5\x00\xe6\x00\xe7\x00\x9a\x00\xcd\x01\xc2\x00\x92\x02\xe9\x00\xea\x00\xeb\x00\xec\x00\xd8\x00\x27\x00\xb3\x02\x03\x03\x2c\x03\xb4\x02\xd9\x00\xda\x00\xdb\x00\xdc\x00\xdd\x00\xde\x00\x14\x01\x2b\x03\x00\x00\xe0\x00\x3c\x03\x00\x00\x57\x00\x00\x00\x00\x00\x00\x00\xda\x01\x7d\x00\x7e\x00\x00\x00\xe1\x00\xd8\x00\x25\x01\x21\x00\x22\x00\x9f\x00\x00\x00\xd9\x00\xda\x00\xdb\x00\xdc\x00\xdd\x00\xde\x00\x14\x01\x00\x00\x5a\x00\xe0\x00\x79\x02\x01\x03\x90\x00\xe2\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\xe1\x00\x81\x00\x21\x00\x22\x00\x9f\x00\x00\x00\xd8\x00\x00\x00\xb3\x02\x00\x00\x00\x00\xb4\x02\xd9\x00\xda\x00\xdb\x00\xdc\x00\xdd\x00\xde\x00\x14\x01\x00\x00\xe2\x00\xe0\x00\x00\x00\xe3\x00\x00\x00\x00\x00\x00\x00\x2e\x00\x00\x00\x00\x00\x00\x00\x5a\x00\xe1\x00\x00\x00\x00\x00\xe5\x00\xe6\x00\xe7\x00\x9a\x00\xcd\x01\xc2\x00\x35\x00\xe9\x00\xea\x00\xeb\x00\xec\x00\x39\x00\x00\x00\x00\x00\x79\x02\xe3\x00\x00\x00\xe2\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x44\x00\x00\x00\xe5\x00\xe6\x00\xe7\x00\x9a\x00\xe8\x00\x00\x00\xdf\x02\xe9\x00\xea\x00\xeb\x00\xec\x00\x00\x00\xbb\x02\x00\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\xe3\x00\xa3\x00\x21\x00\x22\x00\x9f\x00\x4f\x00\x22\x00\x50\x00\x51\x00\x25\x00\x00\x00\x00\x00\xe5\x00\xe6\x00\xe7\x00\x9a\x00\xcd\x01\xc2\x00\xd8\x00\xe9\x00\xea\x00\xeb\x00\xec\x00\x00\x00\xd9\x00\xda\x00\xdb\x00\xdc\x00\xdd\x00\xde\x00\x14\x01\x00\x00\x00\x00\xe0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xd8\x00\x00\x00\x00\x00\xe1\x00\x00\x00\x00\x00\xd9\x00\xda\x00\xdb\x00\xdc\x00\xdd\x00\xde\x00\x14\x01\x00\x00\x00\x00\xe0\x00\x27\x00\x00\x00\x52\x00\x4e\x00\x98\x00\x00\x00\x00\x00\xe2\x00\xd8\x00\xf7\x01\xe1\x00\x00\x00\x00\x00\x0b\x02\xd9\x00\xda\x00\xdb\x00\xdc\x00\xdd\x00\xde\x00\x14\x01\x00\x00\xc3\x00\xe0\x00\xc4\x00\x00\x00\x52\x01\xc6\x00\x1f\x00\x00\x00\xe2\x00\x00\x00\x00\x00\x00\x00\xe1\x00\x00\x00\x00\x00\xe3\x00\x4a\x00\x21\x00\x22\x00\x23\x00\x4b\x00\x25\x00\x4c\x00\x00\x00\x00\x00\xd5\x00\xd6\x00\xe5\x00\xe6\x00\xe7\x00\x9a\x00\xe8\x00\xe2\x00\x1f\x00\xe9\x00\xea\x00\xeb\x00\xec\x00\xe3\x00\x00\x00\x00\x00\x00\x00\x00\x00\x4a\x00\x21\x00\x22\x00\x9f\x00\x00\x00\x00\x00\xa1\x01\xe5\x00\xe6\x00\xe7\x00\x9a\x00\xe8\x00\x00\x00\x00\x00\xe9\x00\xea\x00\xeb\x00\xec\x00\x00\x00\xe3\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x4d\x00\x4e\x00\x00\x00\xe5\x00\xe6\x00\xe7\x00\x9a\x00\xe8\x00\xd8\x00\x00\x00\xe9\x00\xea\x00\xeb\x00\xec\x00\xd9\x00\xda\x00\xdb\x00\xdc\x00\xdd\x00\xde\x00\x14\x01\x00\x00\x00\x00\xe0\x00\x00\x00\x00\x00\x00\x00\x4d\x00\x4e\x00\x00\x00\x00\x00\xd8\x00\x00\x00\x00\x00\xe1\x00\x00\x00\x00\x00\xd9\x00\xda\x00\xdb\x00\xdc\x00\xdd\x00\xde\x00\x14\x01\x00\x00\x00\x00\xe0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x79\x02\x00\x00\x00\x00\xe2\x00\xd8\x00\x44\x02\xe1\x00\x00\x00\x00\x00\x00\x00\xd9\x00\xda\x00\xdb\x00\xdc\x00\xdd\x00\xde\x00\x14\x01\x00\x00\x00\x00\xe0\x00\x00\x00\x00\x00\x00\x00\x62\x02\x1f\x00\x00\x00\xe2\x00\x00\x00\x00\x00\x00\x00\xe1\x00\x00\x00\x00\x00\xe3\x00\x09\x01\x21\x00\x22\x00\x9f\x00\x00\x00\x00\x00\x0a\x01\x00\x00\x00\x00\x00\x00\x00\x00\xe5\x00\xe6\x00\xe7\x00\x9a\x00\xe8\x00\xe2\x00\x00\x00\xe9\x00\xea\x00\xeb\x00\xec\x00\xe3\x00\xb5\x00\x7e\x00\xb6\x00\x80\x00\xb7\x00\x00\x00\x4f\x00\x22\x00\x50\x00\x51\x00\x25\x00\xe5\x00\xe6\x00\xe7\x00\x9a\x00\xe8\x00\x00\x00\x00\x00\xe9\x00\xea\x00\xeb\x00\xec\x00\x00\x00\xe3\x00\xb5\x00\x7e\x00\xb6\x00\x80\x00\xb7\x00\x00\x00\x4f\x00\x22\x00\x9e\x01\x05\x01\x00\x00\xe5\x00\xe6\x00\xe7\x00\x9a\x00\x45\x02\xd8\x00\x00\x00\xe9\x00\xea\x00\xeb\x00\xec\x00\xd9\x00\xda\x00\xdb\x00\xdc\x00\xdd\x00\xde\x00\x14\x01\x00\x00\x00\x00\xe0\x00\x00\x00\x00\x00\x00\x00\x00\x00\xb8\x00\x4e\x00\x00\x00\xd8\x00\x00\x00\x90\x02\xe1\x00\x00\x00\x00\x00\xd9\x00\xda\x00\xdb\x00\xdc\x00\xdd\x00\xde\x00\x14\x01\x00\x00\x00\x00\xe0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x79\x02\xb8\x00\x4e\x00\xe2\x00\x54\x01\x00\x00\xe1\x00\x00\x00\x00\x00\x00\x00\xd9\x00\xda\x00\xdb\x00\xdc\x00\xdd\x00\xde\x00\x14\x01\x00\x00\x00\x00\xe0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe2\x00\x00\x00\x00\x00\x00\x00\xe1\x00\x00\x00\x7a\x00\xe3\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x00\x00\x81\x00\x21\x00\x22\x00\x9f\x00\xe5\x00\xe6\x00\xe7\x00\x9a\x00\xe8\x00\xe2\x00\x00\x00\xe9\x00\xea\x00\xeb\x00\xec\x00\xe3\x00\xb5\x00\x7e\x00\xb6\x00\x80\x00\x8d\x01\x00\x00\x4f\x00\x22\x00\x50\x00\x51\x00\x25\x00\xe5\x00\xe6\x00\xe7\x00\x9a\x00\xe8\x00\x00\x00\x00\x00\xe9\x00\xea\x00\xeb\x00\xec\x00\x00\x00\xe3\x00\xb5\x00\x7e\x00\xb6\x00\x80\x00\x86\x01\x00\x00\x4f\x00\x22\x00\x50\x00\x51\x00\x25\x00\xe5\x00\xe6\x00\xe7\x00\x9a\x00\xe8\x00\x50\x01\x00\x00\xe9\x00\xea\x00\xeb\x00\xec\x00\xd9\x00\xda\x00\xdb\x00\xdc\x00\xdd\x00\xde\x00\x14\x01\x00\x00\x00\x00\xe0\x00\x00\x00\x00\x00\x00\x00\x00\x00\xb8\x00\x4e\x00\x00\x00\x4e\x01\x00\x00\x00\x00\xe1\x00\x00\x00\x00\x00\xd9\x00\xda\x00\xdb\x00\xdc\x00\xdd\x00\xde\x00\x14\x01\x00\x00\x00\x00\xe0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xb8\x00\x4e\x00\xe2\x00\xd8\x00\x00\x00\xe1\x00\x00\x00\x00\x00\x00\x00\xd9\x00\xda\x00\xdb\x00\xdc\x00\xdd\x00\xde\x00\x14\x01\x00\x00\x00\x00\xe0\x00\x00\x00\xb5\x00\x7e\x00\xb6\x00\x80\x00\xd9\x01\xe2\x00\x4f\x00\x22\x00\x9e\x01\xe1\x00\x00\x00\xa2\x00\xe3\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x00\x00\xa3\x00\x21\x00\x22\x00\x9f\x00\xe5\x00\xe6\x00\xe7\x00\x9a\x00\xe8\x00\xe2\x00\x00\x00\xe9\x00\xea\x00\xeb\x00\xec\x00\xe3\x00\xb5\x00\x7e\x00\xb6\x00\x80\x00\xd8\x01\x00\x00\x4f\x00\x22\x00\x50\x00\x51\x00\x25\x00\xe5\x00\xe6\x00\xe7\x00\x9a\x00\xe8\x00\x00\x00\x00\x00\xe9\x00\xea\x00\xeb\x00\xec\x00\x00\x00\xe3\x00\xb8\x00\x4e\x00\x00\x00\x00\x00\xc3\x00\x00\x00\xc4\x00\x00\x00\x48\x01\xc6\x00\x49\x01\xe5\x00\xe6\x00\xe7\x00\x9a\x00\xe8\x00\xd8\x00\x00\x00\xe9\x00\xea\x00\xeb\x00\xec\x00\xd9\x00\xda\x00\xdb\x00\xdc\x00\xdd\x00\xde\x00\x14\x01\xd5\x00\xd6\x00\xe0\x00\x00\x00\x00\x00\x00\x00\x00\x00\xb8\x00\x4e\x00\x00\x00\xd8\x00\x00\x00\x00\x00\xe1\x00\x00\x00\x00\x00\xd9\x00\xda\x00\xdb\x00\xdc\x00\xdd\x00\xde\x00\x14\x01\x00\x00\x00\x00\xe0\x00\xc3\x00\x00\x00\xc4\x00\x00\x00\x48\x01\xc6\x00\xfa\x01\xe2\x00\x00\x00\x00\x00\xe1\x00\x00\x00\x87\x00\x68\x00\xc3\x00\x88\x00\xc4\x00\x00\x00\x48\x01\xc6\x00\xc7\x00\xfb\x01\x89\x00\x1c\x00\x1d\x00\xd5\x00\xd6\x00\x00\x00\x00\x00\x00\x00\xe2\x00\x1e\x00\x00\x00\x00\x00\x69\x00\x00\x00\x3a\x01\xe3\x00\x63\x00\xd5\x00\xd6\x00\x00\x00\x00\x00\x00\x00\x2e\x01\x21\x00\x22\x00\x9f\x00\x3b\x01\xe5\x00\xe6\x00\xe7\x00\x9a\x00\x45\x02\x00\x00\x00\x00\xe9\x00\xea\x00\xeb\x00\xec\x00\xe3\x00\x00\x00\x00\x00\xb5\x00\x7e\x00\xb6\x00\x80\x00\x8d\x01\x00\x00\x4f\x00\x22\x00\x9e\x01\xe5\x00\xe6\x00\xe7\x00\x9a\x00\xe8\x00\x00\x00\x00\x00\xe9\x00\xea\x00\xeb\x00\xec\x00\x3a\x01\x2b\x00\x63\x00\x2c\x00\x00\x00\x2d\x00\x2e\x00\x00\x00\x2f\x00\x00\x00\x00\x00\x30\x00\x3b\x01\x31\x00\x32\x00\x33\x00\x34\x00\x8c\x00\x00\x00\x00\x00\x35\x00\x36\x00\x37\x00\x00\x00\x38\x00\x39\x00\x00\x00\x3a\x00\x3b\x00\x00\x00\x3c\x00\x3d\x00\x00\x00\x3e\x00\x8e\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\xb8\x00\x4e\x00\x00\x00\x00\x00\x00\x00\x45\x00\x8f\x00\x47\x00\x2b\x00\x00\x00\x2c\x00\x00\x00\x2d\x00\x2e\x00\x3a\x01\x2f\x00\x63\x00\x00\x00\x30\x00\x00\x00\x31\x00\x32\x00\x33\x00\x34\x00\x00\x00\x00\x00\x3b\x01\x35\x00\x36\x00\x37\x00\x00\x00\x38\x00\x39\x00\x00\x00\x3a\x00\x3b\x00\x00\x00\x3c\x00\x3d\x00\x00\x00\x3e\x00\x5c\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x45\x00\x5d\x00\x47\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x3f\x01\x2b\x00\x63\x00\x2c\x00\x00\x00\x2d\x00\x2e\x00\x00\x00\x2f\x00\x00\x00\x00\x00\x30\x00\x40\x01\x31\x00\x32\x00\x33\x00\x34\x00\x00\x00\x00\x00\x00\x00\x35\x00\x36\x00\x37\x00\x00\x00\x38\x00\x39\x00\x00\x00\x3a\x00\x3b\x00\x00\x00\x3c\x00\x3d\x00\x00\x00\x3e\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x45\x00\x46\x00\x47\x00\x2b\x00\x00\x00\x2c\x00\x00\x00\x2d\x00\x2e\x00\x3a\x01\x2f\x00\x63\x00\x00\x00\x30\x00\x00\x00\x31\x00\x32\x00\x33\x00\x34\x00\x00\x00\x00\x00\x3b\x01\x35\x00\x36\x00\x37\x00\x00\x00\x38\x00\x39\x00\x00\x00\x3a\x00\x3b\x00\x00\x00\x3c\x00\x3d\x00\x00\x00\x3e\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x45\x00\x46\x00\x47\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x29\x00\x2b\x00\x00\x00\x2c\x00\x00\x00\x2d\x00\x2e\x00\x00\x00\x2f\x00\x00\x00\x00\x00\x30\x00\x2a\x00\x31\x00\x32\x00\x33\x00\x34\x00\x00\x00\x00\x00\x00\x00\x35\x00\x36\x00\x37\x00\x00\x00\x38\x00\x39\x00\x00\x00\x3a\x00\x3b\x00\x00\x00\x3c\x00\x3d\x00\x00\x00\x3e\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x45\x00\x46\x00\x47\x00\x2b\x00\x00\x00\x2c\x00\x00\x00\x2d\x00\x2e\x00\x29\x00\x2f\x00\x00\x00\x00\x00\x30\x00\x00\x00\x31\x00\x32\x00\x33\x00\x34\x00\x00\x00\x00\x00\x2a\x00\x35\x00\x36\x00\x37\x00\x00\x00\x38\x00\x39\x00\x00\x00\x3a\x00\x3b\x00\x00\x00\x3c\x00\x3d\x00\x00\x00\x3e\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x45\x00\x46\x00\x47\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x29\x00\x2b\x00\x00\x00\x2c\x00\x00\x00\x2d\x00\x2e\x00\x00\x00\x2f\x00\x00\x00\x00\x00\x30\x00\x2a\x00\x31\x00\x32\x00\x33\x00\x34\x00\x00\x00\x00\x00\x00\x00\x35\x00\x36\x00\x37\x00\x00\x00\x38\x00\x39\x00\x00\x00\x3a\x00\x3b\x00\x00\x00\x3c\x00\x3d\x00\x00\x00\x3e\x00\x8e\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x45\x00\x8f\x00\x47\x00\x2b\x00\x00\x00\x2c\x00\x00\x00\x2d\x00\x2e\x00\xa1\x00\x2f\x00\x00\x00\x00\x00\x30\x00\x00\x00\x31\x00\x32\x00\x33\x00\x34\x00\x00\x00\x00\x00\xa2\x00\x35\x00\x36\x00\x37\x00\x00\x00\x38\x00\x39\x00\x00\x00\x3a\x00\x3b\x00\x00\x00\x3c\x00\x3d\x00\x00\x00\x3e\x00\x5c\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x45\x00\x5d\x00\x47\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa1\x00\x2b\x00\x00\x00\x2c\x00\x00\x00\x2d\x00\x2e\x00\x00\x00\x2f\x00\x00\x00\x00\x00\x30\x00\xa2\x00\x31\x00\x32\x00\x33\x00\x34\x00\x00\x00\x00\x00\x00\x00\x35\x00\x36\x00\x37\x00\x00\x00\x38\x00\x39\x00\x00\x00\x3a\x00\x3b\x00\x00\x00\x3c\x00\x3d\x00\x00\x00\x3e\x00\x8e\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x45\x00\x8f\x00\x47\x00\x2b\x00\x00\x00\x2c\x00\x00\x00\x2d\x00\x2e\x00\xa1\x00\x2f\x00\x00\x00\x00\x00\x30\x00\x00\x00\x31\x00\x32\x00\x33\x00\x34\x00\x00\x00\x00\x00\xa2\x00\x35\x00\x36\x00\x37\x00\x00\x00\x38\x00\x39\x00\x00\x00\x3a\x00\x3b\x00\x00\x00\x3c\x00\x3d\x00\x00\x00\x3e\x00\x5c\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x45\x00\x5d\x00\x47\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa1\x00\x2b\x00\x00\x00\x2c\x00\x00\x00\x2d\x00\x2e\x00\x00\x00\x2f\x00\x00\x00\x00\x00\x30\x00\xa2\x00\x31\x00\x32\x00\x33\x00\x34\x00\x00\x00\x00\x00\x00\x00\x35\x00\x36\x00\x37\x00\x00\x00\x38\x00\x39\x00\x00\x00\x3a\x00\x3b\x00\x00\x00\x3c\x00\x3d\x00\x00\x00\x3e\x00\x8e\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x45\x00\x8f\x00\x47\x00\x2b\x00\x00\x00\x2c\x00\x00\x00\x2d\x00\x2e\x00\x38\x02\x2f\x00\x63\x00\x00\x00\x30\x00\x00\x00\x31\x00\x32\x00\x33\x00\x34\x00\x00\x00\x00\x00\x39\x02\x35\x00\x36\x00\x37\x00\x00\x00\x38\x00\x39\x00\x00\x00\x3a\x00\x3b\x00\x00\x00\x3c\x00\x3d\x00\x00\x00\x3e\x00\x5c\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa1\x00\x45\x00\x5d\x00\x47\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x2b\x00\xa2\x00\x2c\x00\x00\x00\x2d\x00\x2e\x00\x00\x00\x2f\x00\x00\x00\x00\x00\x30\x00\x00\x00\x31\x00\x32\x00\x33\x00\x34\x00\x00\x00\x00\x00\xba\x02\x35\x00\x36\x00\x37\x00\x00\x00\x38\x00\x39\x00\x00\x00\x3a\x00\x3b\x00\x00\x00\x3c\x00\x3d\x00\x00\x00\x3e\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x2c\x00\x00\x00\x2d\x00\x2e\x00\x00\x00\x2f\x00\x46\x00\x47\x00\x30\x00\x38\x02\x31\x00\x63\x00\x33\x00\x34\x00\x00\x00\x00\x00\x00\x00\x35\x00\x36\x00\x37\x00\x00\x00\x39\x02\x39\x00\x00\x00\x3a\x00\x3b\x00\x00\x00\x00\x00\x3d\x00\x89\x01\x00\x00\x5c\x00\x00\x00\x41\x00\x42\x00\x43\x00\x44\x00\x00\x00\xdd\x01\x00\x00\x00\x00\x8a\x01\x45\x00\x5d\x00\x47\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa6\x00\x00\x00\x00\x00\xd2\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x2c\x00\x00\x00\x2d\x00\x2e\x00\x00\x00\x2f\x00\xa6\x00\x00\x00\x30\x00\x00\x00\x31\x00\x00\x00\x33\x00\x34\x00\x00\x00\x00\x00\x00\x00\x35\x00\x36\x00\x37\x00\x00\x00\x00\x00\x39\x00\x2e\x00\x3a\x00\x3b\x00\x89\x01\x00\x00\x3d\x00\x29\x00\x00\x00\x5c\x00\x2e\x00\x41\x00\x42\x00\x43\x00\x44\x00\x35\x00\x8a\x01\x00\x00\x00\x00\x2a\x00\x39\x00\x5d\x00\x47\x00\x00\x00\x35\x00\x2e\x00\x00\x00\x00\x00\x00\x00\x39\x00\x00\x00\x00\x00\x00\x00\x3a\x01\x44\x00\x63\x00\x89\x01\x00\x00\x00\x00\x35\x00\x45\x00\x86\x00\x47\x00\x44\x00\x39\x00\x3b\x01\x00\x00\x00\x00\x8a\x01\x45\x00\x86\x00\x47\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x2e\x00\x44\x00\x00\x00\x2e\x00\x00\x00\x00\x00\x00\x00\x45\x00\x86\x00\x47\x00\x00\x00\xa1\x00\x00\x00\x00\x00\x35\x00\x00\x00\x00\x00\x35\x00\x00\x00\x39\x00\x00\x00\x00\x00\x39\x00\xa2\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x2e\x00\x00\x00\x00\x00\x2e\x00\x44\x00\x00\x00\x00\x00\x44\x00\x00\x00\x00\x00\x45\x00\x86\x00\x47\x00\x45\x00\x35\x00\x47\x00\x00\x00\x35\x00\x55\x00\x39\x00\x00\x00\x00\x00\x39\x00\x00\x00\x00\x00\x56\x00\x1c\x00\x1d\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x44\x00\x1e\x00\x2e\x00\x44\x00\x57\x00\x00\x00\x45\x00\x00\x00\x47\x00\x45\x00\x86\x00\x47\x00\x00\x00\xc3\x00\x00\x00\xc4\x00\x35\x00\x48\x01\xc6\x00\xf9\x01\x00\x00\x39\x00\x00\x00\x00\x00\x00\x00\x00\x00\x36\x02\x36\x01\x5f\x00\x60\x00\x37\x01\x38\x01\x00\x00\x00\x00\x00\x00\x44\x00\x00\x00\x00\x00\xd5\x00\xd6\x00\x00\x00\x45\x00\x00\x00\x47\x00\xec\x00\xed\x00\x00\x00\x12\x00\xee\x00\x14\x00\x15\x00\x16\x00\xef\x00\xf0\x00\x19\x00\x1a\x00\x1b\x00\x1c\x00\x1d\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1e\x00\x00\x00\x00\x00\x1f\x00\x00\x00\x5a\x00\x00\x00\x00\x00\xb5\x00\x7e\x00\x00\x00\x00\x00\x00\x00\x00\x00\x4f\x00\x22\x00\x9e\x01\x00\x00\x00\x00\xf1\x00\xf2\x00\xf3\x00\xf4\x00\x00\x00\x00\x00\x00\x00\x1d\x02\x5f\x00\x60\x00\x1e\x02\x1f\x02\x00\x00\x00\x00\x00\x00\x00\x00\xec\x00\xed\x00\x00\x00\x12\x00\xee\x00\x14\x00\x15\x00\x16\x00\xef\x00\xf0\x00\x19\x00\x1a\x00\x1b\x00\x1c\x00\x1d\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1e\x00\x00\x00\x00\x00\x1f\x00\x00\x00\x00\x00\xc3\x00\x00\x00\xc4\x00\x00\x00\x4e\x01\xc6\x00\x20\x02\x4e\x00\x4f\x00\x22\x00\x9e\x01\x00\x00\x00\x00\xf1\x00\xf2\x00\xf3\x00\xf4\x00\x00\x00\x00\x00\x00\x00\x1d\x02\x5f\x00\x60\x00\x1e\x02\x1f\x02\xd5\x00\xd6\x00\x00\x00\x00\x00\xec\x00\xed\x00\x00\x00\x12\x00\xee\x00\x14\x00\x15\x00\x16\x00\xef\x00\xf0\x00\x19\x00\x1a\x00\x1b\x00\x1c\x00\x1d\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1e\x00\x00\x00\x00\x00\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x87\x01\x7e\x00\x00\x00\x00\x00\x25\x02\x4e\x00\x03\x01\x22\x00\x04\x01\x00\x00\x00\x00\xf1\x00\x00\x00\x00\x00\x2f\x01\x00\x00\x00\x00\x00\x00\x4f\x02\x5f\x00\x60\x00\x50\x02\x51\x02\xec\x00\xed\x00\x00\x00\x12\x00\xee\x00\x14\x00\x15\x00\x16\x00\xef\x00\xf0\x00\x19\x00\x1a\x00\x1b\x00\x1c\x00\x1d\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1e\x00\x00\x00\x00\x00\x1f\x00\x8f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x03\x01\x22\x00\x04\x01\x05\x01\x00\x00\xf1\x00\x00\x00\x00\x00\x2f\x01\x00\x00\x00\x00\x00\x00\x4f\x02\x5f\x00\x60\x00\x50\x02\x51\x02\xec\x00\xed\x00\x00\x00\x12\x00\xee\x00\x14\x00\x15\x00\x16\x00\xef\x00\xf0\x00\x19\x00\x1a\x00\x1b\x00\x1c\x00\x1d\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1e\x00\x00\x00\x90\x00\x1f\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x00\x00\x81\x00\x21\x00\x22\x00\x23\x00\x91\x00\x25\x00\x05\x01\x00\x00\xf1\x00\xf2\x00\xf3\x00\xf4\x00\x00\x00\x00\x00\x00\x00\x1d\x02\x5f\x00\x60\x00\x1e\x02\x1f\x02\xec\x00\xed\x00\x00\x00\x12\x00\xee\x00\x14\x00\x15\x00\x16\x00\xef\x00\xf0\x00\x19\x00\x1a\x00\x1b\x00\x1c\x00\x1d\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1e\x00\x00\x00\x1f\x00\x1f\x00\x00\x00\x00\x00\xb0\x00\x7d\x00\x7e\x00\xb1\x00\x80\x00\x00\x00\x4a\x00\x21\x00\x22\x00\x9f\x00\x47\x02\x4e\x00\x9c\x01\xf1\x00\x00\x00\x00\x00\x2f\x01\x00\x00\x00\x00\x00\x00\x4f\x02\x5f\x00\x60\x00\x50\x02\x51\x02\xec\x00\xed\x00\x00\x00\x12\x00\xee\x00\x14\x00\x15\x00\x16\x00\xef\x00\xf0\x00\x19\x00\x1a\x00\x1b\x00\x1c\x00\x1d\x00\x00\x00\x00\x00\xba\x02\x00\x00\x00\x00\x00\x00\x1e\x00\x00\x00\xbb\x02\x1f\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x00\x00\xa3\x00\x21\x00\x22\x00\x9f\x00\xb3\x00\x4e\x00\x05\x01\x00\x00\xf1\x00\xf2\x00\xf3\x00\xf4\x00\xf5\x00\xec\x00\xed\x00\x00\x00\x12\x00\xee\x00\x14\x00\x15\x00\x16\x00\xef\x00\xf0\x00\x19\x00\x1a\x00\x1b\x00\x1c\x00\x1d\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1e\x00\x00\x00\x00\x00\x1f\x00\xec\x00\xed\x00\x00\x00\x12\x00\xee\x00\x14\x00\x15\x00\x16\x00\xef\x00\xf0\x00\x19\x00\x1a\x00\x1b\x00\x1c\x00\x1d\x00\xf1\x00\xf2\x00\xf3\x00\xf4\x00\xf6\x00\x4e\x00\x1e\x00\x87\x00\x68\x00\x1f\x00\x88\x00\xc3\x00\x54\x00\xc4\x00\x55\x00\x4c\x01\xc6\x00\x89\x00\x1c\x00\x1d\x00\x00\x00\x56\x00\x1c\x00\x1d\x00\x00\x00\xf1\x00\x1e\x00\x00\x00\x4e\x02\x69\x00\x1e\x00\x00\x00\x00\x00\x57\x00\x00\x00\x00\x00\xd5\x00\xd6\x00\x00\x00\x40\x01\x21\x00\x22\x00\x9f\x00\x2d\x01\x21\x00\x22\x00\x9f\x00\x00\x00\x00\x00\xf6\x00\x4e\x00\x41\x01\x36\x01\x5f\x00\x60\x00\x37\x01\x38\x01\x00\x00\x54\x00\x00\x00\x55\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x56\x00\x1c\x00\x1d\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x27\x00\x1e\x00\x19\x01\x14\x00\x57\x00\x1a\x01\x00\x00\x1b\x01\x00\x00\x1c\x01\x1b\x00\x1c\x00\x1d\x00\x00\x00\x34\x01\x21\x00\x22\x00\x9f\x00\x00\x00\x1e\x00\x8c\x00\x00\x00\x1f\x00\x00\x00\x5a\x00\x00\x00\x35\x01\x36\x01\x5f\x00\x60\x00\x37\x01\x38\x01\x69\x02\x14\x00\x00\x00\x1a\x01\x00\x00\x1b\x01\x1d\x01\x1c\x01\x1b\x00\x1c\x00\x1d\x00\x00\x00\x00\x00\x00\x00\x55\x00\x00\x00\x00\x00\x1e\x00\x57\x00\x00\x00\x1f\x00\x56\x00\x1c\x00\x1d\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xb7\x02\x1e\x00\x00\x00\x00\x00\x57\x00\x00\x00\x00\x00\x6a\x02\x00\x00\x5a\x00\x00\x00\x00\x00\x00\x00\x00\x00\xb8\x02\x21\x00\x22\x00\x9f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xc3\x00\x00\x00\xc4\x00\x27\x00\xc5\x00\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xca\x00\xcb\x00\xcc\x00\xcd\x00\xce\x00\xcf\x00\xd0\x00\xd1\x00\xd2\x00\xd3\x00\x57\x00\x00\x00\x00\x00\x00\x00\x7f\x01\x00\x00\xd5\x00\xd6\x00\x00\x00\x00\x00\x00\x00\x57\x00\x5a\x00\x00\x00\x27\x00\x92\x01\x7d\x00\x7e\x00\x93\x01\x80\x00\x00\x00\x0b\x01\x21\x00\x22\x00\x23\x00\x0c\x01\x25\x00\x5a\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xc3\x00\x00\x00\xc4\x00\x00\x00\xc5\x00\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xca\x00\xcb\x00\xcc\x00\xcd\x00\xce\x00\xcf\x00\xd0\x00\xd1\x00\xd2\x00\x13\x02\x00\x00\x00\x00\x00\x00\x00\x00\x1f\x00\x00\x00\xd5\x00\xd6\x00\xb0\x00\x7d\x00\x7e\x00\x00\x00\x5a\x00\x00\x00\x4a\x00\x21\x00\x22\x00\x9f\x00\x00\x00\x00\x00\x1a\x02\x00\x00\x00\x00\x5a\x00\x00\x00\x00\x00\x1b\x02\x36\x01\x5f\x00\x60\x00\x37\x01\x38\x01\x1f\x00\x00\x00\x00\x00\x00\x00\x8e\x01\x7d\x00\x7e\x00\x00\x00\x00\x00\x00\x00\x09\x01\x21\x00\x22\x00\x9f\x00\x00\x00\x00\x00\x58\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x53\x02\x36\x01\x5f\x00\x60\x00\x37\x01\x38\x01\x00\x00\x57\x00\x00\x00\x00\x00\x00\x00\x92\x01\x7d\x00\x7e\x00\x00\x00\x1c\x02\x4e\x00\x0b\x01\x21\x00\x22\x00\x9f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x54\x02\x36\x01\x5f\x00\x60\x00\x37\x01\x38\x01\x57\x00\x00\x00\x00\x00\x00\x00\xda\x01\x7d\x00\x7e\x00\x00\x00\x00\x00\x05\x01\x25\x01\x21\x00\x22\x00\x9f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1f\x00\x00\x00\x00\x00\x00\x00\xc4\x02\x36\x01\x5f\x00\x60\x00\x37\x01\x38\x01\x09\x01\x21\x00\x22\x00\x9f\x00\x00\x00\x00\x00\x52\x02\x00\x00\x00\x00\x00\x00\x5a\x00\x00\x00\x53\x02\x36\x01\x5f\x00\x60\x00\x37\x01\x38\x01\x1f\x00\x00\x00\x00\x00\x00\x00\x8e\x01\x7d\x00\x7e\x00\x8f\x01\x80\x00\x00\x00\x09\x01\x21\x00\x22\x00\x9f\x00\x00\x00\x00\x00\x90\x01\x57\x00\x00\x00\x00\x00\x5a\x00\x00\x00\x00\x00\x57\x00\x00\x00\x00\x00\x00\x00\x0b\x01\x21\x00\x22\x00\x9f\x00\x00\x00\x00\x00\x25\x01\x21\x00\x22\x00\x9f\x00\x00\x00\x05\x01\x54\x02\x36\x01\x5f\x00\x60\x00\x37\x01\x38\x01\xc4\x02\x36\x01\x5f\x00\x60\x00\x37\x01\x38\x01\x1f\x00\x00\x00\x00\x00\x00\x00\xb0\x00\x7d\x00\x7e\x00\x00\x00\x00\x00\x00\x00\x4a\x00\x21\x00\x22\x00\x9f\x00\x57\x00\x05\x01\xe1\x01\x00\x00\x92\x01\x7d\x00\x7e\x00\x93\x01\x80\x00\x00\x00\x0b\x01\x21\x00\x22\x00\x9f\x00\x00\x00\x1f\x00\x00\x00\x00\x00\x5a\x00\x8e\x01\x7d\x00\x7e\x00\x00\x00\x79\x00\x5a\x00\x09\x01\x21\x00\x22\x00\x9f\x00\x00\x00\x00\x00\x71\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xc3\x00\x00\x00\xc4\x00\x00\x00\x48\x01\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xca\x00\xcb\x00\x05\x02\xe2\x01\x4e\x00\x1f\x00\x00\x00\xb5\x00\x7e\x00\xb6\x00\x80\x00\x86\x01\x00\x00\x4f\x00\x22\x00\x9e\x01\xd5\x00\xd6\x00\x5a\x00\x00\x00\x00\x00\xc2\x00\x00\x00\x00\x00\x00\x00\x7a\x00\x00\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x05\x01\x81\x00\x21\x00\x22\x00\x23\x00\x82\x00\x25\x00\xc3\x00\x00\x00\xc4\x00\x00\x00\xc5\x00\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xca\x00\xcb\x00\xcc\x00\xcd\x00\xce\x00\xcf\x00\xd0\x00\xd1\x00\xd2\x00\xd3\x00\xf9\x00\x00\x00\x00\x00\x00\x00\xd4\x00\x00\x00\xd5\x00\xd6\x00\xb8\x00\x4e\x00\x00\x00\xc3\x00\x00\x00\xc4\x00\x00\x00\x48\x01\xc6\x00\xf8\x01\xfa\x00\x0e\x00\x0f\x00\xfb\x00\xfc\x00\x00\x00\x12\x00\xfd\x00\x14\x00\x15\x00\x16\x00\x17\x00\x18\x00\x19\x00\x1a\x00\x1b\x00\x1c\x00\x1d\x00\xd5\x00\xd6\x00\x9b\x01\x00\x00\x00\x00\x00\x00\x1e\x00\x00\x00\x00\x00\x1f\x00\x00\x00\x00\x00\x00\x00\xc3\x00\x00\x00\xc4\x00\x00\x00\x48\x01\xc6\x00\x60\x02\xfa\x00\x0e\x00\x0f\x00\xfb\x00\xfc\x00\xfe\x00\x12\x00\xfd\x00\x14\x00\x15\x00\x16\x00\x17\x00\x18\x00\x19\x00\x1a\x00\x1b\x00\x1c\x00\x1d\x00\xd5\x00\xd6\x00\x96\x01\x00\x00\x00\x00\x00\x00\x1e\x00\x00\x00\x00\x00\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xfa\x00\x0e\x00\x0f\x00\xfb\x00\xfc\x00\xfe\x00\x12\x00\xfd\x00\x14\x00\x15\x00\x16\x00\x17\x00\x18\x00\x19\x00\x1a\x00\x1b\x00\x1c\x00\x1d\x00\x00\x00\x00\x00\x85\x01\x00\x00\x00\x00\x00\x00\x1e\x00\x00\x00\x00\x00\x1f\x00\xb5\x00\x7e\x00\xb6\x00\x80\x00\xd8\x01\x00\x00\x4f\x00\x22\x00\x9e\x01\x00\x00\xfa\x00\x0e\x00\x0f\x00\xfb\x00\xfc\x00\xfe\x00\x12\x00\xfd\x00\x14\x00\x15\x00\x16\x00\x17\x00\x18\x00\x19\x00\x1a\x00\x1b\x00\x1c\x00\x1d\x00\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1e\x00\x00\x00\x90\x00\x1f\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x4a\x01\xa3\x00\x21\x00\x22\x00\x9f\x00\x00\x00\x00\x00\x00\x00\x00\x00\xfe\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xb8\x00\x4e\x00\x00\x00\xc3\x00\x00\x00\xc4\x00\x00\x00\xc5\x00\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xca\x00\xcb\x00\xcc\x00\xcd\x00\xce\x00\xcf\x00\xd0\x00\xd1\x00\xd2\x00\x4b\x01\x2a\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xd5\x00\xd6\x00\xb5\x00\x7e\x00\xb6\x00\x80\x00\x72\x02\x00\x00\x4f\x00\x22\x00\x9e\x01\x00\x00\xfa\x00\x0e\x00\x0f\x00\xfb\x00\xfc\x00\x00\x00\x12\x00\xfd\x00\x14\x00\x15\x00\x16\x00\x17\x00\x18\x00\x19\x00\x1a\x00\x1b\x00\x1c\x00\x1d\x00\x00\x00\x72\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1e\x00\x2b\x00\x00\x00\x1f\x00\x00\x00\x00\x00\x2e\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x32\x00\x00\x00\x00\x00\x00\x00\x00\x00\xfe\x00\x35\x00\x00\x00\x00\x00\x6f\x00\x38\x00\x39\x00\xb8\x00\x4e\x00\x00\x00\x2b\x00\x3c\x00\x00\x00\x00\x00\x3e\x00\x2e\x00\x40\x00\x00\x00\x00\x00\x00\x00\x44\x00\x00\x00\x00\x00\x32\x00\x00\x00\x00\x00\x00\x00\x00\x00\x47\x00\x35\x00\x00\x00\x00\x00\x00\x00\x38\x00\x39\x00\x00\x00\x00\x00\x00\x00\x00\x00\x3c\x00\x98\x00\x00\x00\x3e\x00\x00\x00\x40\x00\x2b\x00\x00\x00\x2c\x00\x44\x00\x2d\x00\x2e\x00\x00\x00\x2f\x00\x00\x00\x00\x00\x30\x00\x47\x00\x31\x00\x32\x00\x33\x00\x34\x00\x00\x00\x00\x00\x00\x00\x35\x00\x36\x00\x37\x00\x00\x00\x38\x00\x39\x00\x00\x00\x3a\x00\x3b\x00\x00\x00\x3c\x00\x3d\x00\x00\x00\x3e\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x2b\x00\x00\x00\x2c\x00\x00\x00\x2d\x00\x2e\x00\x46\x00\x2f\x00\x00\x00\x00\x00\x30\x00\x00\x00\x31\x00\x32\x00\x33\x00\x34\x00\x00\x00\x00\x00\x00\x00\x35\x00\x36\x00\x37\x00\x00\x00\x38\x00\x39\x00\x00\x00\x3a\x00\x3b\x00\x00\x00\x3c\x00\x3d\x00\x00\x00\x3e\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf8\x00\x46\x00\x47\x00\x2b\x00\x00\x00\x2c\x00\x00\x00\x2d\x00\x2e\x00\x00\x00\x2f\x00\x00\x00\x00\x00\x30\x00\x00\x00\x31\x00\x32\x00\x33\x00\x34\x00\x00\x00\x00\x00\x00\x00\x35\x00\x36\x00\x37\x00\x00\x00\x38\x00\x39\x00\x00\x00\x3a\x00\x3b\x00\x00\x00\x3c\x00\x3d\x00\x00\x00\x3e\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x46\x00\x47\x00\x2b\x00\x00\x00\x2c\x00\x00\x00\x2d\x00\x2e\x00\x00\x00\x2f\x00\x00\x00\x00\x00\x30\x00\x00\x00\x00\x00\x32\x00\x33\x00\x34\x00\x00\x00\x00\x00\x00\x00\x35\x00\x36\x00\x37\x00\x00\x00\x38\x00\x39\x00\x00\x00\x3a\x00\x3b\x00\x2b\x00\x3c\x00\x00\x00\x00\x00\x3e\x00\x2e\x00\x40\x00\x00\x00\x42\x00\x43\x00\x44\x00\x00\x00\x00\x00\x32\x00\x00\x00\x00\x00\x00\x00\x00\x00\x47\x00\x35\x00\x00\x00\x00\x00\x00\x00\x38\x00\x39\x00\x00\x00\x00\x00\x00\x00\x00\x00\x3c\x00\x00\x00\x00\x00\x3e\x00\x00\x00\x40\x00\x2b\x00\x00\x00\x2c\x00\x44\x00\x2d\x00\x2e\x00\x00\x00\x2f\x00\x00\x00\x00\x00\x30\x00\x47\x00\x31\x00\x32\x00\x33\x00\x34\x00\x00\x00\x00\x00\x00\x00\x35\x00\x36\x00\x37\x00\x00\x00\x38\x00\x39\x00\x00\x00\x3a\x00\x3b\x00\x00\x00\x3c\x00\x3d\x00\x00\x00\x3e\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x2c\x00\x00\x00\x2d\x00\x2e\x00\x00\x00\x2f\x00\x46\x00\x00\x00\x30\x00\x00\x00\x31\x00\x00\x00\x33\x00\x34\x00\x00\x00\x00\x00\x00\x00\x35\x00\x36\x00\x37\x00\x00\x00\x00\x00\x39\x00\x00\x00\x3a\x00\x3b\x00\x00\x00\x00\x00\x3d\x00\x00\x00\x00\x00\x3f\x00\x00\x00\x41\x00\x42\x00\x43\x00\x44\x00\x2c\x00\x00\x00\x2d\x00\x2e\x00\x00\x00\x2f\x00\x46\x00\x47\x00\x30\x00\x00\x00\x00\x00\x00\x00\x33\x00\x34\x00\x00\x00\x00\x00\x00\x00\x35\x00\x36\x00\x37\x00\x00\x00\x00\x00\x39\x00\x00\x00\x3a\x00\x3b\x00\x00\x00\x0f\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x42\x00\x43\x00\x44\x00\x00\x00\x00\x00\x00\x00\x00\x00\xc3\x00\x00\x00\xc4\x00\x47\x00\xc5\x00\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xca\x00\xcb\x00\xcc\x00\xcd\x00\xce\x00\xcf\x00\xd0\x00\xd1\x00\xd2\x00\x10\x01\x97\x01\x11\x01\x00\x00\x00\x00\x00\x00\x00\x00\xd5\x00\xd6\x00\x00\x00\x00\x00\x12\x01\x00\x00\x00\x00\x00\x00\xc3\x00\x00\x00\xc4\x00\x00\x00\xc5\x00\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xca\x00\xcb\x00\xcc\x00\xcd\x00\xce\x00\xcf\x00\xd0\x00\xd1\x00\xd2\x00\x10\x01\x2b\x01\x98\x01\x00\x00\x00\x00\x00\x00\x00\x00\xd5\x00\xd6\x00\x00\x00\x00\x00\x12\x01\x00\x00\x00\x00\x00\x00\xc3\x00\x00\x00\xc4\x00\x00\x00\xc5\x00\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xca\x00\xcb\x00\xcc\x00\xcd\x00\xce\x00\xcf\x00\xd0\x00\xd1\x00\xd2\x00\x10\x01\x00\x00\x2c\x01\x00\x00\x00\x00\x00\x00\x00\x00\xd5\x00\xd6\x00\x00\x00\x00\x00\x12\x01\xef\x02\x0e\x00\x0f\x00\xfb\x00\xfc\x00\x00\x00\x12\x00\xfd\x00\x14\x00\x15\x00\x16\x00\x17\x00\x18\x00\x19\x00\x1a\x00\x1b\x00\x1c\x00\x1d\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1e\x00\x00\x00\x00\x00\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xab\x02\x00\x00\xbf\x02\xad\x02\xae\x02\xaf\x02\xb0\x02\xc3\x00\x00\x00\xc4\x00\xfe\x00\xc5\x00\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xca\x00\xcb\x00\xcc\x00\xcd\x00\xce\x00\xcf\x00\xd0\x00\xd1\x00\xd2\x00\x77\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xd5\x00\xd6\x00\xab\x02\xb1\x02\xac\x02\xad\x02\xae\x02\xaf\x02\xb0\x02\xc3\x00\x00\x00\xc4\x00\x00\x00\xc5\x00\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xca\x00\xcb\x00\xcc\x00\xcd\x00\xce\x00\xcf\x00\xd0\x00\xd1\x00\xd2\x00\x77\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xd5\x00\xd6\x00\xfe\x02\xb1\x02\x00\x00\xff\x02\xae\x02\xaf\x02\xb0\x02\xc3\x00\x00\x00\xc4\x00\x00\x00\xc5\x00\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xca\x00\xcb\x00\xcc\x00\xcd\x00\xce\x00\xcf\x00\xd0\x00\xd1\x00\xd2\x00\x77\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xd5\x00\xd6\x00\xc3\x00\xb1\x02\xc4\x00\x00\x00\x48\x01\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xca\x00\xcb\x00\xcc\x00\xcd\x00\xce\x00\xcf\x00\xd0\x00\xd1\x00\x3f\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x02\xd5\x00\xd6\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x41\x02\x42\x02\xc3\x00\x00\x00\xc4\x00\x00\x00\x48\x01\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xca\x00\xcb\x00\xcc\x00\xcd\x00\xce\x00\xcf\x00\xd0\x00\xd1\x00\x3f\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x02\xd5\x00\xd6\x00\x76\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xc3\x00\xcf\x02\xc4\x00\x00\x00\xc5\x00\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xca\x00\xcb\x00\xcc\x00\xcd\x00\xce\x00\xcf\x00\xd0\x00\xd1\x00\xd2\x00\x77\x02\x00\x00\xe7\x02\x00\x00\x00\x00\x00\x00\x00\x00\xd5\x00\xd6\x00\xc3\x00\x00\x00\xc4\x00\x00\x00\xc5\x00\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xca\x00\xcb\x00\xcc\x00\xcd\x00\xce\x00\xcf\x00\xd0\x00\xd1\x00\xd2\x00\x77\x02\x00\x00\x0c\x03\x00\x00\x00\x00\x00\x00\x00\x00\xd5\x00\xd6\x00\xc3\x00\x00\x00\xc4\x00\x00\x00\xc5\x00\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xca\x00\xcb\x00\xcc\x00\xcd\x00\xce\x00\xcf\x00\xd0\x00\xd1\x00\xd2\x00\x77\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xd5\x00\xd6\x00\xc3\x00\x00\x00\xc4\x00\x00\x00\xc5\x00\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xca\x00\xcb\x00\xcc\x00\xcd\x00\xce\x00\xcf\x00\xd0\x00\xd1\x00\xd2\x00\x10\x01\x00\x00\x7e\x02\x00\x00\x7f\x02\x00\x00\x00\x00\xd5\x00\xd6\x00\xc3\x00\x00\x00\xc4\x00\x00\x00\xc5\x00\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xca\x00\xcb\x00\xcc\x00\xcd\x00\xce\x00\xcf\x00\xd0\x00\xd1\x00\xd2\x00\x10\x01\x00\x00\x7e\x02\x00\x00\xfa\x02\x00\x00\x00\x00\xd5\x00\xd6\x00\xc3\x00\x00\x00\xc4\x00\x00\x00\xc5\x00\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xca\x00\xcb\x00\xcc\x00\xcd\x00\xce\x00\xcf\x00\xd0\x00\xd1\x00\xd2\x00\x10\x01\x00\x00\x7e\x02\x00\x00\xf9\x02\x00\x00\x00\x00\xd5\x00\xd6\x00\xc3\x00\x00\x00\xc4\x00\x00\x00\xc5\x00\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xca\x00\xcb\x00\xcc\x00\xcd\x00\xce\x00\xcf\x00\xd0\x00\xd1\x00\xd2\x00\x10\x01\x00\x00\x7e\x02\x00\x00\x20\x03\x00\x00\x00\x00\xd5\x00\xd6\x00\xc3\x00\x00\x00\xc4\x00\x00\x00\xc5\x00\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xca\x00\xcb\x00\xcc\x00\xcd\x00\xce\x00\xcf\x00\xd0\x00\xd1\x00\xd2\x00\x10\x01\x00\x00\x7e\x02\x00\x00\x1f\x03\x00\x00\x00\x00\xd5\x00\xd6\x00\xc3\x00\x00\x00\xc4\x00\x00\x00\xc5\x00\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xca\x00\xcb\x00\xcc\x00\xcd\x00\xce\x00\xcf\x00\xd0\x00\xd1\x00\xd2\x00\x34\x02\x00\x00\x00\x00\x35\x02\x00\x00\x00\x00\x00\x00\xd5\x00\xd6\x00\xc3\x00\x00\x00\xc4\x00\x00\x00\xc5\x00\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xca\x00\xcb\x00\xcc\x00\xcd\x00\xce\x00\xcf\x00\xd0\x00\xd1\x00\xd2\x00\x10\x01\x00\x00\x09\x02\x00\x00\x00\x00\x00\x00\x00\x00\xd5\x00\xd6\x00\xc3\x00\x00\x00\xc4\x00\xf4\x01\xc5\x00\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xca\x00\xcb\x00\xcc\x00\xcd\x00\xce\x00\xcf\x00\xd0\x00\xd1\x00\xd2\x00\xf5\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xd5\x00\xd6\x00\xc3\x00\x00\x00\xc4\x00\x00\x00\xc5\x00\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xca\x00\xcb\x00\xcc\x00\xcd\x00\xce\x00\xcf\x00\xd0\x00\xd1\x00\xd2\x00\x10\x01\x00\x00\xf3\x01\x00\x00\x00\x00\x00\x00\x00\x00\xd5\x00\xd6\x00\xc3\x00\x00\x00\xc4\x00\x00\x00\xc5\x00\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xca\x00\xcb\x00\xcc\x00\xcd\x00\xce\x00\xcf\x00\xd0\x00\xd1\x00\xd2\x00\x10\x01\x00\x00\xaa\x02\x00\x00\x00\x00\x00\x00\x00\x00\xd5\x00\xd6\x00\xc3\x00\x00\x00\xc4\x00\x00\x00\xc5\x00\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xca\x00\xcb\x00\xcc\x00\xcd\x00\xce\x00\xcf\x00\xd0\x00\xd1\x00\xd2\x00\x10\x01\x00\x00\xa9\x02\x00\x00\x00\x00\x00\x00\x00\x00\xd5\x00\xd6\x00\xc3\x00\x00\x00\xc4\x00\x00\x00\xc5\x00\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xca\x00\xcb\x00\xcc\x00\xcd\x00\xce\x00\xcf\x00\xd0\x00\xd1\x00\xd2\x00\x10\x01\x00\x00\xa7\x02\x00\x00\x00\x00\x00\x00\x00\x00\xd5\x00\xd6\x00\xc3\x00\x00\x00\xc4\x00\x00\x00\xc5\x00\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xca\x00\xcb\x00\xcc\x00\xcd\x00\xce\x00\xcf\x00\xd0\x00\xd1\x00\xd2\x00\x10\x01\x00\x00\xa5\x02\x00\x00\x00\x00\x00\x00\x00\x00\xd5\x00\xd6\x00\xc3\x00\x00\x00\xc4\x00\x00\x00\xc5\x00\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xca\x00\xcb\x00\xcc\x00\xcd\x00\xce\x00\xcf\x00\xd0\x00\xd1\x00\xd2\x00\x10\x01\x00\x00\xf3\x02\x00\x00\x00\x00\x00\x00\x00\x00\xd5\x00\xd6\x00\xc3\x00\x00\x00\xc4\x00\x00\x00\xc5\x00\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xca\x00\xcb\x00\xcc\x00\xcd\x00\xce\x00\xcf\x00\xd0\x00\xd1\x00\xd2\x00\x10\x01\x00\x00\x09\x03\x00\x00\x00\x00\x00\x00\x00\x00\xd5\x00\xd6\x00\xc3\x00\x00\x00\xc4\x00\x00\x00\xc5\x00\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xca\x00\xcb\x00\xcc\x00\xcd\x00\xce\x00\xcf\x00\xd0\x00\xd1\x00\xd2\x00\x10\x01\x00\x00\xf8\x02\x00\x00\x00\x00\x00\x00\x00\x00\xd5\x00\xd6\x00\xc3\x00\x00\x00\xc4\x00\x00\x00\xc5\x00\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xca\x00\xcb\x00\xcc\x00\xcd\x00\xce\x00\xcf\x00\xd0\x00\xd1\x00\xd2\x00\x10\x01\x00\x00\x28\x03\x00\x00\x00\x00\x00\x00\x00\x00\xd5\x00\xd6\x00\xc3\x00\x00\x00\xc4\x00\x00\x00\xc5\x00\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xca\x00\xcb\x00\xcc\x00\xcd\x00\xce\x00\xcf\x00\xd0\x00\xd1\x00\xd2\x00\x10\x01\x00\x00\x39\x03\x00\x00\x00\x00\x00\x00\x00\x00\xd5\x00\xd6\x00\xc3\x00\x00\x00\xc4\x00\x00\x00\xc5\x00\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xca\x00\xcb\x00\xcc\x00\xcd\x00\xce\x00\xcf\x00\xd0\x00\xd1\x00\xd2\x00\x10\x01\x00\x00\x38\x03\x00\x00\x00\x00\x00\x00\x00\x00\xd5\x00\xd6\x00\xc3\x00\x00\x00\xc4\x00\x00\x00\xc5\x00\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xca\x00\xcb\x00\xcc\x00\xcd\x00\xce\x00\xcf\x00\xd0\x00\xd1\x00\xd2\x00\x14\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xd5\x00\xd6\x00\xc3\x00\x00\x00\xc4\x00\x00\x00\xc5\x00\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xca\x00\xcb\x00\xcc\x00\xcd\x00\xce\x00\xcf\x00\xd0\x00\xd1\x00\xd2\x00\xf7\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xd5\x00\xd6\x00\xc3\x00\x00\x00\xc4\x00\x00\x00\xc5\x00\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xca\x00\xcb\x00\xcc\x00\xcd\x00\xce\x00\xcf\x00\xd0\x00\xd1\x00\xd2\x00\xee\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xd5\x00\xd6\x00\xc3\x00\x00\x00\xc4\x00\x00\x00\x48\x01\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xca\x00\xcb\x00\xcc\x00\xcd\x00\xce\x00\xcf\x00\xd0\x00\xd1\x00\x3f\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x87\x02\xd5\x00\xd6\x00\xc3\x00\x00\x00\xc4\x00\x00\x00\x48\x01\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xca\x00\xcb\x00\xcc\x00\xcd\x00\xce\x00\xcf\x00\xd0\x00\xd1\x00\x3f\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x4b\x02\xd5\x00\xd6\x00\xc3\x00\x00\x00\xc4\x00\x00\x00\xc5\x00\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xca\x00\xcb\x00\xcc\x00\xcd\x00\xce\x00\xcf\x00\xd0\x00\xd1\x00\xd2\x00\xca\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xd5\x00\xd6\x00\xc3\x00\x00\x00\xc4\x00\x00\x00\xc5\x00\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xca\x00\xcb\x00\xcc\x00\xcd\x00\xce\x00\xcf\x00\xd0\x00\xd1\x00\xd2\x00\xbd\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xd5\x00\xd6\x00\xc3\x00\x00\x00\xc4\x00\x00\x00\x48\x01\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xca\x00\xcb\x00\xcc\x00\xcd\x00\xce\x00\xcf\x00\xd0\x00\xd1\x00\x3f\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf1\x02\xd5\x00\xd6\x00\xc3\x00\x00\x00\xc4\x00\x00\x00\x48\x01\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xca\x00\xcb\x00\xcc\x00\xcd\x00\xce\x00\xcf\x00\xd0\x00\xd1\x00\x3f\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe2\x02\xd5\x00\xd6\x00\xc3\x00\x00\x00\xc4\x00\x00\x00\x48\x01\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xca\x00\xcb\x00\xcc\x00\xcd\x00\xce\x00\xcf\x00\xd0\x00\xd1\x00\x3f\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xdc\x02\xd5\x00\xd6\x00\xc3\x00\x00\x00\xc4\x00\x00\x00\x48\x01\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xca\x00\xcb\x00\xcc\x00\xcd\x00\xce\x00\xcf\x00\xd0\x00\xd1\x00\x3f\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xd9\x02\xd5\x00\xd6\x00\xc3\x00\x00\x00\xc4\x00\x00\x00\x48\x01\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xca\x00\xcb\x00\xcc\x00\xcd\x00\xce\x00\xcf\x00\xd0\x00\xd1\x00\x3f\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x03\xd5\x00\xd6\x00\xc3\x00\x00\x00\xc4\x00\x00\x00\x48\x01\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xca\x00\xcb\x00\xcc\x00\xcd\x00\xce\x00\xcf\x00\xd0\x00\xd1\x00\x3f\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x05\x03\xd5\x00\xd6\x00\xc3\x00\x00\x00\xc4\x00\x00\x00\x48\x01\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xca\x00\xcb\x00\xcc\x00\xcd\x00\xce\x00\xcf\x00\xd0\x00\xd1\x00\x3f\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0b\x03\xd5\x00\xd6\x00\xc3\x00\x00\x00\xc4\x00\x00\x00\x48\x01\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xca\x00\xcb\x00\xcc\x00\xcd\x00\xce\x00\xcf\x00\xd0\x00\xd1\x00\x62\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xd5\x00\xd6\x00\xc3\x00\x00\x00\xc4\x00\x00\x00\x48\x01\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xca\x00\xcb\x00\xcc\x00\xcd\x00\xce\x00\xcf\x00\xd0\x00\xd1\x00\xbe\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xd5\x00\xd6\x00\xc3\x00\x00\x00\xc4\x00\x00\x00\x48\x01\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xca\x00\xcb\x00\xcc\x00\xcd\x00\xce\x00\xcf\x00\x0b\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xd5\x00\xd6\x00\xc3\x00\x00\x00\xc4\x00\x00\x00\x48\x01\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xca\x00\xcb\x00\xcc\x00\xcd\x00\xce\x00\x08\x02\x00\x00\xc3\x00\x00\x00\xc4\x00\x00\x00\x48\x01\xc6\x00\xc7\x00\xc8\x00\xfe\x01\xd5\x00\xd6\x00\xc3\x00\x00\x00\xc4\x00\x00\x00\x48\x01\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xca\x00\xcb\x00\xcc\x00\xcd\x00\x07\x02\xd5\x00\xd6\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xd5\x00\xd6\x00\xc3\x00\x00\x00\xc4\x00\x00\x00\x48\x01\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xca\x00\xcb\x00\xcc\x00\x06\x02\xc3\x00\x00\x00\xc4\x00\x00\x00\x48\x01\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xca\x00\x04\x02\x00\x00\xd5\x00\xd6\x00\xc3\x00\x00\x00\xc4\x00\x00\x00\x48\x01\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xca\x00\x03\x02\xd5\x00\xd6\x00\xc3\x00\x00\x00\xc4\x00\x00\x00\x48\x01\xc6\x00\xc7\x00\xc8\x00\xc9\x00\x02\x02\x00\x00\x00\x00\xd5\x00\xd6\x00\xc3\x00\x00\x00\xc4\x00\x00\x00\x48\x01\xc6\x00\xc7\x00\xc8\x00\xc9\x00\x01\x02\x00\x00\xd5\x00\xd6\x00\xc3\x00\x00\x00\xc4\x00\x00\x00\x48\x01\xc6\x00\xc7\x00\xc8\x00\xc9\x00\x00\x02\x00\x00\x00\x00\xd5\x00\xd6\x00\xc3\x00\x00\x00\xc4\x00\x00\x00\x48\x01\xc6\x00\xc7\x00\xc8\x00\xc9\x00\xff\x01\x00\x00\xd5\x00\xd6\x00\xc3\x00\x00\x00\xc4\x00\x00\x00\x48\x01\xc6\x00\xc7\x00\xc8\x00\xfd\x01\x42\x01\x7d\x00\x7e\x00\xd5\x00\xd6\x00\x00\x00\x43\x01\x21\x00\x22\x00\x9f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xd5\x00\xd6\x00\x44\x01\x36\x01\x5f\x00\x60\x00\x37\x01\x38\x01\x3b\x01\x7d\x00\x7e\x00\x00\x00\x00\x00\x00\x00\x3c\x01\x21\x00\x22\x00\x9f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x3d\x01\x36\x01\x5f\x00\x60\x00\x37\x01\x38\x01\x7a\x00\x00\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x00\x00\xa3\x00\x21\x00\x22\x00\x9f\x00\x6f\x01\x70\x01\x71\x01\x72\x01\x73\x01\x74\x01\x75\x01\x76\x01\x77\x01\x78\x01\x79\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"#

happyReduceArr :: Array
  Int
  (Int#
   -> CToken
   -> Int#
   -> Happy_IntList
   -> HappyStk HappyAbsSyn
   -> P HappyAbsSyn)
happyReduceArr = (Int, Int)
-> [(Int,
     Int#
     -> CToken
     -> Int#
     -> Happy_IntList
     -> HappyStk HappyAbsSyn
     -> P HappyAbsSyn)]
-> Array
     Int
     (Int#
      -> CToken
      -> Int#
      -> Happy_IntList
      -> HappyStk HappyAbsSyn
      -> P HappyAbsSyn)
forall i e. Ix i => (i, i) -> [(i, e)] -> Array i e
Happy_Data_Array.array (1, 439) [
	(1 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_1),
	(2 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_2),
	(3 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_3),
	(4 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_4),
	(5 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_5),
	(6 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_6),
	(7 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_7),
	(8 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_8),
	(9 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_9),
	(10 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_10),
	(11 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_11),
	(12 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_12),
	(13 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_13),
	(14 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_14),
	(15 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_15),
	(16 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_16),
	(17 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_17),
	(18 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_18),
	(19 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_19),
	(20 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_20),
	(21 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_21),
	(22 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_22),
	(23 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_23),
	(24 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_24),
	(25 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_25),
	(26 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_26),
	(27 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_27),
	(28 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_28),
	(29 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_29),
	(30 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_30),
	(31 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_31),
	(32 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_32),
	(33 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_33),
	(34 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_34),
	(35 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_35),
	(36 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_36),
	(37 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_37),
	(38 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_38),
	(39 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_39),
	(40 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_40),
	(41 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_41),
	(42 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_42),
	(43 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_43),
	(44 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_44),
	(45 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_45),
	(46 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_46),
	(47 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_47),
	(48 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_48),
	(49 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_49),
	(50 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_50),
	(51 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_51),
	(52 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_52),
	(53 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_53),
	(54 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_54),
	(55 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_55),
	(56 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_56),
	(57 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_57),
	(58 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_58),
	(59 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_59),
	(60 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_60),
	(61 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_61),
	(62 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_62),
	(63 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_63),
	(64 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_64),
	(65 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_65),
	(66 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_66),
	(67 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_67),
	(68 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_68),
	(69 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_69),
	(70 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_70),
	(71 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_71),
	(72 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_72),
	(73 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_73),
	(74 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_74),
	(75 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_75),
	(76 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_76),
	(77 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_77),
	(78 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_78),
	(79 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_79),
	(80 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_80),
	(81 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_81),
	(82 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_82),
	(83 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_83),
	(84 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_84),
	(85 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_85),
	(86 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_86),
	(87 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_87),
	(88 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_88),
	(89 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_89),
	(90 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_90),
	(91 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_91),
	(92 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_92),
	(93 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_93),
	(94 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_94),
	(95 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_95),
	(96 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_96),
	(97 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_97),
	(98 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_98),
	(99 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_99),
	(100 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_100),
	(101 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_101),
	(102 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_102),
	(103 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_103),
	(104 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_104),
	(105 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_105),
	(106 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_106),
	(107 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_107),
	(108 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_108),
	(109 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_109),
	(110 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_110),
	(111 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_111),
	(112 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_112),
	(113 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_113),
	(114 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_114),
	(115 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_115),
	(116 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_116),
	(117 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_117),
	(118 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_118),
	(119 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_119),
	(120 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_120),
	(121 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_121),
	(122 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_122),
	(123 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_123),
	(124 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_124),
	(125 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_125),
	(126 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_126),
	(127 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_127),
	(128 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_128),
	(129 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_129),
	(130 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_130),
	(131 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_131),
	(132 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_132),
	(133 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_133),
	(134 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_134),
	(135 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_135),
	(136 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_136),
	(137 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_137),
	(138 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_138),
	(139 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_139),
	(140 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_140),
	(141 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_141),
	(142 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_142),
	(143 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_143),
	(144 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_144),
	(145 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_145),
	(146 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_146),
	(147 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_147),
	(148 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_148),
	(149 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_149),
	(150 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_150),
	(151 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_151),
	(152 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_152),
	(153 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_153),
	(154 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_154),
	(155 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_155),
	(156 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_156),
	(157 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_157),
	(158 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_158),
	(159 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_159),
	(160 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_160),
	(161 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_161),
	(162 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_162),
	(163 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_163),
	(164 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_164),
	(165 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_165),
	(166 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_166),
	(167 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_167),
	(168 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_168),
	(169 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_169),
	(170 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_170),
	(171 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_171),
	(172 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_172),
	(173 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_173),
	(174 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_174),
	(175 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_175),
	(176 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_176),
	(177 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_177),
	(178 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_178),
	(179 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_179),
	(180 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_180),
	(181 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_181),
	(182 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_182),
	(183 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_183),
	(184 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_184),
	(185 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_185),
	(186 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_186),
	(187 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_187),
	(188 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_188),
	(189 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_189),
	(190 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_190),
	(191 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_191),
	(192 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_192),
	(193 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_193),
	(194 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_194),
	(195 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_195),
	(196 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_196),
	(197 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_197),
	(198 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_198),
	(199 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_199),
	(200 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_200),
	(201 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_201),
	(202 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_202),
	(203 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_203),
	(204 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_204),
	(205 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_205),
	(206 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_206),
	(207 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_207),
	(208 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_208),
	(209 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_209),
	(210 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_210),
	(211 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_211),
	(212 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_212),
	(213 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_213),
	(214 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_214),
	(215 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_215),
	(216 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_216),
	(217 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_217),
	(218 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_218),
	(219 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_219),
	(220 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_220),
	(221 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_221),
	(222 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_222),
	(223 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_223),
	(224 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_224),
	(225 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_225),
	(226 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_226),
	(227 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_227),
	(228 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_228),
	(229 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_229),
	(230 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_230),
	(231 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_231),
	(232 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_232),
	(233 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_233),
	(234 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_234),
	(235 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_235),
	(236 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_236),
	(237 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_237),
	(238 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_238),
	(239 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_239),
	(240 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_240),
	(241 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_241),
	(242 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_242),
	(243 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_243),
	(244 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_244),
	(245 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_245),
	(246 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_246),
	(247 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_247),
	(248 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_248),
	(249 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_249),
	(250 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_250),
	(251 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_251),
	(252 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_252),
	(253 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_253),
	(254 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_254),
	(255 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_255),
	(256 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_256),
	(257 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_257),
	(258 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_258),
	(259 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_259),
	(260 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_260),
	(261 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_261),
	(262 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_262),
	(263 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_263),
	(264 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_264),
	(265 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_265),
	(266 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_266),
	(267 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_267),
	(268 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_268),
	(269 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_269),
	(270 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_270),
	(271 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_271),
	(272 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_272),
	(273 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_273),
	(274 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_274),
	(275 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_275),
	(276 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_276),
	(277 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_277),
	(278 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_278),
	(279 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_279),
	(280 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_280),
	(281 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_281),
	(282 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_282),
	(283 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_283),
	(284 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_284),
	(285 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_285),
	(286 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_286),
	(287 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_287),
	(288 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_288),
	(289 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_289),
	(290 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_290),
	(291 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_291),
	(292 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_292),
	(293 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_293),
	(294 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_294),
	(295 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_295),
	(296 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_296),
	(297 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_297),
	(298 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_298),
	(299 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_299),
	(300 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_300),
	(301 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_301),
	(302 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_302),
	(303 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_303),
	(304 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_304),
	(305 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_305),
	(306 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_306),
	(307 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_307),
	(308 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_308),
	(309 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_309),
	(310 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_310),
	(311 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_311),
	(312 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_312),
	(313 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_313),
	(314 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_314),
	(315 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_315),
	(316 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_316),
	(317 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_317),
	(318 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_318),
	(319 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_319),
	(320 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_320),
	(321 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_321),
	(322 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_322),
	(323 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_323),
	(324 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_324),
	(325 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_325),
	(326 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_326),
	(327 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_327),
	(328 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_328),
	(329 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_329),
	(330 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_330),
	(331 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_331),
	(332 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_332),
	(333 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_333),
	(334 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_334),
	(335 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_335),
	(336 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_336),
	(337 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_337),
	(338 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_338),
	(339 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_339),
	(340 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_340),
	(341 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_341),
	(342 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_342),
	(343 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_343),
	(344 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_344),
	(345 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_345),
	(346 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_346),
	(347 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_347),
	(348 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_348),
	(349 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_349),
	(350 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_350),
	(351 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_351),
	(352 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_352),
	(353 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_353),
	(354 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_354),
	(355 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_355),
	(356 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_356),
	(357 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_357),
	(358 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_358),
	(359 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_359),
	(360 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_360),
	(361 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_361),
	(362 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_362),
	(363 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_363),
	(364 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_364),
	(365 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_365),
	(366 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_366),
	(367 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_367),
	(368 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_368),
	(369 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_369),
	(370 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_370),
	(371 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_371),
	(372 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_372),
	(373 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_373),
	(374 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_374),
	(375 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_375),
	(376 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_376),
	(377 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_377),
	(378 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_378),
	(379 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_379),
	(380 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_380),
	(381 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_381),
	(382 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_382),
	(383 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_383),
	(384 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_384),
	(385 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_385),
	(386 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_386),
	(387 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_387),
	(388 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_388),
	(389 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_389),
	(390 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_390),
	(391 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_391),
	(392 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_392),
	(393 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_393),
	(394 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_394),
	(395 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_395),
	(396 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_396),
	(397 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_397),
	(398 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_398),
	(399 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_399),
	(400 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_400),
	(401 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_401),
	(402 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_402),
	(403 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_403),
	(404 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_404),
	(405 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_405),
	(406 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_406),
	(407 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_407),
	(408 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_408),
	(409 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_409),
	(410 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_410),
	(411 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_411),
	(412 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_412),
	(413 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_413),
	(414 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_414),
	(415 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_415),
	(416 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_416),
	(417 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_417),
	(418 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_418),
	(419 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_419),
	(420 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_420),
	(421 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_421),
	(422 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_422),
	(423 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_423),
	(424 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_424),
	(425 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_425),
	(426 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_426),
	(427 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_427),
	(428 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_428),
	(429 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_429),
	(430 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_430),
	(431 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_431),
	(432 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_432),
	(433 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_433),
	(434 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_434),
	(435 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_435),
	(436 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_436),
	(437 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_437),
	(438 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_438),
	(439 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_439)
	]

happy_n_terms :: Int
happy_n_terms = 101 :: Int
happy_n_nonterms :: Int
happy_n_nonterms = 124 :: Int

happyReduce_1 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_1 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_1 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 0# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_1
happyReduction_1 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_1 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CHeader -> (CHeader -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap5
happyOut5 HappyAbsSyn
happy_x_1 of { (HappyWrap5 happy_var_1 :: Reversed [CExtDecl]
happy_var_1) -> 
	( Reversed [CExtDecl] -> (Attrs -> CHeader) -> P CHeader
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs Reversed [CExtDecl]
happy_var_1 ((Attrs -> CHeader) -> P CHeader)
-> (Attrs -> CHeader) -> P CHeader
forall a b. (a -> b) -> a -> b
$ [CExtDecl] -> Attrs -> CHeader
CHeader (Reversed [CExtDecl] -> [CExtDecl]
forall a. Reversed [a] -> [a]
reverse Reversed [CExtDecl]
happy_var_1))})
	) (\r :: CHeader
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CHeader -> HappyAbsSyn
happyIn4 CHeader
r))

happyReduce_2 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_2 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_2 = Int#
-> HappyAbsSyn
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_0  1# HappyAbsSyn
happyReduction_2
happyReduction_2 :: HappyAbsSyn
happyReduction_2  =  Reversed [CExtDecl] -> HappyAbsSyn
happyIn5
		 (Reversed [CExtDecl]
forall a. Reversed [a]
empty
	)

happyReduce_3 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_3 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_3 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  1# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_3
happyReduction_3 :: p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_3 happy_x_2 :: p
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap5
happyOut5 HappyAbsSyn
happy_x_1 of { (HappyWrap5 happy_var_1 :: Reversed [CExtDecl]
happy_var_1) -> 
	Reversed [CExtDecl] -> HappyAbsSyn
happyIn5
		 (Reversed [CExtDecl]
happy_var_1
	)}

happyReduce_4 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_4 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_4 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  1# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_4
happyReduction_4 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_4 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap5
happyOut5 HappyAbsSyn
happy_x_1 of { (HappyWrap5 happy_var_1 :: Reversed [CExtDecl]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap6
happyOut6 HappyAbsSyn
happy_x_2 of { (HappyWrap6 happy_var_2 :: CExtDecl
happy_var_2) -> 
	Reversed [CExtDecl] -> HappyAbsSyn
happyIn5
		 (Reversed [CExtDecl]
happy_var_1 Reversed [CExtDecl] -> CExtDecl -> Reversed [CExtDecl]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CExtDecl
happy_var_2
	)}}

happyReduce_5 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_5 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_5 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  2# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_5
happyReduction_5 :: HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_5 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: p
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap7
happyOut7 HappyAbsSyn
happy_x_2 of { (HappyWrap7 happy_var_2 :: CFunDef
happy_var_2) -> 
	CExtDecl -> HappyAbsSyn
happyIn6
		 (CFunDef -> CExtDecl
CFDefExt CFunDef
happy_var_2
	)}

happyReduce_6 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_6 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_6 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  2# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_6
happyReduction_6 :: HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_6 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: p
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap30
happyOut30 HappyAbsSyn
happy_x_2 of { (HappyWrap30 happy_var_2 :: CDecl
happy_var_2) -> 
	CExtDecl -> HappyAbsSyn
happyIn6
		 (CDecl -> CExtDecl
CDeclExt CDecl
happy_var_2
	)}

happyReduce_7 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_7 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_7 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  2# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_7
happyReduction_7 :: HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_7 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: p
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap6
happyOut6 HappyAbsSyn
happy_x_2 of { (HappyWrap6 happy_var_2 :: CExtDecl
happy_var_2) -> 
	CExtDecl -> HappyAbsSyn
happyIn6
		 (CExtDecl
happy_var_2
	)}

happyReduce_8 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_8 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_8 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 5# 2# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_8
happyReduction_8 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_8 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExtDecl -> (CExtDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_2 of { happy_var_2 :: CToken
happy_var_2 -> 
	( CToken -> (Attrs -> CExtDecl) -> P CExtDecl
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_2 Attrs -> CExtDecl
CAsmExt)})
	) (\r :: CExtDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExtDecl -> HappyAbsSyn
happyIn6 CExtDecl
r))

happyReduce_9 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_9 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_9 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 3# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_9
happyReduction_9 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_9 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CFunDef -> (CFunDef -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap8
happyOut8 HappyAbsSyn
happy_x_1 of { (HappyWrap8 happy_var_1 :: CDeclr
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap12
happyOut12 HappyAbsSyn
happy_x_2 of { (HappyWrap12 happy_var_2 :: CStat
happy_var_2) -> 
	( P ()
leaveScope P () -> P CFunDef -> P CFunDef
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> (CDeclr -> (Attrs -> CFunDef) -> P CFunDef
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CDeclr
happy_var_1 ((Attrs -> CFunDef) -> P CFunDef)
-> (Attrs -> CFunDef) -> P CFunDef
forall a b. (a -> b) -> a -> b
$ [CDeclSpec] -> CDeclr -> [CDecl] -> CStat -> Attrs -> CFunDef
CFunDef [] CDeclr
happy_var_1 [] CStat
happy_var_2))}})
	) (\r :: CFunDef
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunDef -> HappyAbsSyn
happyIn7 CFunDef
r))

happyReduce_10 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_10 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_10 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 3# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_10
happyReduction_10 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_10 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CFunDef -> (CFunDef -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap33
happyOut33 HappyAbsSyn
happy_x_1 of { (HappyWrap33 happy_var_1 :: [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap8
happyOut8 HappyAbsSyn
happy_x_2 of { (HappyWrap8 happy_var_2 :: CDeclr
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap12
happyOut12 HappyAbsSyn
happy_x_3 of { (HappyWrap12 happy_var_3 :: CStat
happy_var_3) -> 
	( P ()
leaveScope P () -> P CFunDef -> P CFunDef
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> ([CDeclSpec] -> (Attrs -> CFunDef) -> P CFunDef
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs [CDeclSpec]
happy_var_1 ((Attrs -> CFunDef) -> P CFunDef)
-> (Attrs -> CFunDef) -> P CFunDef
forall a b. (a -> b) -> a -> b
$ [CDeclSpec] -> CDeclr -> [CDecl] -> CStat -> Attrs -> CFunDef
CFunDef [CDeclSpec]
happy_var_1 CDeclr
happy_var_2 [] CStat
happy_var_3))}}})
	) (\r :: CFunDef
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunDef -> HappyAbsSyn
happyIn7 CFunDef
r))

happyReduce_11 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_11 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_11 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 3# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_11
happyReduction_11 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_11 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CFunDef -> (CFunDef -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap37
happyOut37 HappyAbsSyn
happy_x_1 of { (HappyWrap37 happy_var_1 :: [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap8
happyOut8 HappyAbsSyn
happy_x_2 of { (HappyWrap8 happy_var_2 :: CDeclr
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap12
happyOut12 HappyAbsSyn
happy_x_3 of { (HappyWrap12 happy_var_3 :: CStat
happy_var_3) -> 
	( P ()
leaveScope P () -> P CFunDef -> P CFunDef
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> ([CDeclSpec] -> (Attrs -> CFunDef) -> P CFunDef
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs [CDeclSpec]
happy_var_1 ((Attrs -> CFunDef) -> P CFunDef)
-> (Attrs -> CFunDef) -> P CFunDef
forall a b. (a -> b) -> a -> b
$ [CDeclSpec] -> CDeclr -> [CDecl] -> CStat -> Attrs -> CFunDef
CFunDef [CDeclSpec]
happy_var_1 CDeclr
happy_var_2 [] CStat
happy_var_3))}}})
	) (\r :: CFunDef
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunDef -> HappyAbsSyn
happyIn7 CFunDef
r))

happyReduce_12 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_12 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_12 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 3# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_12
happyReduction_12 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_12 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CFunDef -> (CFunDef -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap34
happyOut34 HappyAbsSyn
happy_x_1 of { (HappyWrap34 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap8
happyOut8 HappyAbsSyn
happy_x_2 of { (HappyWrap8 happy_var_2 :: CDeclr
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap12
happyOut12 HappyAbsSyn
happy_x_3 of { (HappyWrap12 happy_var_3 :: CStat
happy_var_3) -> 
	( P ()
leaveScope P () -> P CFunDef -> P CFunDef
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> (Reversed [CDeclSpec] -> (Attrs -> CFunDef) -> P CFunDef
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs Reversed [CDeclSpec]
happy_var_1 ((Attrs -> CFunDef) -> P CFunDef)
-> (Attrs -> CFunDef) -> P CFunDef
forall a b. (a -> b) -> a -> b
$ [CDeclSpec] -> CDeclr -> [CDecl] -> CStat -> Attrs -> CFunDef
CFunDef (Reversed [CDeclSpec] -> [CDeclSpec]
forall a. Reversed [a] -> [a]
reverse Reversed [CDeclSpec]
happy_var_1) CDeclr
happy_var_2 [] CStat
happy_var_3))}}})
	) (\r :: CFunDef
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunDef -> HappyAbsSyn
happyIn7 CFunDef
r))

happyReduce_13 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_13 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_13 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 3# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_13
happyReduction_13 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_13 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CFunDef -> (CFunDef -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap73
happyOut73 HappyAbsSyn
happy_x_1 of { (HappyWrap73 happy_var_1 :: Reversed [CTypeQual]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap8
happyOut8 HappyAbsSyn
happy_x_2 of { (HappyWrap8 happy_var_2 :: CDeclr
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap12
happyOut12 HappyAbsSyn
happy_x_3 of { (HappyWrap12 happy_var_3 :: CStat
happy_var_3) -> 
	( P ()
leaveScope P () -> P CFunDef -> P CFunDef
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> (Reversed [CTypeQual] -> (Attrs -> CFunDef) -> P CFunDef
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs Reversed [CTypeQual]
happy_var_1 ((Attrs -> CFunDef) -> P CFunDef)
-> (Attrs -> CFunDef) -> P CFunDef
forall a b. (a -> b) -> a -> b
$ [CDeclSpec] -> CDeclr -> [CDecl] -> CStat -> Attrs -> CFunDef
CFunDef (Reversed [CTypeQual] -> [CDeclSpec]
liftTypeQuals Reversed [CTypeQual]
happy_var_1) CDeclr
happy_var_2 [] CStat
happy_var_3))}}})
	) (\r :: CFunDef
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunDef -> HappyAbsSyn
happyIn7 CFunDef
r))

happyReduce_14 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_14 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_14 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 3# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_14
happyReduction_14 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_14 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CFunDef -> (CFunDef -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap71
happyOut71 HappyAbsSyn
happy_x_1 of { (HappyWrap71 happy_var_1 :: CDeclr
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap9
happyOut9 HappyAbsSyn
happy_x_2 of { (HappyWrap9 happy_var_2 :: Reversed [CDecl]
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap12
happyOut12 HappyAbsSyn
happy_x_3 of { (HappyWrap12 happy_var_3 :: CStat
happy_var_3) -> 
	( CDeclr -> (Attrs -> CFunDef) -> P CFunDef
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CDeclr
happy_var_1 ((Attrs -> CFunDef) -> P CFunDef)
-> (Attrs -> CFunDef) -> P CFunDef
forall a b. (a -> b) -> a -> b
$ [CDeclSpec] -> CDeclr -> [CDecl] -> CStat -> Attrs -> CFunDef
CFunDef [] CDeclr
happy_var_1 (Reversed [CDecl] -> [CDecl]
forall a. Reversed [a] -> [a]
reverse Reversed [CDecl]
happy_var_2) CStat
happy_var_3)}}})
	) (\r :: CFunDef
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunDef -> HappyAbsSyn
happyIn7 CFunDef
r))

happyReduce_15 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_15 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_15 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 3# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_15
happyReduction_15 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_15 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CFunDef -> (CFunDef -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap33
happyOut33 HappyAbsSyn
happy_x_1 of { (HappyWrap33 happy_var_1 :: [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap71
happyOut71 HappyAbsSyn
happy_x_2 of { (HappyWrap71 happy_var_2 :: CDeclr
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap9
happyOut9 HappyAbsSyn
happy_x_3 of { (HappyWrap9 happy_var_3 :: Reversed [CDecl]
happy_var_3) -> 
	case HappyAbsSyn -> HappyWrap12
happyOut12 HappyAbsSyn
happy_x_4 of { (HappyWrap12 happy_var_4 :: CStat
happy_var_4) -> 
	( [CDeclSpec] -> (Attrs -> CFunDef) -> P CFunDef
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs [CDeclSpec]
happy_var_1 ((Attrs -> CFunDef) -> P CFunDef)
-> (Attrs -> CFunDef) -> P CFunDef
forall a b. (a -> b) -> a -> b
$ [CDeclSpec] -> CDeclr -> [CDecl] -> CStat -> Attrs -> CFunDef
CFunDef [CDeclSpec]
happy_var_1 CDeclr
happy_var_2 (Reversed [CDecl] -> [CDecl]
forall a. Reversed [a] -> [a]
reverse Reversed [CDecl]
happy_var_3) CStat
happy_var_4)}}}})
	) (\r :: CFunDef
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunDef -> HappyAbsSyn
happyIn7 CFunDef
r))

happyReduce_16 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_16 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_16 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 3# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_16
happyReduction_16 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_16 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CFunDef -> (CFunDef -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap37
happyOut37 HappyAbsSyn
happy_x_1 of { (HappyWrap37 happy_var_1 :: [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap71
happyOut71 HappyAbsSyn
happy_x_2 of { (HappyWrap71 happy_var_2 :: CDeclr
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap9
happyOut9 HappyAbsSyn
happy_x_3 of { (HappyWrap9 happy_var_3 :: Reversed [CDecl]
happy_var_3) -> 
	case HappyAbsSyn -> HappyWrap12
happyOut12 HappyAbsSyn
happy_x_4 of { (HappyWrap12 happy_var_4 :: CStat
happy_var_4) -> 
	( [CDeclSpec] -> (Attrs -> CFunDef) -> P CFunDef
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs [CDeclSpec]
happy_var_1 ((Attrs -> CFunDef) -> P CFunDef)
-> (Attrs -> CFunDef) -> P CFunDef
forall a b. (a -> b) -> a -> b
$ [CDeclSpec] -> CDeclr -> [CDecl] -> CStat -> Attrs -> CFunDef
CFunDef [CDeclSpec]
happy_var_1 CDeclr
happy_var_2 (Reversed [CDecl] -> [CDecl]
forall a. Reversed [a] -> [a]
reverse Reversed [CDecl]
happy_var_3) CStat
happy_var_4)}}}})
	) (\r :: CFunDef
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunDef -> HappyAbsSyn
happyIn7 CFunDef
r))

happyReduce_17 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_17 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_17 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 3# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_17
happyReduction_17 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_17 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CFunDef -> (CFunDef -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap34
happyOut34 HappyAbsSyn
happy_x_1 of { (HappyWrap34 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap71
happyOut71 HappyAbsSyn
happy_x_2 of { (HappyWrap71 happy_var_2 :: CDeclr
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap9
happyOut9 HappyAbsSyn
happy_x_3 of { (HappyWrap9 happy_var_3 :: Reversed [CDecl]
happy_var_3) -> 
	case HappyAbsSyn -> HappyWrap12
happyOut12 HappyAbsSyn
happy_x_4 of { (HappyWrap12 happy_var_4 :: CStat
happy_var_4) -> 
	( Reversed [CDeclSpec] -> (Attrs -> CFunDef) -> P CFunDef
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs Reversed [CDeclSpec]
happy_var_1 ((Attrs -> CFunDef) -> P CFunDef)
-> (Attrs -> CFunDef) -> P CFunDef
forall a b. (a -> b) -> a -> b
$ [CDeclSpec] -> CDeclr -> [CDecl] -> CStat -> Attrs -> CFunDef
CFunDef (Reversed [CDeclSpec] -> [CDeclSpec]
forall a. Reversed [a] -> [a]
reverse Reversed [CDeclSpec]
happy_var_1) CDeclr
happy_var_2 (Reversed [CDecl] -> [CDecl]
forall a. Reversed [a] -> [a]
reverse Reversed [CDecl]
happy_var_3) CStat
happy_var_4)}}}})
	) (\r :: CFunDef
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunDef -> HappyAbsSyn
happyIn7 CFunDef
r))

happyReduce_18 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_18 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_18 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 3# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_18
happyReduction_18 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_18 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CFunDef -> (CFunDef -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap73
happyOut73 HappyAbsSyn
happy_x_1 of { (HappyWrap73 happy_var_1 :: Reversed [CTypeQual]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap71
happyOut71 HappyAbsSyn
happy_x_2 of { (HappyWrap71 happy_var_2 :: CDeclr
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap9
happyOut9 HappyAbsSyn
happy_x_3 of { (HappyWrap9 happy_var_3 :: Reversed [CDecl]
happy_var_3) -> 
	case HappyAbsSyn -> HappyWrap12
happyOut12 HappyAbsSyn
happy_x_4 of { (HappyWrap12 happy_var_4 :: CStat
happy_var_4) -> 
	( Reversed [CTypeQual] -> (Attrs -> CFunDef) -> P CFunDef
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs Reversed [CTypeQual]
happy_var_1 ((Attrs -> CFunDef) -> P CFunDef)
-> (Attrs -> CFunDef) -> P CFunDef
forall a b. (a -> b) -> a -> b
$ [CDeclSpec] -> CDeclr -> [CDecl] -> CStat -> Attrs -> CFunDef
CFunDef (Reversed [CTypeQual] -> [CDeclSpec]
liftTypeQuals Reversed [CTypeQual]
happy_var_1) CDeclr
happy_var_2 (Reversed [CDecl] -> [CDecl]
forall a. Reversed [a] -> [a]
reverse Reversed [CDecl]
happy_var_3) CStat
happy_var_4)}}}})
	) (\r :: CFunDef
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunDef -> HappyAbsSyn
happyIn7 CFunDef
r))

happyReduce_19 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_19 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_19 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 4# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_19
happyReduction_19 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_19 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDeclr -> (CDeclr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap67
happyOut67 HappyAbsSyn
happy_x_1 of { (HappyWrap67 happy_var_1 :: CDeclr
happy_var_1) -> 
	( P ()
enterScope P () -> P () -> P ()
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> CDeclr -> P ()
doFuncParamDeclIdent CDeclr
happy_var_1 P () -> P CDeclr -> P CDeclr
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> CDeclr -> P CDeclr
forall (m :: * -> *) a. Monad m => a -> m a
return CDeclr
happy_var_1)})
	) (\r :: CDeclr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclr -> HappyAbsSyn
happyIn8 CDeclr
r))

happyReduce_20 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_20 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_20 = Int#
-> HappyAbsSyn
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_0  5# HappyAbsSyn
happyReduction_20
happyReduction_20 :: HappyAbsSyn
happyReduction_20  =  Reversed [CDecl] -> HappyAbsSyn
happyIn9
		 (Reversed [CDecl]
forall a. Reversed [a]
empty
	)

happyReduce_21 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_21 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_21 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  5# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_21
happyReduction_21 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_21 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap9
happyOut9 HappyAbsSyn
happy_x_1 of { (HappyWrap9 happy_var_1 :: Reversed [CDecl]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap30
happyOut30 HappyAbsSyn
happy_x_2 of { (HappyWrap30 happy_var_2 :: CDecl
happy_var_2) -> 
	Reversed [CDecl] -> HappyAbsSyn
happyIn9
		 (Reversed [CDecl]
happy_var_1 Reversed [CDecl] -> CDecl -> Reversed [CDecl]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CDecl
happy_var_2
	)}}

happyReduce_22 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_22 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_22 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  6# HappyAbsSyn -> HappyAbsSyn
happyReduction_22
happyReduction_22 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_22 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap11
happyOut11 HappyAbsSyn
happy_x_1 of { (HappyWrap11 happy_var_1 :: CStat
happy_var_1) -> 
	CStat -> HappyAbsSyn
happyIn10
		 (CStat
happy_var_1
	)}

happyReduce_23 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_23 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_23 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  6# HappyAbsSyn -> HappyAbsSyn
happyReduction_23
happyReduction_23 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_23 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap12
happyOut12 HappyAbsSyn
happy_x_1 of { (HappyWrap12 happy_var_1 :: CStat
happy_var_1) -> 
	CStat -> HappyAbsSyn
happyIn10
		 (CStat
happy_var_1
	)}

happyReduce_24 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_24 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_24 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  6# HappyAbsSyn -> HappyAbsSyn
happyReduction_24
happyReduction_24 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_24 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap20
happyOut20 HappyAbsSyn
happy_x_1 of { (HappyWrap20 happy_var_1 :: CStat
happy_var_1) -> 
	CStat -> HappyAbsSyn
happyIn10
		 (CStat
happy_var_1
	)}

happyReduce_25 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_25 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_25 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  6# HappyAbsSyn -> HappyAbsSyn
happyReduction_25
happyReduction_25 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_25 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap21
happyOut21 HappyAbsSyn
happy_x_1 of { (HappyWrap21 happy_var_1 :: CStat
happy_var_1) -> 
	CStat -> HappyAbsSyn
happyIn10
		 (CStat
happy_var_1
	)}

happyReduce_26 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_26 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_26 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  6# HappyAbsSyn -> HappyAbsSyn
happyReduction_26
happyReduction_26 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_26 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap22
happyOut22 HappyAbsSyn
happy_x_1 of { (HappyWrap22 happy_var_1 :: CStat
happy_var_1) -> 
	CStat -> HappyAbsSyn
happyIn10
		 (CStat
happy_var_1
	)}

happyReduce_27 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_27 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_27 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  6# HappyAbsSyn -> HappyAbsSyn
happyReduction_27
happyReduction_27 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_27 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap23
happyOut23 HappyAbsSyn
happy_x_1 of { (HappyWrap23 happy_var_1 :: CStat
happy_var_1) -> 
	CStat -> HappyAbsSyn
happyIn10
		 (CStat
happy_var_1
	)}

happyReduce_28 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_28 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_28 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  6# HappyAbsSyn -> HappyAbsSyn
happyReduction_28
happyReduction_28 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_28 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap24
happyOut24 HappyAbsSyn
happy_x_1 of { (HappyWrap24 happy_var_1 :: CStat
happy_var_1) -> 
	CStat -> HappyAbsSyn
happyIn10
		 (CStat
happy_var_1
	)}

happyReduce_29 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_29 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_29 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 7# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_29
happyReduction_29 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_29 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap120
happyOut120 HappyAbsSyn
happy_x_1 of { (HappyWrap120 happy_var_1 :: Ident
happy_var_1) -> 
	case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_2 of { happy_var_2 :: CToken
happy_var_2 -> 
	case HappyAbsSyn -> HappyWrap10
happyOut10 HappyAbsSyn
happy_x_4 of { (HappyWrap10 happy_var_4 :: CStat
happy_var_4) -> 
	( CToken -> (Attrs -> CStat) -> P CStat
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_2 ((Attrs -> CStat) -> P CStat) -> (Attrs -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ Ident -> CStat -> Attrs -> CStat
CLabel Ident
happy_var_1 CStat
happy_var_4)}}})
	) (\r :: CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn11 CStat
r))

happyReduce_30 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_30 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_30 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 7# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_30
happyReduction_30 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_30 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap116
happyOut116 HappyAbsSyn
happy_x_2 of { (HappyWrap116 happy_var_2 :: CExpr
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap10
happyOut10 HappyAbsSyn
happy_x_4 of { (HappyWrap10 happy_var_4 :: CStat
happy_var_4) -> 
	( CToken -> (Attrs -> CStat) -> P CStat
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CStat) -> P CStat) -> (Attrs -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ CExpr -> CStat -> Attrs -> CStat
CCase CExpr
happy_var_2 CStat
happy_var_4)}}})
	) (\r :: CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn11 CStat
r))

happyReduce_31 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_31 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_31 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 7# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_31
happyReduction_31 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_31 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap10
happyOut10 HappyAbsSyn
happy_x_3 of { (HappyWrap10 happy_var_3 :: CStat
happy_var_3) -> 
	( CToken -> (Attrs -> CStat) -> P CStat
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CStat) -> P CStat) -> (Attrs -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ CStat -> Attrs -> CStat
CDefault CStat
happy_var_3)}})
	) (\r :: CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn11 CStat
r))

happyReduce_32 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_32 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_32 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 6# 7# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_32
happyReduction_32 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_32 (happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
	happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap116
happyOut116 HappyAbsSyn
happy_x_2 of { (HappyWrap116 happy_var_2 :: CExpr
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap116
happyOut116 HappyAbsSyn
happy_x_4 of { (HappyWrap116 happy_var_4 :: CExpr
happy_var_4) -> 
	case HappyAbsSyn -> HappyWrap10
happyOut10 HappyAbsSyn
happy_x_6 of { (HappyWrap10 happy_var_6 :: CStat
happy_var_6) -> 
	( CToken -> (Attrs -> CStat) -> P CStat
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CStat) -> P CStat) -> (Attrs -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ CExpr -> CExpr -> CStat -> Attrs -> CStat
CCases CExpr
happy_var_2 CExpr
happy_var_4 CStat
happy_var_6)}}}})
	) (\r :: CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn11 CStat
r))

happyReduce_33 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_33 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_33 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 5# 8# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_33
happyReduction_33 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_33 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap15
happyOut15 HappyAbsSyn
happy_x_3 of { (HappyWrap15 happy_var_3 :: Reversed [CBlockItem]
happy_var_3) -> 
	( CToken -> (Attrs -> CStat) -> P CStat
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CStat) -> P CStat) -> (Attrs -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ [CBlockItem] -> Attrs -> CStat
CCompound (Reversed [CBlockItem] -> [CBlockItem]
forall a. Reversed [a] -> [a]
reverse Reversed [CBlockItem]
happy_var_3))}})
	) (\r :: CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn12 CStat
r))

happyReduce_34 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_34 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_34 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 6# 8# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_34
happyReduction_34 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_34 (happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
	happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap15
happyOut15 HappyAbsSyn
happy_x_4 of { (HappyWrap15 happy_var_4 :: Reversed [CBlockItem]
happy_var_4) -> 
	( CToken -> (Attrs -> CStat) -> P CStat
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CStat) -> P CStat) -> (Attrs -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ [CBlockItem] -> Attrs -> CStat
CCompound (Reversed [CBlockItem] -> [CBlockItem]
forall a. Reversed [a] -> [a]
reverse Reversed [CBlockItem]
happy_var_4))}})
	) (\r :: CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn12 CStat
r))

happyReduce_35 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_35 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_35 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 0# 9# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p p. p -> p -> P HappyAbsSyn
happyReduction_35
happyReduction_35 :: p -> p -> P HappyAbsSyn
happyReduction_35 (p
happyRest) tk :: p
tk
	 = P () -> (() -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((( P ()
enterScope))
	) (\r :: ()
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (() -> HappyAbsSyn
happyIn13 ()
r))

happyReduce_36 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_36 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_36 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 0# 10# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p p. p -> p -> P HappyAbsSyn
happyReduction_36
happyReduction_36 :: p -> p -> P HappyAbsSyn
happyReduction_36 (p
happyRest) tk :: p
tk
	 = P () -> (() -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((( P ()
leaveScope))
	) (\r :: ()
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (() -> HappyAbsSyn
happyIn14 ()
r))

happyReduce_37 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_37 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_37 = Int#
-> HappyAbsSyn
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_0  11# HappyAbsSyn
happyReduction_37
happyReduction_37 :: HappyAbsSyn
happyReduction_37  =  Reversed [CBlockItem] -> HappyAbsSyn
happyIn15
		 (Reversed [CBlockItem]
forall a. Reversed [a]
empty
	)

happyReduce_38 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_38 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_38 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  11# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_38
happyReduction_38 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_38 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap15
happyOut15 HappyAbsSyn
happy_x_1 of { (HappyWrap15 happy_var_1 :: Reversed [CBlockItem]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap16
happyOut16 HappyAbsSyn
happy_x_2 of { (HappyWrap16 happy_var_2 :: CBlockItem
happy_var_2) -> 
	Reversed [CBlockItem] -> HappyAbsSyn
happyIn15
		 (Reversed [CBlockItem]
happy_var_1 Reversed [CBlockItem] -> CBlockItem -> Reversed [CBlockItem]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CBlockItem
happy_var_2
	)}}

happyReduce_39 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_39 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_39 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  12# HappyAbsSyn -> HappyAbsSyn
happyReduction_39
happyReduction_39 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_39 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap10
happyOut10 HappyAbsSyn
happy_x_1 of { (HappyWrap10 happy_var_1 :: CStat
happy_var_1) -> 
	CBlockItem -> HappyAbsSyn
happyIn16
		 (CStat -> CBlockItem
CBlockStmt CStat
happy_var_1
	)}

happyReduce_40 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_40 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_40 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  12# HappyAbsSyn -> HappyAbsSyn
happyReduction_40
happyReduction_40 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_40 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap17
happyOut17 HappyAbsSyn
happy_x_1 of { (HappyWrap17 happy_var_1 :: CBlockItem
happy_var_1) -> 
	CBlockItem -> HappyAbsSyn
happyIn16
		 (CBlockItem
happy_var_1
	)}

happyReduce_41 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_41 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_41 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  13# HappyAbsSyn -> HappyAbsSyn
happyReduction_41
happyReduction_41 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_41 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap30
happyOut30 HappyAbsSyn
happy_x_1 of { (HappyWrap30 happy_var_1 :: CDecl
happy_var_1) -> 
	CBlockItem -> HappyAbsSyn
happyIn17
		 (CDecl -> CBlockItem
CBlockDecl CDecl
happy_var_1
	)}

happyReduce_42 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_42 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_42 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  13# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_42
happyReduction_42 :: HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_42 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: p
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap30
happyOut30 HappyAbsSyn
happy_x_2 of { (HappyWrap30 happy_var_2 :: CDecl
happy_var_2) -> 
	CBlockItem -> HappyAbsSyn
happyIn17
		 (CDecl -> CBlockItem
CBlockDecl CDecl
happy_var_2
	)}

happyReduce_43 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_43 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_43 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  13# HappyAbsSyn -> HappyAbsSyn
happyReduction_43
happyReduction_43 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_43 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap18
happyOut18 HappyAbsSyn
happy_x_1 of { (HappyWrap18 happy_var_1 :: CFunDef
happy_var_1) -> 
	CBlockItem -> HappyAbsSyn
happyIn17
		 (CFunDef -> CBlockItem
CNestedFunDef CFunDef
happy_var_1
	)}

happyReduce_44 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_44 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_44 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  13# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_44
happyReduction_44 :: HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_44 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: p
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap18
happyOut18 HappyAbsSyn
happy_x_2 of { (HappyWrap18 happy_var_2 :: CFunDef
happy_var_2) -> 
	CBlockItem -> HappyAbsSyn
happyIn17
		 (CFunDef -> CBlockItem
CNestedFunDef CFunDef
happy_var_2
	)}

happyReduce_45 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_45 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_45 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  13# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_45
happyReduction_45 :: HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_45 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: p
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap17
happyOut17 HappyAbsSyn
happy_x_2 of { (HappyWrap17 happy_var_2 :: CBlockItem
happy_var_2) -> 
	CBlockItem -> HappyAbsSyn
happyIn17
		 (CBlockItem
happy_var_2
	)}

happyReduce_46 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_46 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_46 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 14# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_46
happyReduction_46 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_46 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CFunDef -> (CFunDef -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap33
happyOut33 HappyAbsSyn
happy_x_1 of { (HappyWrap33 happy_var_1 :: [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap8
happyOut8 HappyAbsSyn
happy_x_2 of { (HappyWrap8 happy_var_2 :: CDeclr
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap12
happyOut12 HappyAbsSyn
happy_x_3 of { (HappyWrap12 happy_var_3 :: CStat
happy_var_3) -> 
	( P ()
leaveScope P () -> P CFunDef -> P CFunDef
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> ([CDeclSpec] -> (Attrs -> CFunDef) -> P CFunDef
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs [CDeclSpec]
happy_var_1 ((Attrs -> CFunDef) -> P CFunDef)
-> (Attrs -> CFunDef) -> P CFunDef
forall a b. (a -> b) -> a -> b
$ [CDeclSpec] -> CDeclr -> [CDecl] -> CStat -> Attrs -> CFunDef
CFunDef [CDeclSpec]
happy_var_1 CDeclr
happy_var_2 [] CStat
happy_var_3))}}})
	) (\r :: CFunDef
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunDef -> HappyAbsSyn
happyIn18 CFunDef
r))

happyReduce_47 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_47 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_47 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 14# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_47
happyReduction_47 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_47 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CFunDef -> (CFunDef -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap37
happyOut37 HappyAbsSyn
happy_x_1 of { (HappyWrap37 happy_var_1 :: [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap8
happyOut8 HappyAbsSyn
happy_x_2 of { (HappyWrap8 happy_var_2 :: CDeclr
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap12
happyOut12 HappyAbsSyn
happy_x_3 of { (HappyWrap12 happy_var_3 :: CStat
happy_var_3) -> 
	( P ()
leaveScope P () -> P CFunDef -> P CFunDef
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> ([CDeclSpec] -> (Attrs -> CFunDef) -> P CFunDef
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs [CDeclSpec]
happy_var_1 ((Attrs -> CFunDef) -> P CFunDef)
-> (Attrs -> CFunDef) -> P CFunDef
forall a b. (a -> b) -> a -> b
$ [CDeclSpec] -> CDeclr -> [CDecl] -> CStat -> Attrs -> CFunDef
CFunDef [CDeclSpec]
happy_var_1 CDeclr
happy_var_2 [] CStat
happy_var_3))}}})
	) (\r :: CFunDef
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunDef -> HappyAbsSyn
happyIn18 CFunDef
r))

happyReduce_48 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_48 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_48 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 14# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_48
happyReduction_48 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_48 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CFunDef -> (CFunDef -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap34
happyOut34 HappyAbsSyn
happy_x_1 of { (HappyWrap34 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap8
happyOut8 HappyAbsSyn
happy_x_2 of { (HappyWrap8 happy_var_2 :: CDeclr
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap12
happyOut12 HappyAbsSyn
happy_x_3 of { (HappyWrap12 happy_var_3 :: CStat
happy_var_3) -> 
	( P ()
leaveScope P () -> P CFunDef -> P CFunDef
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> (Reversed [CDeclSpec] -> (Attrs -> CFunDef) -> P CFunDef
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs Reversed [CDeclSpec]
happy_var_1 ((Attrs -> CFunDef) -> P CFunDef)
-> (Attrs -> CFunDef) -> P CFunDef
forall a b. (a -> b) -> a -> b
$ [CDeclSpec] -> CDeclr -> [CDecl] -> CStat -> Attrs -> CFunDef
CFunDef (Reversed [CDeclSpec] -> [CDeclSpec]
forall a. Reversed [a] -> [a]
reverse Reversed [CDeclSpec]
happy_var_1) CDeclr
happy_var_2 [] CStat
happy_var_3))}}})
	) (\r :: CFunDef
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunDef -> HappyAbsSyn
happyIn18 CFunDef
r))

happyReduce_49 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_49 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_49 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 14# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_49
happyReduction_49 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_49 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CFunDef -> (CFunDef -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap73
happyOut73 HappyAbsSyn
happy_x_1 of { (HappyWrap73 happy_var_1 :: Reversed [CTypeQual]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap8
happyOut8 HappyAbsSyn
happy_x_2 of { (HappyWrap8 happy_var_2 :: CDeclr
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap12
happyOut12 HappyAbsSyn
happy_x_3 of { (HappyWrap12 happy_var_3 :: CStat
happy_var_3) -> 
	( P ()
leaveScope P () -> P CFunDef -> P CFunDef
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> (Reversed [CTypeQual] -> (Attrs -> CFunDef) -> P CFunDef
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs Reversed [CTypeQual]
happy_var_1 ((Attrs -> CFunDef) -> P CFunDef)
-> (Attrs -> CFunDef) -> P CFunDef
forall a b. (a -> b) -> a -> b
$ [CDeclSpec] -> CDeclr -> [CDecl] -> CStat -> Attrs -> CFunDef
CFunDef (Reversed [CTypeQual] -> [CDeclSpec]
liftTypeQuals Reversed [CTypeQual]
happy_var_1) CDeclr
happy_var_2 [] CStat
happy_var_3))}}})
	) (\r :: CFunDef
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunDef -> HappyAbsSyn
happyIn18 CFunDef
r))

happyReduce_50 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_50 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_50 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  15# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p p p. p -> p -> p -> HappyAbsSyn
happyReduction_50
happyReduction_50 :: p -> p -> p -> HappyAbsSyn
happyReduction_50 happy_x_3 :: p
happy_x_3
	happy_x_2 :: p
happy_x_2
	happy_x_1 :: p
happy_x_1
	 =  () -> HappyAbsSyn
happyIn19
		 (()
	)

happyReduce_51 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_51 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_51 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce 4# 15# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_51
happyReduction_51 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_51 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest)
	 = () -> HappyAbsSyn
happyIn19
		 (()
	) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest

happyReduce_52 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_52 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_52 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 16# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_52
happyReduction_52 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_52 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (Attrs -> CStat) -> P CStat
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CStat) -> P CStat) -> (Attrs -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ Maybe CExpr -> Attrs -> CStat
CExpr Maybe CExpr
forall k1. Maybe k1
Nothing)})
	) (\r :: CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn20 CStat
r))

happyReduce_53 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_53 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_53 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 16# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_53
happyReduction_53 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_53 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap112
happyOut112 HappyAbsSyn
happy_x_1 of { (HappyWrap112 happy_var_1 :: CExpr
happy_var_1) -> 
	( CExpr -> (Attrs -> CStat) -> P CStat
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CExpr
happy_var_1 ((Attrs -> CStat) -> P CStat) -> (Attrs -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ Maybe CExpr -> Attrs -> CStat
CExpr (CExpr -> Maybe CExpr
forall k1. k1 -> Maybe k1
Just CExpr
happy_var_1))})
	) (\r :: CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn20 CStat
r))

happyReduce_54 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_54 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_54 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 5# 17# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_54
happyReduction_54 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_54 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap112
happyOut112 HappyAbsSyn
happy_x_3 of { (HappyWrap112 happy_var_3 :: CExpr
happy_var_3) -> 
	case HappyAbsSyn -> HappyWrap10
happyOut10 HappyAbsSyn
happy_x_5 of { (HappyWrap10 happy_var_5 :: CStat
happy_var_5) -> 
	( CToken -> (Attrs -> CStat) -> P CStat
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CStat) -> P CStat) -> (Attrs -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ CExpr -> CStat -> Maybe CStat -> Attrs -> CStat
CIf CExpr
happy_var_3 CStat
happy_var_5 Maybe CStat
forall k1. Maybe k1
Nothing)}}})
	) (\r :: CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn21 CStat
r))

happyReduce_55 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_55 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_55 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 7# 17# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_55
happyReduction_55 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_55 (happy_x_7 :: HappyAbsSyn
happy_x_7 `HappyStk`
	happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
	happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap112
happyOut112 HappyAbsSyn
happy_x_3 of { (HappyWrap112 happy_var_3 :: CExpr
happy_var_3) -> 
	case HappyAbsSyn -> HappyWrap10
happyOut10 HappyAbsSyn
happy_x_5 of { (HappyWrap10 happy_var_5 :: CStat
happy_var_5) -> 
	case HappyAbsSyn -> HappyWrap10
happyOut10 HappyAbsSyn
happy_x_7 of { (HappyWrap10 happy_var_7 :: CStat
happy_var_7) -> 
	( CToken -> (Attrs -> CStat) -> P CStat
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CStat) -> P CStat) -> (Attrs -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ CExpr -> CStat -> Maybe CStat -> Attrs -> CStat
CIf CExpr
happy_var_3 CStat
happy_var_5 (CStat -> Maybe CStat
forall k1. k1 -> Maybe k1
Just CStat
happy_var_7))}}}})
	) (\r :: CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn21 CStat
r))

happyReduce_56 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_56 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_56 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 5# 17# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_56
happyReduction_56 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_56 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap112
happyOut112 HappyAbsSyn
happy_x_3 of { (HappyWrap112 happy_var_3 :: CExpr
happy_var_3) -> 
	case HappyAbsSyn -> HappyWrap10
happyOut10 HappyAbsSyn
happy_x_5 of { (HappyWrap10 happy_var_5 :: CStat
happy_var_5) -> 
	( CToken -> (Attrs -> CStat) -> P CStat
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CStat) -> P CStat) -> (Attrs -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ CExpr -> CStat -> Attrs -> CStat
CSwitch CExpr
happy_var_3 CStat
happy_var_5)}}})
	) (\r :: CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn21 CStat
r))

happyReduce_57 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_57 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_57 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 5# 18# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_57
happyReduction_57 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_57 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap112
happyOut112 HappyAbsSyn
happy_x_3 of { (HappyWrap112 happy_var_3 :: CExpr
happy_var_3) -> 
	case HappyAbsSyn -> HappyWrap10
happyOut10 HappyAbsSyn
happy_x_5 of { (HappyWrap10 happy_var_5 :: CStat
happy_var_5) -> 
	( CToken -> (Attrs -> CStat) -> P CStat
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CStat) -> P CStat) -> (Attrs -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ CExpr -> CStat -> Bool -> Attrs -> CStat
CWhile CExpr
happy_var_3 CStat
happy_var_5 Bool
False)}}})
	) (\r :: CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn22 CStat
r))

happyReduce_58 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_58 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_58 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 7# 18# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_58
happyReduction_58 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_58 (happy_x_7 :: HappyAbsSyn
happy_x_7 `HappyStk`
	happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
	happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap10
happyOut10 HappyAbsSyn
happy_x_2 of { (HappyWrap10 happy_var_2 :: CStat
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap112
happyOut112 HappyAbsSyn
happy_x_5 of { (HappyWrap112 happy_var_5 :: CExpr
happy_var_5) -> 
	( CToken -> (Attrs -> CStat) -> P CStat
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CStat) -> P CStat) -> (Attrs -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ CExpr -> CStat -> Bool -> Attrs -> CStat
CWhile CExpr
happy_var_5 CStat
happy_var_2 Bool
True)}}})
	) (\r :: CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn22 CStat
r))

happyReduce_59 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_59 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_59 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 9# 18# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_59
happyReduction_59 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_59 (happy_x_9 :: HappyAbsSyn
happy_x_9 `HappyStk`
	happy_x_8 :: HappyAbsSyn
happy_x_8 `HappyStk`
	happy_x_7 :: HappyAbsSyn
happy_x_7 `HappyStk`
	happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
	happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap114
happyOut114 HappyAbsSyn
happy_x_3 of { (HappyWrap114 happy_var_3 :: Maybe CExpr
happy_var_3) -> 
	case HappyAbsSyn -> HappyWrap114
happyOut114 HappyAbsSyn
happy_x_5 of { (HappyWrap114 happy_var_5 :: Maybe CExpr
happy_var_5) -> 
	case HappyAbsSyn -> HappyWrap114
happyOut114 HappyAbsSyn
happy_x_7 of { (HappyWrap114 happy_var_7 :: Maybe CExpr
happy_var_7) -> 
	case HappyAbsSyn -> HappyWrap10
happyOut10 HappyAbsSyn
happy_x_9 of { (HappyWrap10 happy_var_9 :: CStat
happy_var_9) -> 
	( CToken -> (Attrs -> CStat) -> P CStat
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CStat) -> P CStat) -> (Attrs -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ Either (Maybe CExpr) CDecl
-> Maybe CExpr -> Maybe CExpr -> CStat -> Attrs -> CStat
CFor (Maybe CExpr -> Either (Maybe CExpr) CDecl
forall a b. a -> Either a b
Left Maybe CExpr
happy_var_3) Maybe CExpr
happy_var_5 Maybe CExpr
happy_var_7 CStat
happy_var_9)}}}}})
	) (\r :: CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn22 CStat
r))

happyReduce_60 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_60 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_60 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 10# 18# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_60
happyReduction_60 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_60 (happy_x_10 :: HappyAbsSyn
happy_x_10 `HappyStk`
	happy_x_9 :: HappyAbsSyn
happy_x_9 `HappyStk`
	happy_x_8 :: HappyAbsSyn
happy_x_8 `HappyStk`
	happy_x_7 :: HappyAbsSyn
happy_x_7 `HappyStk`
	happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
	happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap30
happyOut30 HappyAbsSyn
happy_x_4 of { (HappyWrap30 happy_var_4 :: CDecl
happy_var_4) -> 
	case HappyAbsSyn -> HappyWrap114
happyOut114 HappyAbsSyn
happy_x_5 of { (HappyWrap114 happy_var_5 :: Maybe CExpr
happy_var_5) -> 
	case HappyAbsSyn -> HappyWrap114
happyOut114 HappyAbsSyn
happy_x_7 of { (HappyWrap114 happy_var_7 :: Maybe CExpr
happy_var_7) -> 
	case HappyAbsSyn -> HappyWrap10
happyOut10 HappyAbsSyn
happy_x_9 of { (HappyWrap10 happy_var_9 :: CStat
happy_var_9) -> 
	( CToken -> (Attrs -> CStat) -> P CStat
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CStat) -> P CStat) -> (Attrs -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ Either (Maybe CExpr) CDecl
-> Maybe CExpr -> Maybe CExpr -> CStat -> Attrs -> CStat
CFor (CDecl -> Either (Maybe CExpr) CDecl
forall a b. b -> Either a b
Right CDecl
happy_var_4) Maybe CExpr
happy_var_5 Maybe CExpr
happy_var_7 CStat
happy_var_9)}}}}})
	) (\r :: CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn22 CStat
r))

happyReduce_61 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_61 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_61 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 19# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_61
happyReduction_61 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_61 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap120
happyOut120 HappyAbsSyn
happy_x_2 of { (HappyWrap120 happy_var_2 :: Ident
happy_var_2) -> 
	( CToken -> (Attrs -> CStat) -> P CStat
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CStat) -> P CStat) -> (Attrs -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ Ident -> Attrs -> CStat
CGoto Ident
happy_var_2)}})
	) (\r :: CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn23 CStat
r))

happyReduce_62 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_62 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_62 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 19# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_62
happyReduction_62 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_62 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap112
happyOut112 HappyAbsSyn
happy_x_3 of { (HappyWrap112 happy_var_3 :: CExpr
happy_var_3) -> 
	( CToken -> (Attrs -> CStat) -> P CStat
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CStat) -> P CStat) -> (Attrs -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ CExpr -> Attrs -> CStat
CGotoPtr CExpr
happy_var_3)}})
	) (\r :: CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn23 CStat
r))

happyReduce_63 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_63 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_63 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 19# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_63
happyReduction_63 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_63 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (Attrs -> CStat) -> P CStat
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CStat) -> P CStat) -> (Attrs -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ Attrs -> CStat
CCont)})
	) (\r :: CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn23 CStat
r))

happyReduce_64 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_64 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_64 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 19# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_64
happyReduction_64 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_64 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (Attrs -> CStat) -> P CStat
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CStat) -> P CStat) -> (Attrs -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ Attrs -> CStat
CBreak)})
	) (\r :: CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn23 CStat
r))

happyReduce_65 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_65 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_65 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 19# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_65
happyReduction_65 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_65 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap114
happyOut114 HappyAbsSyn
happy_x_2 of { (HappyWrap114 happy_var_2 :: Maybe CExpr
happy_var_2) -> 
	( CToken -> (Attrs -> CStat) -> P CStat
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CStat) -> P CStat) -> (Attrs -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ Maybe CExpr -> Attrs -> CStat
CReturn Maybe CExpr
happy_var_2)}})
	) (\r :: CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn23 CStat
r))

happyReduce_66 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_66 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_66 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 6# 20# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_66
happyReduction_66 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_66 (happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
	happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (Attrs -> CStat) -> P CStat
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 Attrs -> CStat
CAsm)})
	) (\r :: CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn24 CStat
r))

happyReduce_67 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_67 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_67 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 8# 20# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_67
happyReduction_67 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_67 (happy_x_8 :: HappyAbsSyn
happy_x_8 `HappyStk`
	happy_x_7 :: HappyAbsSyn
happy_x_7 `HappyStk`
	happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
	happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (Attrs -> CStat) -> P CStat
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 Attrs -> CStat
CAsm)})
	) (\r :: CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn24 CStat
r))

happyReduce_68 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_68 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_68 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 10# 20# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_68
happyReduction_68 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_68 (happy_x_10 :: HappyAbsSyn
happy_x_10 `HappyStk`
	happy_x_9 :: HappyAbsSyn
happy_x_9 `HappyStk`
	happy_x_8 :: HappyAbsSyn
happy_x_8 `HappyStk`
	happy_x_7 :: HappyAbsSyn
happy_x_7 `HappyStk`
	happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
	happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (Attrs -> CStat) -> P CStat
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 Attrs -> CStat
CAsm)})
	) (\r :: CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn24 CStat
r))

happyReduce_69 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_69 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_69 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 12# 20# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_69
happyReduction_69 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_69 (happy_x_12 :: HappyAbsSyn
happy_x_12 `HappyStk`
	happy_x_11 :: HappyAbsSyn
happy_x_11 `HappyStk`
	happy_x_10 :: HappyAbsSyn
happy_x_10 `HappyStk`
	happy_x_9 :: HappyAbsSyn
happy_x_9 `HappyStk`
	happy_x_8 :: HappyAbsSyn
happy_x_8 `HappyStk`
	happy_x_7 :: HappyAbsSyn
happy_x_7 `HappyStk`
	happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
	happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (Attrs -> CStat) -> P CStat
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 Attrs -> CStat
CAsm)})
	) (\r :: CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn24 CStat
r))

happyReduce_70 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_70 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_70 = Int#
-> HappyAbsSyn
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_0  21# HappyAbsSyn
happyReduction_70
happyReduction_70 :: HappyAbsSyn
happyReduction_70  =  () -> HappyAbsSyn
happyIn25
		 (()
	)

happyReduce_71 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_71 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_71 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  21# HappyAbsSyn -> HappyAbsSyn
forall p. p -> HappyAbsSyn
happyReduction_71
happyReduction_71 :: p -> HappyAbsSyn
happyReduction_71 happy_x_1 :: p
happy_x_1
	 =  () -> HappyAbsSyn
happyIn25
		 (()
	)

happyReduce_72 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_72 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_72 = Int#
-> HappyAbsSyn
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_0  22# HappyAbsSyn
happyReduction_72
happyReduction_72 :: HappyAbsSyn
happyReduction_72  =  () -> HappyAbsSyn
happyIn26
		 (()
	)

happyReduce_73 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_73 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_73 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  22# HappyAbsSyn -> HappyAbsSyn
forall p. p -> HappyAbsSyn
happyReduction_73
happyReduction_73 :: p -> HappyAbsSyn
happyReduction_73 happy_x_1 :: p
happy_x_1
	 =  () -> HappyAbsSyn
happyIn26
		 (()
	)

happyReduce_74 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_74 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_74 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  23# HappyAbsSyn -> HappyAbsSyn
forall p. p -> HappyAbsSyn
happyReduction_74
happyReduction_74 :: p -> HappyAbsSyn
happyReduction_74 happy_x_1 :: p
happy_x_1
	 =  () -> HappyAbsSyn
happyIn27
		 (()
	)

happyReduce_75 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_75 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_75 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  23# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p p p. p -> p -> p -> HappyAbsSyn
happyReduction_75
happyReduction_75 :: p -> p -> p -> HappyAbsSyn
happyReduction_75 happy_x_3 :: p
happy_x_3
	happy_x_2 :: p
happy_x_2
	happy_x_1 :: p
happy_x_1
	 =  () -> HappyAbsSyn
happyIn27
		 (()
	)

happyReduce_76 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_76 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_76 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce 4# 24# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_76
happyReduction_76 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_76 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest)
	 = () -> HappyAbsSyn
happyIn28
		 (()
	) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest

happyReduce_77 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_77 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_77 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce 7# 24# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_77
happyReduction_77 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_77 (happy_x_7 :: HappyAbsSyn
happy_x_7 `HappyStk`
	happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
	happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest)
	 = () -> HappyAbsSyn
happyIn28
		 (()
	) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest

happyReduce_78 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_78 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_78 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce 7# 24# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_78
happyReduction_78 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_78 (happy_x_7 :: HappyAbsSyn
happy_x_7 `HappyStk`
	happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
	happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest)
	 = () -> HappyAbsSyn
happyIn28
		 (()
	) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest

happyReduce_79 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_79 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_79 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  25# HappyAbsSyn -> HappyAbsSyn
forall p. p -> HappyAbsSyn
happyReduction_79
happyReduction_79 :: p -> HappyAbsSyn
happyReduction_79 happy_x_1 :: p
happy_x_1
	 =  () -> HappyAbsSyn
happyIn29
		 (()
	)

happyReduce_80 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_80 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_80 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  25# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p p p. p -> p -> p -> HappyAbsSyn
happyReduction_80
happyReduction_80 :: p -> p -> p -> HappyAbsSyn
happyReduction_80 happy_x_3 :: p
happy_x_3
	happy_x_2 :: p
happy_x_2
	happy_x_1 :: p
happy_x_1
	 =  () -> HappyAbsSyn
happyIn29
		 (()
	)

happyReduce_81 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_81 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_81 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 26# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_81
happyReduction_81 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_81 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap41
happyOut41 HappyAbsSyn
happy_x_1 of { (HappyWrap41 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	( Reversed [CDeclSpec] -> (Attrs -> CDecl) -> P CDecl
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs Reversed [CDeclSpec]
happy_var_1 ((Attrs -> CDecl) -> P CDecl) -> (Attrs -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> Attrs -> CDecl
CDecl (Reversed [CDeclSpec] -> [CDeclSpec]
forall a. Reversed [a] -> [a]
reverse Reversed [CDeclSpec]
happy_var_1) [])})
	) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn30 CDecl
r))

happyReduce_82 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_82 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_82 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 26# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_82
happyReduction_82 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_82 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap42
happyOut42 HappyAbsSyn
happy_x_1 of { (HappyWrap42 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	( Reversed [CDeclSpec] -> (Attrs -> CDecl) -> P CDecl
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs Reversed [CDeclSpec]
happy_var_1 ((Attrs -> CDecl) -> P CDecl) -> (Attrs -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> Attrs -> CDecl
CDecl (Reversed [CDeclSpec] -> [CDeclSpec]
forall a. Reversed [a] -> [a]
reverse Reversed [CDeclSpec]
happy_var_1) [])})
	) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn30 CDecl
r))

happyReduce_83 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_83 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_83 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  26# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_83
happyReduction_83 :: p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_83 happy_x_2 :: p
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap32
happyOut32 HappyAbsSyn
happy_x_1 of { (HappyWrap32 happy_var_1 :: CDecl
happy_var_1) -> 
	CDecl -> HappyAbsSyn
happyIn30
		 (case CDecl
happy_var_1 of
            CDecl declspecs :: [CDeclSpec]
declspecs dies :: [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dies attr :: Attrs
attr ->
              [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> Attrs -> CDecl
CDecl [CDeclSpec]
declspecs ([(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
forall a. [a] -> [a]
List.reverse [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dies) Attrs
attr
	)}

happyReduce_84 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_84 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_84 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  26# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_84
happyReduction_84 :: p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_84 happy_x_2 :: p
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap31
happyOut31 HappyAbsSyn
happy_x_1 of { (HappyWrap31 happy_var_1 :: CDecl
happy_var_1) -> 
	CDecl -> HappyAbsSyn
happyIn30
		 (case CDecl
happy_var_1 of
            CDecl declspecs :: [CDeclSpec]
declspecs dies :: [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dies attr :: Attrs
attr ->
              [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> Attrs -> CDecl
CDecl [CDeclSpec]
declspecs ([(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
forall a. [a] -> [a]
List.reverse [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dies) Attrs
attr
	)}

happyReduce_85 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_85 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_85 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 5# 27# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_85
happyReduction_85 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_85 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap34
happyOut34 HappyAbsSyn
happy_x_1 of { (HappyWrap34 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap67
happyOut67 HappyAbsSyn
happy_x_2 of { (HappyWrap67 happy_var_2 :: CDeclr
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap86
happyOut86 HappyAbsSyn
happy_x_5 of { (HappyWrap86 happy_var_5 :: Maybe CInit
happy_var_5) -> 
	( let declspecs :: [CDeclSpec]
declspecs = Reversed [CDeclSpec] -> [CDeclSpec]
forall a. Reversed [a] -> [a]
reverse Reversed [CDeclSpec]
happy_var_1 in
           [CDeclSpec] -> CDeclr -> P ()
doDeclIdent [CDeclSpec]
declspecs CDeclr
happy_var_2
        P () -> P CDecl -> P CDecl
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> (Reversed [CDeclSpec] -> (Attrs -> CDecl) -> P CDecl
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs Reversed [CDeclSpec]
happy_var_1 ((Attrs -> CDecl) -> P CDecl) -> (Attrs -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> Attrs -> CDecl
CDecl [CDeclSpec]
declspecs [(CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just CDeclr
happy_var_2, Maybe CInit
happy_var_5, Maybe CExpr
forall k1. Maybe k1
Nothing)]))}}})
	) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn31 CDecl
r))

happyReduce_86 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_86 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_86 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 5# 27# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_86
happyReduction_86 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_86 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap73
happyOut73 HappyAbsSyn
happy_x_1 of { (HappyWrap73 happy_var_1 :: Reversed [CTypeQual]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap67
happyOut67 HappyAbsSyn
happy_x_2 of { (HappyWrap67 happy_var_2 :: CDeclr
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap86
happyOut86 HappyAbsSyn
happy_x_5 of { (HappyWrap86 happy_var_5 :: Maybe CInit
happy_var_5) -> 
	( let declspecs :: [CDeclSpec]
declspecs = Reversed [CTypeQual] -> [CDeclSpec]
liftTypeQuals Reversed [CTypeQual]
happy_var_1 in
           [CDeclSpec] -> CDeclr -> P ()
doDeclIdent [CDeclSpec]
declspecs CDeclr
happy_var_2
        P () -> P CDecl -> P CDecl
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> (Reversed [CTypeQual] -> (Attrs -> CDecl) -> P CDecl
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs Reversed [CTypeQual]
happy_var_1 ((Attrs -> CDecl) -> P CDecl) -> (Attrs -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> Attrs -> CDecl
CDecl [CDeclSpec]
declspecs [(CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just CDeclr
happy_var_2, Maybe CInit
happy_var_5, Maybe CExpr
forall k1. Maybe k1
Nothing)]))}}})
	) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn31 CDecl
r))

happyReduce_87 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_87 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_87 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 6# 27# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_87
happyReduction_87 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_87 (happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
	happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap31
happyOut31 HappyAbsSyn
happy_x_1 of { (HappyWrap31 happy_var_1 :: CDecl
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap67
happyOut67 HappyAbsSyn
happy_x_3 of { (HappyWrap67 happy_var_3 :: CDeclr
happy_var_3) -> 
	case HappyAbsSyn -> HappyWrap86
happyOut86 HappyAbsSyn
happy_x_6 of { (HappyWrap86 happy_var_6 :: Maybe CInit
happy_var_6) -> 
	( case CDecl
happy_var_1 of
             CDecl declspecs :: [CDeclSpec]
declspecs dies :: [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dies attr :: Attrs
attr -> do
               [CDeclSpec] -> CDeclr -> P ()
doDeclIdent [CDeclSpec]
declspecs CDeclr
happy_var_3
               CDecl -> P CDecl
forall (m :: * -> *) a. Monad m => a -> m a
return ([CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> Attrs -> CDecl
CDecl [CDeclSpec]
declspecs ((CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just CDeclr
happy_var_3, Maybe CInit
happy_var_6, Maybe CExpr
forall k1. Maybe k1
Nothing) (Maybe CDeclr, Maybe CInit, Maybe CExpr)
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
forall k1. k1 -> [k1] -> [k1]
: [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dies) Attrs
attr))}}})
	) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn31 CDecl
r))

happyReduce_88 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_88 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_88 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 5# 28# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_88
happyReduction_88 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_88 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap33
happyOut33 HappyAbsSyn
happy_x_1 of { (HappyWrap33 happy_var_1 :: [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap58
happyOut58 HappyAbsSyn
happy_x_2 of { (HappyWrap58 happy_var_2 :: CDeclr
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap86
happyOut86 HappyAbsSyn
happy_x_5 of { (HappyWrap86 happy_var_5 :: Maybe CInit
happy_var_5) -> 
	( [CDeclSpec] -> CDeclr -> P ()
doDeclIdent [CDeclSpec]
happy_var_1 CDeclr
happy_var_2
        P () -> P CDecl -> P CDecl
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> ([CDeclSpec] -> (Attrs -> CDecl) -> P CDecl
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs [CDeclSpec]
happy_var_1 ((Attrs -> CDecl) -> P CDecl) -> (Attrs -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> Attrs -> CDecl
CDecl [CDeclSpec]
happy_var_1 [(CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just CDeclr
happy_var_2, Maybe CInit
happy_var_5, Maybe CExpr
forall k1. Maybe k1
Nothing)]))}}})
	) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn32 CDecl
r))

happyReduce_89 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_89 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_89 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 5# 28# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_89
happyReduction_89 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_89 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap37
happyOut37 HappyAbsSyn
happy_x_1 of { (HappyWrap37 happy_var_1 :: [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap58
happyOut58 HappyAbsSyn
happy_x_2 of { (HappyWrap58 happy_var_2 :: CDeclr
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap86
happyOut86 HappyAbsSyn
happy_x_5 of { (HappyWrap86 happy_var_5 :: Maybe CInit
happy_var_5) -> 
	( [CDeclSpec] -> CDeclr -> P ()
doDeclIdent [CDeclSpec]
happy_var_1 CDeclr
happy_var_2
        P () -> P CDecl -> P CDecl
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> ([CDeclSpec] -> (Attrs -> CDecl) -> P CDecl
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs [CDeclSpec]
happy_var_1 ((Attrs -> CDecl) -> P CDecl) -> (Attrs -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> Attrs -> CDecl
CDecl [CDeclSpec]
happy_var_1 [(CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just CDeclr
happy_var_2, Maybe CInit
happy_var_5, Maybe CExpr
forall k1. Maybe k1
Nothing)]))}}})
	) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn32 CDecl
r))

happyReduce_90 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_90 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_90 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 6# 28# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_90
happyReduction_90 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_90 (happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
	happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap32
happyOut32 HappyAbsSyn
happy_x_1 of { (HappyWrap32 happy_var_1 :: CDecl
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap58
happyOut58 HappyAbsSyn
happy_x_3 of { (HappyWrap58 happy_var_3 :: CDeclr
happy_var_3) -> 
	case HappyAbsSyn -> HappyWrap86
happyOut86 HappyAbsSyn
happy_x_6 of { (HappyWrap86 happy_var_6 :: Maybe CInit
happy_var_6) -> 
	( case CDecl
happy_var_1 of
             CDecl declspecs :: [CDeclSpec]
declspecs dies :: [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dies attr :: Attrs
attr -> do
               [CDeclSpec] -> CDeclr -> P ()
doDeclIdent [CDeclSpec]
declspecs CDeclr
happy_var_3
               CDecl -> P CDecl
forall (m :: * -> *) a. Monad m => a -> m a
return ([CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> Attrs -> CDecl
CDecl [CDeclSpec]
declspecs ((CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just CDeclr
happy_var_3, Maybe CInit
happy_var_6, Maybe CExpr
forall k1. Maybe k1
Nothing) (Maybe CDeclr, Maybe CInit, Maybe CExpr)
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
forall k1. k1 -> [k1] -> [k1]
: [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dies) Attrs
attr))}}})
	) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn32 CDecl
r))

happyReduce_91 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_91 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_91 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  29# HappyAbsSyn -> HappyAbsSyn
happyReduction_91
happyReduction_91 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_91 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap39
happyOut39 HappyAbsSyn
happy_x_1 of { (HappyWrap39 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	[CDeclSpec] -> HappyAbsSyn
happyIn33
		 (Reversed [CDeclSpec] -> [CDeclSpec]
forall a. Reversed [a] -> [a]
reverse Reversed [CDeclSpec]
happy_var_1
	)}

happyReduce_92 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_92 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_92 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  29# HappyAbsSyn -> HappyAbsSyn
happyReduction_92
happyReduction_92 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_92 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap41
happyOut41 HappyAbsSyn
happy_x_1 of { (HappyWrap41 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	[CDeclSpec] -> HappyAbsSyn
happyIn33
		 (Reversed [CDeclSpec] -> [CDeclSpec]
forall a. Reversed [a] -> [a]
reverse Reversed [CDeclSpec]
happy_var_1
	)}

happyReduce_93 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_93 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_93 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  29# HappyAbsSyn -> HappyAbsSyn
happyReduction_93
happyReduction_93 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_93 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap43
happyOut43 HappyAbsSyn
happy_x_1 of { (HappyWrap43 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	[CDeclSpec] -> HappyAbsSyn
happyIn33
		 (Reversed [CDeclSpec] -> [CDeclSpec]
forall a. Reversed [a] -> [a]
reverse Reversed [CDeclSpec]
happy_var_1
	)}

happyReduce_94 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_94 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_94 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  30# HappyAbsSyn -> HappyAbsSyn
happyReduction_94
happyReduction_94 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_94 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap36
happyOut36 HappyAbsSyn
happy_x_1 of { (HappyWrap36 happy_var_1 :: CStorageSpec
happy_var_1) -> 
	Reversed [CDeclSpec] -> HappyAbsSyn
happyIn34
		 (CDeclSpec -> Reversed [CDeclSpec]
forall a. a -> Reversed [a]
singleton (CStorageSpec -> CDeclSpec
CStorageSpec CStorageSpec
happy_var_1)
	)}

happyReduce_95 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_95 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_95 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  30# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_95
happyReduction_95 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_95 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap73
happyOut73 HappyAbsSyn
happy_x_1 of { (HappyWrap73 happy_var_1 :: Reversed [CTypeQual]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap36
happyOut36 HappyAbsSyn
happy_x_2 of { (HappyWrap36 happy_var_2 :: CStorageSpec
happy_var_2) -> 
	Reversed [CDeclSpec] -> HappyAbsSyn
happyIn34
		 ((CTypeQual -> CDeclSpec)
-> Reversed [CTypeQual] -> Reversed [CDeclSpec]
forall a b. (a -> b) -> Reversed [a] -> Reversed [b]
rmap CTypeQual -> CDeclSpec
CTypeQual Reversed [CTypeQual]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CStorageSpec -> CDeclSpec
CStorageSpec CStorageSpec
happy_var_2
	)}}

happyReduce_96 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_96 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_96 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  30# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_96
happyReduction_96 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_96 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap34
happyOut34 HappyAbsSyn
happy_x_1 of { (HappyWrap34 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap35
happyOut35 HappyAbsSyn
happy_x_2 of { (HappyWrap35 happy_var_2 :: CDeclSpec
happy_var_2) -> 
	Reversed [CDeclSpec] -> HappyAbsSyn
happyIn34
		 (Reversed [CDeclSpec]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CDeclSpec
happy_var_2
	)}}

happyReduce_97 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_97 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_97 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  30# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_97
happyReduction_97 :: p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_97 happy_x_2 :: p
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap34
happyOut34 HappyAbsSyn
happy_x_1 of { (HappyWrap34 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	Reversed [CDeclSpec] -> HappyAbsSyn
happyIn34
		 (Reversed [CDeclSpec]
happy_var_1
	)}

happyReduce_98 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_98 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_98 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  31# HappyAbsSyn -> HappyAbsSyn
happyReduction_98
happyReduction_98 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_98 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap36
happyOut36 HappyAbsSyn
happy_x_1 of { (HappyWrap36 happy_var_1 :: CStorageSpec
happy_var_1) -> 
	CDeclSpec -> HappyAbsSyn
happyIn35
		 (CStorageSpec -> CDeclSpec
CStorageSpec CStorageSpec
happy_var_1
	)}

happyReduce_99 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_99 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_99 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  31# HappyAbsSyn -> HappyAbsSyn
happyReduction_99
happyReduction_99 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_99 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap57
happyOut57 HappyAbsSyn
happy_x_1 of { (HappyWrap57 happy_var_1 :: CTypeQual
happy_var_1) -> 
	CDeclSpec -> HappyAbsSyn
happyIn35
		 (CTypeQual -> CDeclSpec
CTypeQual CTypeQual
happy_var_1
	)}

happyReduce_100 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_100 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_100 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 32# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_100
happyReduction_100 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_100 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CStorageSpec -> (CStorageSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (Attrs -> CStorageSpec) -> P CStorageSpec
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CStorageSpec) -> P CStorageSpec)
-> (Attrs -> CStorageSpec) -> P CStorageSpec
forall a b. (a -> b) -> a -> b
$ Attrs -> CStorageSpec
CTypedef)})
	) (\r :: CStorageSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStorageSpec -> HappyAbsSyn
happyIn36 CStorageSpec
r))

happyReduce_101 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_101 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_101 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 32# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_101
happyReduction_101 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_101 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CStorageSpec -> (CStorageSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (Attrs -> CStorageSpec) -> P CStorageSpec
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CStorageSpec) -> P CStorageSpec)
-> (Attrs -> CStorageSpec) -> P CStorageSpec
forall a b. (a -> b) -> a -> b
$ Attrs -> CStorageSpec
CExtern)})
	) (\r :: CStorageSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStorageSpec -> HappyAbsSyn
happyIn36 CStorageSpec
r))

happyReduce_102 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_102 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_102 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 32# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_102
happyReduction_102 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_102 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CStorageSpec -> (CStorageSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (Attrs -> CStorageSpec) -> P CStorageSpec
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CStorageSpec) -> P CStorageSpec)
-> (Attrs -> CStorageSpec) -> P CStorageSpec
forall a b. (a -> b) -> a -> b
$ Attrs -> CStorageSpec
CStatic)})
	) (\r :: CStorageSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStorageSpec -> HappyAbsSyn
happyIn36 CStorageSpec
r))

happyReduce_103 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_103 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_103 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 32# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_103
happyReduction_103 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_103 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CStorageSpec -> (CStorageSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (Attrs -> CStorageSpec) -> P CStorageSpec
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CStorageSpec) -> P CStorageSpec)
-> (Attrs -> CStorageSpec) -> P CStorageSpec
forall a b. (a -> b) -> a -> b
$ Attrs -> CStorageSpec
CAuto)})
	) (\r :: CStorageSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStorageSpec -> HappyAbsSyn
happyIn36 CStorageSpec
r))

happyReduce_104 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_104 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_104 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 32# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_104
happyReduction_104 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_104 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CStorageSpec -> (CStorageSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (Attrs -> CStorageSpec) -> P CStorageSpec
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CStorageSpec) -> P CStorageSpec)
-> (Attrs -> CStorageSpec) -> P CStorageSpec
forall a b. (a -> b) -> a -> b
$ Attrs -> CStorageSpec
CRegister)})
	) (\r :: CStorageSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStorageSpec -> HappyAbsSyn
happyIn36 CStorageSpec
r))

happyReduce_105 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_105 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_105 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 32# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_105
happyReduction_105 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_105 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CStorageSpec -> (CStorageSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (Attrs -> CStorageSpec) -> P CStorageSpec
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CStorageSpec) -> P CStorageSpec)
-> (Attrs -> CStorageSpec) -> P CStorageSpec
forall a b. (a -> b) -> a -> b
$ Attrs -> CStorageSpec
CThread)})
	) (\r :: CStorageSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStorageSpec -> HappyAbsSyn
happyIn36 CStorageSpec
r))

happyReduce_106 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_106 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_106 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  33# HappyAbsSyn -> HappyAbsSyn
happyReduction_106
happyReduction_106 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_106 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap40
happyOut40 HappyAbsSyn
happy_x_1 of { (HappyWrap40 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	[CDeclSpec] -> HappyAbsSyn
happyIn37
		 (Reversed [CDeclSpec] -> [CDeclSpec]
forall a. Reversed [a] -> [a]
reverse Reversed [CDeclSpec]
happy_var_1
	)}

happyReduce_107 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_107 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_107 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  33# HappyAbsSyn -> HappyAbsSyn
happyReduction_107
happyReduction_107 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_107 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap42
happyOut42 HappyAbsSyn
happy_x_1 of { (HappyWrap42 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	[CDeclSpec] -> HappyAbsSyn
happyIn37
		 (Reversed [CDeclSpec] -> [CDeclSpec]
forall a. Reversed [a] -> [a]
reverse Reversed [CDeclSpec]
happy_var_1
	)}

happyReduce_108 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_108 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_108 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  33# HappyAbsSyn -> HappyAbsSyn
happyReduction_108
happyReduction_108 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_108 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap44
happyOut44 HappyAbsSyn
happy_x_1 of { (HappyWrap44 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	[CDeclSpec] -> HappyAbsSyn
happyIn37
		 (Reversed [CDeclSpec] -> [CDeclSpec]
forall a. Reversed [a] -> [a]
reverse Reversed [CDeclSpec]
happy_var_1
	)}

happyReduce_109 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_109 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_109 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 34# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_109
happyReduction_109 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_109 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (Attrs -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CTypeSpec) -> P CTypeSpec)
-> (Attrs -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ Attrs -> CTypeSpec
CVoidType)})
	) (\r :: CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn38 CTypeSpec
r))

happyReduce_110 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_110 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_110 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 34# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_110
happyReduction_110 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_110 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (Attrs -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CTypeSpec) -> P CTypeSpec)
-> (Attrs -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ Attrs -> CTypeSpec
CCharType)})
	) (\r :: CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn38 CTypeSpec
r))

happyReduce_111 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_111 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_111 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 34# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_111
happyReduction_111 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_111 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (Attrs -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CTypeSpec) -> P CTypeSpec)
-> (Attrs -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ Attrs -> CTypeSpec
CShortType)})
	) (\r :: CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn38 CTypeSpec
r))

happyReduce_112 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_112 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_112 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 34# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_112
happyReduction_112 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_112 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (Attrs -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CTypeSpec) -> P CTypeSpec)
-> (Attrs -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ Attrs -> CTypeSpec
CIntType)})
	) (\r :: CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn38 CTypeSpec
r))

happyReduce_113 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_113 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_113 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 34# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_113
happyReduction_113 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_113 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (Attrs -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CTypeSpec) -> P CTypeSpec)
-> (Attrs -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ Attrs -> CTypeSpec
CLongType)})
	) (\r :: CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn38 CTypeSpec
r))

happyReduce_114 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_114 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_114 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 34# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_114
happyReduction_114 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_114 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (Attrs -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CTypeSpec) -> P CTypeSpec)
-> (Attrs -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ Attrs -> CTypeSpec
CFloatType)})
	) (\r :: CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn38 CTypeSpec
r))

happyReduce_115 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_115 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_115 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 34# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_115
happyReduction_115 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_115 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (Attrs -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CTypeSpec) -> P CTypeSpec)
-> (Attrs -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ Attrs -> CTypeSpec
CFloat128Type)})
	) (\r :: CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn38 CTypeSpec
r))

happyReduce_116 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_116 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_116 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 34# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_116
happyReduction_116 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_116 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (Attrs -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CTypeSpec) -> P CTypeSpec)
-> (Attrs -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ Attrs -> CTypeSpec
CDoubleType)})
	) (\r :: CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn38 CTypeSpec
r))

happyReduce_117 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_117 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_117 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 34# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_117
happyReduction_117 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_117 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (Attrs -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CTypeSpec) -> P CTypeSpec)
-> (Attrs -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ Attrs -> CTypeSpec
CSignedType)})
	) (\r :: CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn38 CTypeSpec
r))

happyReduce_118 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_118 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_118 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 34# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_118
happyReduction_118 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_118 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (Attrs -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CTypeSpec) -> P CTypeSpec)
-> (Attrs -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ Attrs -> CTypeSpec
CUnsigType)})
	) (\r :: CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn38 CTypeSpec
r))

happyReduce_119 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_119 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_119 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 34# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_119
happyReduction_119 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_119 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (Attrs -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CTypeSpec) -> P CTypeSpec)
-> (Attrs -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ Attrs -> CTypeSpec
CBoolType)})
	) (\r :: CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn38 CTypeSpec
r))

happyReduce_120 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_120 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_120 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 34# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_120
happyReduction_120 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_120 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (Attrs -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CTypeSpec) -> P CTypeSpec)
-> (Attrs -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ Attrs -> CTypeSpec
CComplexType)})
	) (\r :: CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn38 CTypeSpec
r))

happyReduce_121 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_121 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_121 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  35# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_121
happyReduction_121 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_121 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap34
happyOut34 HappyAbsSyn
happy_x_1 of { (HappyWrap34 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap38
happyOut38 HappyAbsSyn
happy_x_2 of { (HappyWrap38 happy_var_2 :: CTypeSpec
happy_var_2) -> 
	Reversed [CDeclSpec] -> HappyAbsSyn
happyIn39
		 (Reversed [CDeclSpec]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CTypeSpec -> CDeclSpec
CTypeSpec CTypeSpec
happy_var_2
	)}}

happyReduce_122 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_122 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_122 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  35# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_122
happyReduction_122 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_122 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap40
happyOut40 HappyAbsSyn
happy_x_1 of { (HappyWrap40 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap36
happyOut36 HappyAbsSyn
happy_x_2 of { (HappyWrap36 happy_var_2 :: CStorageSpec
happy_var_2) -> 
	Reversed [CDeclSpec] -> HappyAbsSyn
happyIn39
		 (Reversed [CDeclSpec]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CStorageSpec -> CDeclSpec
CStorageSpec CStorageSpec
happy_var_2
	)}}

happyReduce_123 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_123 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_123 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  35# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_123
happyReduction_123 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_123 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap39
happyOut39 HappyAbsSyn
happy_x_1 of { (HappyWrap39 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap35
happyOut35 HappyAbsSyn
happy_x_2 of { (HappyWrap35 happy_var_2 :: CDeclSpec
happy_var_2) -> 
	Reversed [CDeclSpec] -> HappyAbsSyn
happyIn39
		 (Reversed [CDeclSpec]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CDeclSpec
happy_var_2
	)}}

happyReduce_124 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_124 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_124 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  35# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_124
happyReduction_124 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_124 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap39
happyOut39 HappyAbsSyn
happy_x_1 of { (HappyWrap39 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap38
happyOut38 HappyAbsSyn
happy_x_2 of { (HappyWrap38 happy_var_2 :: CTypeSpec
happy_var_2) -> 
	Reversed [CDeclSpec] -> HappyAbsSyn
happyIn39
		 (Reversed [CDeclSpec]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CTypeSpec -> CDeclSpec
CTypeSpec CTypeSpec
happy_var_2
	)}}

happyReduce_125 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_125 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_125 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  35# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_125
happyReduction_125 :: p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_125 happy_x_2 :: p
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap39
happyOut39 HappyAbsSyn
happy_x_1 of { (HappyWrap39 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	Reversed [CDeclSpec] -> HappyAbsSyn
happyIn39
		 (Reversed [CDeclSpec]
happy_var_1
	)}

happyReduce_126 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_126 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_126 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  36# HappyAbsSyn -> HappyAbsSyn
happyReduction_126
happyReduction_126 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_126 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap38
happyOut38 HappyAbsSyn
happy_x_1 of { (HappyWrap38 happy_var_1 :: CTypeSpec
happy_var_1) -> 
	Reversed [CDeclSpec] -> HappyAbsSyn
happyIn40
		 (CDeclSpec -> Reversed [CDeclSpec]
forall a. a -> Reversed [a]
singleton (CTypeSpec -> CDeclSpec
CTypeSpec CTypeSpec
happy_var_1)
	)}

happyReduce_127 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_127 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_127 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  36# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_127
happyReduction_127 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_127 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap73
happyOut73 HappyAbsSyn
happy_x_1 of { (HappyWrap73 happy_var_1 :: Reversed [CTypeQual]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap38
happyOut38 HappyAbsSyn
happy_x_2 of { (HappyWrap38 happy_var_2 :: CTypeSpec
happy_var_2) -> 
	Reversed [CDeclSpec] -> HappyAbsSyn
happyIn40
		 ((CTypeQual -> CDeclSpec)
-> Reversed [CTypeQual] -> Reversed [CDeclSpec]
forall a b. (a -> b) -> Reversed [a] -> Reversed [b]
rmap CTypeQual -> CDeclSpec
CTypeQual Reversed [CTypeQual]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CTypeSpec -> CDeclSpec
CTypeSpec CTypeSpec
happy_var_2
	)}}

happyReduce_128 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_128 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_128 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  36# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_128
happyReduction_128 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_128 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap40
happyOut40 HappyAbsSyn
happy_x_1 of { (HappyWrap40 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap57
happyOut57 HappyAbsSyn
happy_x_2 of { (HappyWrap57 happy_var_2 :: CTypeQual
happy_var_2) -> 
	Reversed [CDeclSpec] -> HappyAbsSyn
happyIn40
		 (Reversed [CDeclSpec]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CTypeQual -> CDeclSpec
CTypeQual CTypeQual
happy_var_2
	)}}

happyReduce_129 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_129 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_129 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  36# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_129
happyReduction_129 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_129 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap40
happyOut40 HappyAbsSyn
happy_x_1 of { (HappyWrap40 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap38
happyOut38 HappyAbsSyn
happy_x_2 of { (HappyWrap38 happy_var_2 :: CTypeSpec
happy_var_2) -> 
	Reversed [CDeclSpec] -> HappyAbsSyn
happyIn40
		 (Reversed [CDeclSpec]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CTypeSpec -> CDeclSpec
CTypeSpec CTypeSpec
happy_var_2
	)}}

happyReduce_130 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_130 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_130 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  36# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_130
happyReduction_130 :: p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_130 happy_x_2 :: p
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap40
happyOut40 HappyAbsSyn
happy_x_1 of { (HappyWrap40 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	Reversed [CDeclSpec] -> HappyAbsSyn
happyIn40
		 (Reversed [CDeclSpec]
happy_var_1
	)}

happyReduce_131 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_131 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_131 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  37# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_131
happyReduction_131 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_131 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap34
happyOut34 HappyAbsSyn
happy_x_1 of { (HappyWrap34 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap45
happyOut45 HappyAbsSyn
happy_x_2 of { (HappyWrap45 happy_var_2 :: CTypeSpec
happy_var_2) -> 
	Reversed [CDeclSpec] -> HappyAbsSyn
happyIn41
		 (Reversed [CDeclSpec]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CTypeSpec -> CDeclSpec
CTypeSpec CTypeSpec
happy_var_2
	)}}

happyReduce_132 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_132 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_132 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  37# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_132
happyReduction_132 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_132 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap42
happyOut42 HappyAbsSyn
happy_x_1 of { (HappyWrap42 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap36
happyOut36 HappyAbsSyn
happy_x_2 of { (HappyWrap36 happy_var_2 :: CStorageSpec
happy_var_2) -> 
	Reversed [CDeclSpec] -> HappyAbsSyn
happyIn41
		 (Reversed [CDeclSpec]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CStorageSpec -> CDeclSpec
CStorageSpec CStorageSpec
happy_var_2
	)}}

happyReduce_133 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_133 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_133 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  37# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_133
happyReduction_133 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_133 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap41
happyOut41 HappyAbsSyn
happy_x_1 of { (HappyWrap41 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap35
happyOut35 HappyAbsSyn
happy_x_2 of { (HappyWrap35 happy_var_2 :: CDeclSpec
happy_var_2) -> 
	Reversed [CDeclSpec] -> HappyAbsSyn
happyIn41
		 (Reversed [CDeclSpec]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CDeclSpec
happy_var_2
	)}}

happyReduce_134 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_134 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_134 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  37# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_134
happyReduction_134 :: p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_134 happy_x_2 :: p
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap41
happyOut41 HappyAbsSyn
happy_x_1 of { (HappyWrap41 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	Reversed [CDeclSpec] -> HappyAbsSyn
happyIn41
		 (Reversed [CDeclSpec]
happy_var_1
	)}

happyReduce_135 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_135 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_135 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  38# HappyAbsSyn -> HappyAbsSyn
happyReduction_135
happyReduction_135 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_135 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap45
happyOut45 HappyAbsSyn
happy_x_1 of { (HappyWrap45 happy_var_1 :: CTypeSpec
happy_var_1) -> 
	Reversed [CDeclSpec] -> HappyAbsSyn
happyIn42
		 (CDeclSpec -> Reversed [CDeclSpec]
forall a. a -> Reversed [a]
singleton (CTypeSpec -> CDeclSpec
CTypeSpec CTypeSpec
happy_var_1)
	)}

happyReduce_136 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_136 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_136 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  38# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_136
happyReduction_136 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_136 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap73
happyOut73 HappyAbsSyn
happy_x_1 of { (HappyWrap73 happy_var_1 :: Reversed [CTypeQual]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap45
happyOut45 HappyAbsSyn
happy_x_2 of { (HappyWrap45 happy_var_2 :: CTypeSpec
happy_var_2) -> 
	Reversed [CDeclSpec] -> HappyAbsSyn
happyIn42
		 ((CTypeQual -> CDeclSpec)
-> Reversed [CTypeQual] -> Reversed [CDeclSpec]
forall a b. (a -> b) -> Reversed [a] -> Reversed [b]
rmap CTypeQual -> CDeclSpec
CTypeQual Reversed [CTypeQual]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CTypeSpec -> CDeclSpec
CTypeSpec CTypeSpec
happy_var_2
	)}}

happyReduce_137 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_137 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_137 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  38# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_137
happyReduction_137 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_137 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap42
happyOut42 HappyAbsSyn
happy_x_1 of { (HappyWrap42 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap57
happyOut57 HappyAbsSyn
happy_x_2 of { (HappyWrap57 happy_var_2 :: CTypeQual
happy_var_2) -> 
	Reversed [CDeclSpec] -> HappyAbsSyn
happyIn42
		 (Reversed [CDeclSpec]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CTypeQual -> CDeclSpec
CTypeQual CTypeQual
happy_var_2
	)}}

happyReduce_138 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_138 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_138 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  38# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_138
happyReduction_138 :: p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_138 happy_x_2 :: p
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap42
happyOut42 HappyAbsSyn
happy_x_1 of { (HappyWrap42 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	Reversed [CDeclSpec] -> HappyAbsSyn
happyIn42
		 (Reversed [CDeclSpec]
happy_var_1
	)}

happyReduce_139 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_139 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_139 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  39# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_139
happyReduction_139 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_139 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap44
happyOut44 HappyAbsSyn
happy_x_1 of { (HappyWrap44 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap36
happyOut36 HappyAbsSyn
happy_x_2 of { (HappyWrap36 happy_var_2 :: CStorageSpec
happy_var_2) -> 
	Reversed [CDeclSpec] -> HappyAbsSyn
happyIn43
		 (Reversed [CDeclSpec]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CStorageSpec -> CDeclSpec
CStorageSpec CStorageSpec
happy_var_2
	)}}

happyReduce_140 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_140 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_140 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 39# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_140
happyReduction_140 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_140 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P (Reversed [CDeclSpec])
-> (Reversed [CDeclSpec] -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap34
happyOut34 HappyAbsSyn
happy_x_1 of { (HappyWrap34 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_2 of { (CTokTyIdent _ happy_var_2 :: Ident
happy_var_2) -> 
	( Reversed [CDeclSpec]
-> (Attrs -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs Reversed [CDeclSpec]
happy_var_1 ((Attrs -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec]))
-> (Attrs -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall a b. (a -> b) -> a -> b
$ \attr :: Attrs
attr -> Reversed [CDeclSpec]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CTypeSpec -> CDeclSpec
CTypeSpec (Ident -> Attrs -> CTypeSpec
CTypeDef Ident
happy_var_2 Attrs
attr))}})
	) (\r :: Reversed [CDeclSpec]
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (Reversed [CDeclSpec] -> HappyAbsSyn
happyIn43 Reversed [CDeclSpec]
r))

happyReduce_141 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_141 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_141 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 5# 39# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_141
happyReduction_141 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_141 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P (Reversed [CDeclSpec])
-> (Reversed [CDeclSpec] -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap34
happyOut34 HappyAbsSyn
happy_x_1 of { (HappyWrap34 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap112
happyOut112 HappyAbsSyn
happy_x_4 of { (HappyWrap112 happy_var_4 :: CExpr
happy_var_4) -> 
	( Reversed [CDeclSpec]
-> (Attrs -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs Reversed [CDeclSpec]
happy_var_1 ((Attrs -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec]))
-> (Attrs -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall a b. (a -> b) -> a -> b
$ \attr :: Attrs
attr -> Reversed [CDeclSpec]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CTypeSpec -> CDeclSpec
CTypeSpec (CExpr -> Attrs -> CTypeSpec
CTypeOfExpr CExpr
happy_var_4 Attrs
attr))}})
	) (\r :: Reversed [CDeclSpec]
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (Reversed [CDeclSpec] -> HappyAbsSyn
happyIn43 Reversed [CDeclSpec]
r))

happyReduce_142 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_142 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_142 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 5# 39# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_142
happyReduction_142 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_142 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P (Reversed [CDeclSpec])
-> (Reversed [CDeclSpec] -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap34
happyOut34 HappyAbsSyn
happy_x_1 of { (HappyWrap34 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap78
happyOut78 HappyAbsSyn
happy_x_4 of { (HappyWrap78 happy_var_4 :: CDecl
happy_var_4) -> 
	( Reversed [CDeclSpec]
-> (Attrs -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs Reversed [CDeclSpec]
happy_var_1 ((Attrs -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec]))
-> (Attrs -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall a b. (a -> b) -> a -> b
$ \attr :: Attrs
attr -> Reversed [CDeclSpec]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CTypeSpec -> CDeclSpec
CTypeSpec (CDecl -> Attrs -> CTypeSpec
CTypeOfType CDecl
happy_var_4 Attrs
attr))}})
	) (\r :: Reversed [CDeclSpec]
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (Reversed [CDeclSpec] -> HappyAbsSyn
happyIn43 Reversed [CDeclSpec]
r))

happyReduce_143 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_143 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_143 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  39# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_143
happyReduction_143 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_143 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap43
happyOut43 HappyAbsSyn
happy_x_1 of { (HappyWrap43 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap35
happyOut35 HappyAbsSyn
happy_x_2 of { (HappyWrap35 happy_var_2 :: CDeclSpec
happy_var_2) -> 
	Reversed [CDeclSpec] -> HappyAbsSyn
happyIn43
		 (Reversed [CDeclSpec]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CDeclSpec
happy_var_2
	)}}

happyReduce_144 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_144 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_144 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  39# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_144
happyReduction_144 :: p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_144 happy_x_2 :: p
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap43
happyOut43 HappyAbsSyn
happy_x_1 of { (HappyWrap43 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	Reversed [CDeclSpec] -> HappyAbsSyn
happyIn43
		 (Reversed [CDeclSpec]
happy_var_1
	)}

happyReduce_145 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_145 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_145 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 40# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_145
happyReduction_145 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_145 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P (Reversed [CDeclSpec])
-> (Reversed [CDeclSpec] -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { (CTokTyIdent _ happy_var_1 :: Ident
happy_var_1) -> 
	( Ident
-> (Attrs -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs Ident
happy_var_1 ((Attrs -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec]))
-> (Attrs -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall a b. (a -> b) -> a -> b
$ \attr :: Attrs
attr -> CDeclSpec -> Reversed [CDeclSpec]
forall a. a -> Reversed [a]
singleton (CTypeSpec -> CDeclSpec
CTypeSpec (Ident -> Attrs -> CTypeSpec
CTypeDef Ident
happy_var_1 Attrs
attr)))})
	) (\r :: Reversed [CDeclSpec]
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (Reversed [CDeclSpec] -> HappyAbsSyn
happyIn44 Reversed [CDeclSpec]
r))

happyReduce_146 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_146 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_146 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 40# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_146
happyReduction_146 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_146 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P (Reversed [CDeclSpec])
-> (Reversed [CDeclSpec] -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap112
happyOut112 HappyAbsSyn
happy_x_3 of { (HappyWrap112 happy_var_3 :: CExpr
happy_var_3) -> 
	( CToken
-> (Attrs -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec]))
-> (Attrs -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall a b. (a -> b) -> a -> b
$ \attr :: Attrs
attr -> CDeclSpec -> Reversed [CDeclSpec]
forall a. a -> Reversed [a]
singleton (CTypeSpec -> CDeclSpec
CTypeSpec (CExpr -> Attrs -> CTypeSpec
CTypeOfExpr CExpr
happy_var_3 Attrs
attr)))}})
	) (\r :: Reversed [CDeclSpec]
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (Reversed [CDeclSpec] -> HappyAbsSyn
happyIn44 Reversed [CDeclSpec]
r))

happyReduce_147 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_147 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_147 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 40# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_147
happyReduction_147 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_147 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P (Reversed [CDeclSpec])
-> (Reversed [CDeclSpec] -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap78
happyOut78 HappyAbsSyn
happy_x_3 of { (HappyWrap78 happy_var_3 :: CDecl
happy_var_3) -> 
	( CToken
-> (Attrs -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec]))
-> (Attrs -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall a b. (a -> b) -> a -> b
$ \attr :: Attrs
attr -> CDeclSpec -> Reversed [CDeclSpec]
forall a. a -> Reversed [a]
singleton (CTypeSpec -> CDeclSpec
CTypeSpec (CDecl -> Attrs -> CTypeSpec
CTypeOfType CDecl
happy_var_3 Attrs
attr)))}})
	) (\r :: Reversed [CDeclSpec]
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (Reversed [CDeclSpec] -> HappyAbsSyn
happyIn44 Reversed [CDeclSpec]
r))

happyReduce_148 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_148 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_148 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 40# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_148
happyReduction_148 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_148 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P (Reversed [CDeclSpec])
-> (Reversed [CDeclSpec] -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap73
happyOut73 HappyAbsSyn
happy_x_1 of { (HappyWrap73 happy_var_1 :: Reversed [CTypeQual]
happy_var_1) -> 
	case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_2 of { (CTokTyIdent _ happy_var_2 :: Ident
happy_var_2) -> 
	( Ident
-> (Attrs -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs Ident
happy_var_2 ((Attrs -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec]))
-> (Attrs -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall a b. (a -> b) -> a -> b
$ \attr :: Attrs
attr -> (CTypeQual -> CDeclSpec)
-> Reversed [CTypeQual] -> Reversed [CDeclSpec]
forall a b. (a -> b) -> Reversed [a] -> Reversed [b]
rmap CTypeQual -> CDeclSpec
CTypeQual Reversed [CTypeQual]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CTypeSpec -> CDeclSpec
CTypeSpec (Ident -> Attrs -> CTypeSpec
CTypeDef Ident
happy_var_2 Attrs
attr))}})
	) (\r :: Reversed [CDeclSpec]
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (Reversed [CDeclSpec] -> HappyAbsSyn
happyIn44 Reversed [CDeclSpec]
r))

happyReduce_149 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_149 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_149 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 5# 40# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_149
happyReduction_149 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_149 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P (Reversed [CDeclSpec])
-> (Reversed [CDeclSpec] -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap73
happyOut73 HappyAbsSyn
happy_x_1 of { (HappyWrap73 happy_var_1 :: Reversed [CTypeQual]
happy_var_1) -> 
	case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_2 of { happy_var_2 :: CToken
happy_var_2 -> 
	case HappyAbsSyn -> HappyWrap112
happyOut112 HappyAbsSyn
happy_x_4 of { (HappyWrap112 happy_var_4 :: CExpr
happy_var_4) -> 
	( CToken
-> (Attrs -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_2 ((Attrs -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec]))
-> (Attrs -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall a b. (a -> b) -> a -> b
$ \attr :: Attrs
attr -> (CTypeQual -> CDeclSpec)
-> Reversed [CTypeQual] -> Reversed [CDeclSpec]
forall a b. (a -> b) -> Reversed [a] -> Reversed [b]
rmap CTypeQual -> CDeclSpec
CTypeQual Reversed [CTypeQual]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CTypeSpec -> CDeclSpec
CTypeSpec (CExpr -> Attrs -> CTypeSpec
CTypeOfExpr CExpr
happy_var_4 Attrs
attr))}}})
	) (\r :: Reversed [CDeclSpec]
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (Reversed [CDeclSpec] -> HappyAbsSyn
happyIn44 Reversed [CDeclSpec]
r))

happyReduce_150 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_150 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_150 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 5# 40# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_150
happyReduction_150 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_150 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P (Reversed [CDeclSpec])
-> (Reversed [CDeclSpec] -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap73
happyOut73 HappyAbsSyn
happy_x_1 of { (HappyWrap73 happy_var_1 :: Reversed [CTypeQual]
happy_var_1) -> 
	case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_2 of { happy_var_2 :: CToken
happy_var_2 -> 
	case HappyAbsSyn -> HappyWrap78
happyOut78 HappyAbsSyn
happy_x_4 of { (HappyWrap78 happy_var_4 :: CDecl
happy_var_4) -> 
	( CToken
-> (Attrs -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_2 ((Attrs -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec]))
-> (Attrs -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall a b. (a -> b) -> a -> b
$ \attr :: Attrs
attr -> (CTypeQual -> CDeclSpec)
-> Reversed [CTypeQual] -> Reversed [CDeclSpec]
forall a b. (a -> b) -> Reversed [a] -> Reversed [b]
rmap CTypeQual -> CDeclSpec
CTypeQual Reversed [CTypeQual]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CTypeSpec -> CDeclSpec
CTypeSpec (CDecl -> Attrs -> CTypeSpec
CTypeOfType CDecl
happy_var_4 Attrs
attr))}}})
	) (\r :: Reversed [CDeclSpec]
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (Reversed [CDeclSpec] -> HappyAbsSyn
happyIn44 Reversed [CDeclSpec]
r))

happyReduce_151 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_151 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_151 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  40# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_151
happyReduction_151 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_151 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap44
happyOut44 HappyAbsSyn
happy_x_1 of { (HappyWrap44 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap57
happyOut57 HappyAbsSyn
happy_x_2 of { (HappyWrap57 happy_var_2 :: CTypeQual
happy_var_2) -> 
	Reversed [CDeclSpec] -> HappyAbsSyn
happyIn44
		 (Reversed [CDeclSpec]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CTypeQual -> CDeclSpec
CTypeQual CTypeQual
happy_var_2
	)}}

happyReduce_152 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_152 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_152 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  40# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_152
happyReduction_152 :: p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_152 happy_x_2 :: p
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap44
happyOut44 HappyAbsSyn
happy_x_1 of { (HappyWrap44 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	Reversed [CDeclSpec] -> HappyAbsSyn
happyIn44
		 (Reversed [CDeclSpec]
happy_var_1
	)}

happyReduce_153 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_153 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_153 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 41# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_153
happyReduction_153 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_153 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap46
happyOut46 HappyAbsSyn
happy_x_1 of { (HappyWrap46 happy_var_1 :: CStructUnion
happy_var_1) -> 
	( CStructUnion -> (Attrs -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CStructUnion
happy_var_1 ((Attrs -> CTypeSpec) -> P CTypeSpec)
-> (Attrs -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ CStructUnion -> Attrs -> CTypeSpec
CSUType CStructUnion
happy_var_1)})
	) (\r :: CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn45 CTypeSpec
r))

happyReduce_154 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_154 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_154 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 41# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_154
happyReduction_154 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_154 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap54
happyOut54 HappyAbsSyn
happy_x_1 of { (HappyWrap54 happy_var_1 :: CEnum
happy_var_1) -> 
	( CEnum -> (Attrs -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CEnum
happy_var_1 ((Attrs -> CTypeSpec) -> P CTypeSpec)
-> (Attrs -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ CEnum -> Attrs -> CTypeSpec
CEnumType CEnum
happy_var_1)})
	) (\r :: CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn45 CTypeSpec
r))

happyReduce_155 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_155 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_155 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 6# 42# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_155
happyReduction_155 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_155 (happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
	happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CStructUnion -> (CStructUnion -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap47
happyOut47 HappyAbsSyn
happy_x_1 of { (HappyWrap47 happy_var_1 :: Located CStructTag
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap120
happyOut120 HappyAbsSyn
happy_x_3 of { (HappyWrap120 happy_var_3 :: Ident
happy_var_3) -> 
	case HappyAbsSyn -> HappyWrap48
happyOut48 HappyAbsSyn
happy_x_5 of { (HappyWrap48 happy_var_5 :: Reversed [CDecl]
happy_var_5) -> 
	( Located CStructTag -> (Attrs -> CStructUnion) -> P CStructUnion
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs Located CStructTag
happy_var_1 ((Attrs -> CStructUnion) -> P CStructUnion)
-> (Attrs -> CStructUnion) -> P CStructUnion
forall a b. (a -> b) -> a -> b
$ CStructTag -> Maybe Ident -> [CDecl] -> Attrs -> CStructUnion
CStruct (Located CStructTag -> CStructTag
forall a. Located a -> a
unL Located CStructTag
happy_var_1) (Ident -> Maybe Ident
forall k1. k1 -> Maybe k1
Just Ident
happy_var_3) (Reversed [CDecl] -> [CDecl]
forall a. Reversed [a] -> [a]
reverse Reversed [CDecl]
happy_var_5))}}})
	) (\r :: CStructUnion
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStructUnion -> HappyAbsSyn
happyIn46 CStructUnion
r))

happyReduce_156 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_156 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_156 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 5# 42# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_156
happyReduction_156 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_156 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CStructUnion -> (CStructUnion -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap47
happyOut47 HappyAbsSyn
happy_x_1 of { (HappyWrap47 happy_var_1 :: Located CStructTag
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap48
happyOut48 HappyAbsSyn
happy_x_4 of { (HappyWrap48 happy_var_4 :: Reversed [CDecl]
happy_var_4) -> 
	( Located CStructTag -> (Attrs -> CStructUnion) -> P CStructUnion
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs Located CStructTag
happy_var_1 ((Attrs -> CStructUnion) -> P CStructUnion)
-> (Attrs -> CStructUnion) -> P CStructUnion
forall a b. (a -> b) -> a -> b
$ CStructTag -> Maybe Ident -> [CDecl] -> Attrs -> CStructUnion
CStruct (Located CStructTag -> CStructTag
forall a. Located a -> a
unL Located CStructTag
happy_var_1) Maybe Ident
forall k1. Maybe k1
Nothing   (Reversed [CDecl] -> [CDecl]
forall a. Reversed [a] -> [a]
reverse Reversed [CDecl]
happy_var_4))}})
	) (\r :: CStructUnion
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStructUnion -> HappyAbsSyn
happyIn46 CStructUnion
r))

happyReduce_157 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_157 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_157 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 42# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_157
happyReduction_157 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_157 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CStructUnion -> (CStructUnion -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap47
happyOut47 HappyAbsSyn
happy_x_1 of { (HappyWrap47 happy_var_1 :: Located CStructTag
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap120
happyOut120 HappyAbsSyn
happy_x_3 of { (HappyWrap120 happy_var_3 :: Ident
happy_var_3) -> 
	( Located CStructTag -> (Attrs -> CStructUnion) -> P CStructUnion
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs Located CStructTag
happy_var_1 ((Attrs -> CStructUnion) -> P CStructUnion)
-> (Attrs -> CStructUnion) -> P CStructUnion
forall a b. (a -> b) -> a -> b
$ CStructTag -> Maybe Ident -> [CDecl] -> Attrs -> CStructUnion
CStruct (Located CStructTag -> CStructTag
forall a. Located a -> a
unL Located CStructTag
happy_var_1) (Ident -> Maybe Ident
forall k1. k1 -> Maybe k1
Just Ident
happy_var_3) [])}})
	) (\r :: CStructUnion
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStructUnion -> HappyAbsSyn
happyIn46 CStructUnion
r))

happyReduce_158 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_158 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_158 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  43# HappyAbsSyn -> HappyAbsSyn
happyReduction_158
happyReduction_158 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_158 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	Located CStructTag -> HappyAbsSyn
happyIn47
		 (CStructTag -> Position -> Located CStructTag
forall a. a -> Position -> Located a
L CStructTag
CStructTag (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
	)}

happyReduce_159 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_159 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_159 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  43# HappyAbsSyn -> HappyAbsSyn
happyReduction_159
happyReduction_159 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_159 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	Located CStructTag -> HappyAbsSyn
happyIn47
		 (CStructTag -> Position -> Located CStructTag
forall a. a -> Position -> Located a
L CStructTag
CUnionTag (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
	)}

happyReduce_160 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_160 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_160 = Int#
-> HappyAbsSyn
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_0  44# HappyAbsSyn
happyReduction_160
happyReduction_160 :: HappyAbsSyn
happyReduction_160  =  Reversed [CDecl] -> HappyAbsSyn
happyIn48
		 (Reversed [CDecl]
forall a. Reversed [a]
empty
	)

happyReduce_161 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_161 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_161 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  44# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_161
happyReduction_161 :: p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_161 happy_x_2 :: p
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap48
happyOut48 HappyAbsSyn
happy_x_1 of { (HappyWrap48 happy_var_1 :: Reversed [CDecl]
happy_var_1) -> 
	Reversed [CDecl] -> HappyAbsSyn
happyIn48
		 (Reversed [CDecl]
happy_var_1
	)}

happyReduce_162 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_162 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_162 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  44# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_162
happyReduction_162 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_162 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap48
happyOut48 HappyAbsSyn
happy_x_1 of { (HappyWrap48 happy_var_1 :: Reversed [CDecl]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap49
happyOut49 HappyAbsSyn
happy_x_2 of { (HappyWrap49 happy_var_2 :: CDecl
happy_var_2) -> 
	Reversed [CDecl] -> HappyAbsSyn
happyIn48
		 (Reversed [CDecl]
happy_var_1 Reversed [CDecl] -> CDecl -> Reversed [CDecl]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CDecl
happy_var_2
	)}}

happyReduce_163 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_163 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_163 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  45# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_163
happyReduction_163 :: p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_163 happy_x_2 :: p
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap51
happyOut51 HappyAbsSyn
happy_x_1 of { (HappyWrap51 happy_var_1 :: CDecl
happy_var_1) -> 
	CDecl -> HappyAbsSyn
happyIn49
		 (case CDecl
happy_var_1 of CDecl declspecs :: [CDeclSpec]
declspecs dies :: [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dies attr :: Attrs
attr -> [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> Attrs -> CDecl
CDecl [CDeclSpec]
declspecs ([(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
forall a. [a] -> [a]
List.reverse [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dies) Attrs
attr
	)}

happyReduce_164 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_164 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_164 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  45# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_164
happyReduction_164 :: p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_164 happy_x_2 :: p
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap50
happyOut50 HappyAbsSyn
happy_x_1 of { (HappyWrap50 happy_var_1 :: CDecl
happy_var_1) -> 
	CDecl -> HappyAbsSyn
happyIn49
		 (case CDecl
happy_var_1 of CDecl declspecs :: [CDeclSpec]
declspecs dies :: [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dies attr :: Attrs
attr -> [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> Attrs -> CDecl
CDecl [CDeclSpec]
declspecs ([(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
forall a. [a] -> [a]
List.reverse [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dies) Attrs
attr
	)}

happyReduce_165 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_165 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_165 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  45# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_165
happyReduction_165 :: HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_165 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: p
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap49
happyOut49 HappyAbsSyn
happy_x_2 of { (HappyWrap49 happy_var_2 :: CDecl
happy_var_2) -> 
	CDecl -> HappyAbsSyn
happyIn49
		 (CDecl
happy_var_2
	)}

happyReduce_166 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_166 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_166 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 46# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_166
happyReduction_166 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_166 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap73
happyOut73 HappyAbsSyn
happy_x_2 of { (HappyWrap73 happy_var_2 :: Reversed [CTypeQual]
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap53
happyOut53 HappyAbsSyn
happy_x_3 of { (HappyWrap53 happy_var_3 :: (Maybe CDeclr, Maybe CExpr)
happy_var_3) -> 
	( Reversed [CTypeQual] -> (Attrs -> CDecl) -> P CDecl
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs Reversed [CTypeQual]
happy_var_2 ((Attrs -> CDecl) -> P CDecl) -> (Attrs -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ case (Maybe CDeclr, Maybe CExpr)
happy_var_3 of (d :: Maybe CDeclr
d,s :: Maybe CExpr
s) -> [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> Attrs -> CDecl
CDecl (Reversed [CTypeQual] -> [CDeclSpec]
liftTypeQuals Reversed [CTypeQual]
happy_var_2) [(Maybe CDeclr
d,Maybe CInit
forall k1. Maybe k1
Nothing,Maybe CExpr
s)])}})
	) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn50 CDecl
r))

happyReduce_167 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_167 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_167 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce 5# 46# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_167
happyReduction_167 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_167 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest)
	 = case HappyAbsSyn -> HappyWrap50
happyOut50 HappyAbsSyn
happy_x_1 of { (HappyWrap50 happy_var_1 :: CDecl
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap53
happyOut53 HappyAbsSyn
happy_x_4 of { (HappyWrap53 happy_var_4 :: (Maybe CDeclr, Maybe CExpr)
happy_var_4) -> 
	CDecl -> HappyAbsSyn
happyIn50
		 (case CDecl
happy_var_1 of
            CDecl declspecs :: [CDeclSpec]
declspecs dies :: [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dies attr :: Attrs
attr ->
              case (Maybe CDeclr, Maybe CExpr)
happy_var_4 of
                (d :: Maybe CDeclr
d,s :: Maybe CExpr
s) -> [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> Attrs -> CDecl
CDecl [CDeclSpec]
declspecs ((Maybe CDeclr
d,Maybe CInit
forall k1. Maybe k1
Nothing,Maybe CExpr
s) (Maybe CDeclr, Maybe CInit, Maybe CExpr)
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
forall k1. k1 -> [k1] -> [k1]
: [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dies) Attrs
attr
	) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}

happyReduce_168 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_168 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_168 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 47# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_168
happyReduction_168 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_168 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap37
happyOut37 HappyAbsSyn
happy_x_2 of { (HappyWrap37 happy_var_2 :: [CDeclSpec]
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap52
happyOut52 HappyAbsSyn
happy_x_3 of { (HappyWrap52 happy_var_3 :: (Maybe CDeclr, Maybe CExpr)
happy_var_3) -> 
	( [CDeclSpec] -> (Attrs -> CDecl) -> P CDecl
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs [CDeclSpec]
happy_var_2 ((Attrs -> CDecl) -> P CDecl) -> (Attrs -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ case (Maybe CDeclr, Maybe CExpr)
happy_var_3 of (d :: Maybe CDeclr
d,s :: Maybe CExpr
s) -> [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> Attrs -> CDecl
CDecl [CDeclSpec]
happy_var_2 [(Maybe CDeclr
d,Maybe CInit
forall k1. Maybe k1
Nothing,Maybe CExpr
s)])}})
	) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn51 CDecl
r))

happyReduce_169 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_169 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_169 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce 5# 47# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_169
happyReduction_169 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_169 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest)
	 = case HappyAbsSyn -> HappyWrap51
happyOut51 HappyAbsSyn
happy_x_1 of { (HappyWrap51 happy_var_1 :: CDecl
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap52
happyOut52 HappyAbsSyn
happy_x_4 of { (HappyWrap52 happy_var_4 :: (Maybe CDeclr, Maybe CExpr)
happy_var_4) -> 
	CDecl -> HappyAbsSyn
happyIn51
		 (case CDecl
happy_var_1 of
            CDecl declspecs :: [CDeclSpec]
declspecs dies :: [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dies attr :: Attrs
attr ->
              case (Maybe CDeclr, Maybe CExpr)
happy_var_4 of
                (d :: Maybe CDeclr
d,s :: Maybe CExpr
s) -> [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> Attrs -> CDecl
CDecl [CDeclSpec]
declspecs ((Maybe CDeclr
d,Maybe CInit
forall k1. Maybe k1
Nothing,Maybe CExpr
s) (Maybe CDeclr, Maybe CInit, Maybe CExpr)
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
forall k1. k1 -> [k1] -> [k1]
: [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dies) Attrs
attr
	) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}

happyReduce_170 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_170 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_170 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 47# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_170
happyReduction_170 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_170 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap37
happyOut37 HappyAbsSyn
happy_x_2 of { (HappyWrap37 happy_var_2 :: [CDeclSpec]
happy_var_2) -> 
	( [CDeclSpec] -> (Attrs -> CDecl) -> P CDecl
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs [CDeclSpec]
happy_var_2 ((Attrs -> CDecl) -> P CDecl) -> (Attrs -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> Attrs -> CDecl
CDecl [CDeclSpec]
happy_var_2 [])})
	) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn51 CDecl
r))

happyReduce_171 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_171 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_171 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  48# HappyAbsSyn -> HappyAbsSyn
happyReduction_171
happyReduction_171 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_171 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap58
happyOut58 HappyAbsSyn
happy_x_1 of { (HappyWrap58 happy_var_1 :: CDeclr
happy_var_1) -> 
	(Maybe CDeclr, Maybe CExpr) -> HappyAbsSyn
happyIn52
		 ((CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just CDeclr
happy_var_1, Maybe CExpr
forall k1. Maybe k1
Nothing)
	)}

happyReduce_172 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_172 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_172 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  48# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_172
happyReduction_172 :: HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_172 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: p
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap116
happyOut116 HappyAbsSyn
happy_x_2 of { (HappyWrap116 happy_var_2 :: CExpr
happy_var_2) -> 
	(Maybe CDeclr, Maybe CExpr) -> HappyAbsSyn
happyIn52
		 ((Maybe CDeclr
forall k1. Maybe k1
Nothing, CExpr -> Maybe CExpr
forall k1. k1 -> Maybe k1
Just CExpr
happy_var_2)
	)}

happyReduce_173 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_173 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_173 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  48# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_173
happyReduction_173 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_173 happy_x_3 :: HappyAbsSyn
happy_x_3
	happy_x_2 :: p
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap58
happyOut58 HappyAbsSyn
happy_x_1 of { (HappyWrap58 happy_var_1 :: CDeclr
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap116
happyOut116 HappyAbsSyn
happy_x_3 of { (HappyWrap116 happy_var_3 :: CExpr
happy_var_3) -> 
	(Maybe CDeclr, Maybe CExpr) -> HappyAbsSyn
happyIn52
		 ((CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just CDeclr
happy_var_1, CExpr -> Maybe CExpr
forall k1. k1 -> Maybe k1
Just CExpr
happy_var_3)
	)}}

happyReduce_174 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_174 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_174 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  49# HappyAbsSyn -> HappyAbsSyn
happyReduction_174
happyReduction_174 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_174 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap67
happyOut67 HappyAbsSyn
happy_x_1 of { (HappyWrap67 happy_var_1 :: CDeclr
happy_var_1) -> 
	(Maybe CDeclr, Maybe CExpr) -> HappyAbsSyn
happyIn53
		 ((CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just CDeclr
happy_var_1, Maybe CExpr
forall k1. Maybe k1
Nothing)
	)}

happyReduce_175 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_175 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_175 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  49# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_175
happyReduction_175 :: HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_175 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: p
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap116
happyOut116 HappyAbsSyn
happy_x_2 of { (HappyWrap116 happy_var_2 :: CExpr
happy_var_2) -> 
	(Maybe CDeclr, Maybe CExpr) -> HappyAbsSyn
happyIn53
		 ((Maybe CDeclr
forall k1. Maybe k1
Nothing, CExpr -> Maybe CExpr
forall k1. k1 -> Maybe k1
Just CExpr
happy_var_2)
	)}

happyReduce_176 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_176 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_176 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  49# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_176
happyReduction_176 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_176 happy_x_3 :: HappyAbsSyn
happy_x_3
	happy_x_2 :: p
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap67
happyOut67 HappyAbsSyn
happy_x_1 of { (HappyWrap67 happy_var_1 :: CDeclr
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap116
happyOut116 HappyAbsSyn
happy_x_3 of { (HappyWrap116 happy_var_3 :: CExpr
happy_var_3) -> 
	(Maybe CDeclr, Maybe CExpr) -> HappyAbsSyn
happyIn53
		 ((CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just CDeclr
happy_var_1, CExpr -> Maybe CExpr
forall k1. k1 -> Maybe k1
Just CExpr
happy_var_3)
	)}}

happyReduce_177 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_177 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_177 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 5# 50# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_177
happyReduction_177 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_177 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CEnum -> (CEnum -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap55
happyOut55 HappyAbsSyn
happy_x_4 of { (HappyWrap55 happy_var_4 :: Reversed [(Ident, Maybe CExpr)]
happy_var_4) -> 
	( CToken -> (Attrs -> CEnum) -> P CEnum
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CEnum) -> P CEnum) -> (Attrs -> CEnum) -> P CEnum
forall a b. (a -> b) -> a -> b
$ Maybe Ident -> [(Ident, Maybe CExpr)] -> Attrs -> CEnum
CEnum Maybe Ident
forall k1. Maybe k1
Nothing   (Reversed [(Ident, Maybe CExpr)] -> [(Ident, Maybe CExpr)]
forall a. Reversed [a] -> [a]
reverse Reversed [(Ident, Maybe CExpr)]
happy_var_4))}})
	) (\r :: CEnum
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CEnum -> HappyAbsSyn
happyIn54 CEnum
r))

happyReduce_178 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_178 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_178 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 6# 50# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_178
happyReduction_178 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_178 (happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
	happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CEnum -> (CEnum -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap55
happyOut55 HappyAbsSyn
happy_x_4 of { (HappyWrap55 happy_var_4 :: Reversed [(Ident, Maybe CExpr)]
happy_var_4) -> 
	( CToken -> (Attrs -> CEnum) -> P CEnum
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CEnum) -> P CEnum) -> (Attrs -> CEnum) -> P CEnum
forall a b. (a -> b) -> a -> b
$ Maybe Ident -> [(Ident, Maybe CExpr)] -> Attrs -> CEnum
CEnum Maybe Ident
forall k1. Maybe k1
Nothing   (Reversed [(Ident, Maybe CExpr)] -> [(Ident, Maybe CExpr)]
forall a. Reversed [a] -> [a]
reverse Reversed [(Ident, Maybe CExpr)]
happy_var_4))}})
	) (\r :: CEnum
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CEnum -> HappyAbsSyn
happyIn54 CEnum
r))

happyReduce_179 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_179 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_179 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 6# 50# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_179
happyReduction_179 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_179 (happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
	happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CEnum -> (CEnum -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap120
happyOut120 HappyAbsSyn
happy_x_3 of { (HappyWrap120 happy_var_3 :: Ident
happy_var_3) -> 
	case HappyAbsSyn -> HappyWrap55
happyOut55 HappyAbsSyn
happy_x_5 of { (HappyWrap55 happy_var_5 :: Reversed [(Ident, Maybe CExpr)]
happy_var_5) -> 
	( CToken -> (Attrs -> CEnum) -> P CEnum
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CEnum) -> P CEnum) -> (Attrs -> CEnum) -> P CEnum
forall a b. (a -> b) -> a -> b
$ Maybe Ident -> [(Ident, Maybe CExpr)] -> Attrs -> CEnum
CEnum (Ident -> Maybe Ident
forall k1. k1 -> Maybe k1
Just Ident
happy_var_3) (Reversed [(Ident, Maybe CExpr)] -> [(Ident, Maybe CExpr)]
forall a. Reversed [a] -> [a]
reverse Reversed [(Ident, Maybe CExpr)]
happy_var_5))}}})
	) (\r :: CEnum
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CEnum -> HappyAbsSyn
happyIn54 CEnum
r))

happyReduce_180 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_180 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_180 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 7# 50# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_180
happyReduction_180 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_180 (happy_x_7 :: HappyAbsSyn
happy_x_7 `HappyStk`
	happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
	happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CEnum -> (CEnum -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap120
happyOut120 HappyAbsSyn
happy_x_3 of { (HappyWrap120 happy_var_3 :: Ident
happy_var_3) -> 
	case HappyAbsSyn -> HappyWrap55
happyOut55 HappyAbsSyn
happy_x_5 of { (HappyWrap55 happy_var_5 :: Reversed [(Ident, Maybe CExpr)]
happy_var_5) -> 
	( CToken -> (Attrs -> CEnum) -> P CEnum
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CEnum) -> P CEnum) -> (Attrs -> CEnum) -> P CEnum
forall a b. (a -> b) -> a -> b
$ Maybe Ident -> [(Ident, Maybe CExpr)] -> Attrs -> CEnum
CEnum (Ident -> Maybe Ident
forall k1. k1 -> Maybe k1
Just Ident
happy_var_3) (Reversed [(Ident, Maybe CExpr)] -> [(Ident, Maybe CExpr)]
forall a. Reversed [a] -> [a]
reverse Reversed [(Ident, Maybe CExpr)]
happy_var_5))}}})
	) (\r :: CEnum
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CEnum -> HappyAbsSyn
happyIn54 CEnum
r))

happyReduce_181 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_181 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_181 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 50# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_181
happyReduction_181 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_181 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CEnum -> (CEnum -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap120
happyOut120 HappyAbsSyn
happy_x_3 of { (HappyWrap120 happy_var_3 :: Ident
happy_var_3) -> 
	( CToken -> (Attrs -> CEnum) -> P CEnum
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CEnum) -> P CEnum) -> (Attrs -> CEnum) -> P CEnum
forall a b. (a -> b) -> a -> b
$ Maybe Ident -> [(Ident, Maybe CExpr)] -> Attrs -> CEnum
CEnum (Ident -> Maybe Ident
forall k1. k1 -> Maybe k1
Just Ident
happy_var_3) [])}})
	) (\r :: CEnum
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CEnum -> HappyAbsSyn
happyIn54 CEnum
r))

happyReduce_182 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_182 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_182 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  51# HappyAbsSyn -> HappyAbsSyn
happyReduction_182
happyReduction_182 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_182 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap56
happyOut56 HappyAbsSyn
happy_x_1 of { (HappyWrap56 happy_var_1 :: (Ident, Maybe CExpr)
happy_var_1) -> 
	Reversed [(Ident, Maybe CExpr)] -> HappyAbsSyn
happyIn55
		 ((Ident, Maybe CExpr) -> Reversed [(Ident, Maybe CExpr)]
forall a. a -> Reversed [a]
singleton (Ident, Maybe CExpr)
happy_var_1
	)}

happyReduce_183 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_183 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_183 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  51# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_183
happyReduction_183 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_183 happy_x_3 :: HappyAbsSyn
happy_x_3
	happy_x_2 :: p
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap55
happyOut55 HappyAbsSyn
happy_x_1 of { (HappyWrap55 happy_var_1 :: Reversed [(Ident, Maybe CExpr)]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap56
happyOut56 HappyAbsSyn
happy_x_3 of { (HappyWrap56 happy_var_3 :: (Ident, Maybe CExpr)
happy_var_3) -> 
	Reversed [(Ident, Maybe CExpr)] -> HappyAbsSyn
happyIn55
		 (Reversed [(Ident, Maybe CExpr)]
happy_var_1 Reversed [(Ident, Maybe CExpr)]
-> (Ident, Maybe CExpr) -> Reversed [(Ident, Maybe CExpr)]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` (Ident, Maybe CExpr)
happy_var_3
	)}}

happyReduce_184 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_184 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_184 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  52# HappyAbsSyn -> HappyAbsSyn
happyReduction_184
happyReduction_184 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_184 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap120
happyOut120 HappyAbsSyn
happy_x_1 of { (HappyWrap120 happy_var_1 :: Ident
happy_var_1) -> 
	(Ident, Maybe CExpr) -> HappyAbsSyn
happyIn56
		 ((Ident
happy_var_1, Maybe CExpr
forall k1. Maybe k1
Nothing)
	)}

happyReduce_185 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_185 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_185 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  52# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_185
happyReduction_185 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_185 happy_x_3 :: HappyAbsSyn
happy_x_3
	happy_x_2 :: p
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap120
happyOut120 HappyAbsSyn
happy_x_1 of { (HappyWrap120 happy_var_1 :: Ident
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap116
happyOut116 HappyAbsSyn
happy_x_3 of { (HappyWrap116 happy_var_3 :: CExpr
happy_var_3) -> 
	(Ident, Maybe CExpr) -> HappyAbsSyn
happyIn56
		 ((Ident
happy_var_1, CExpr -> Maybe CExpr
forall k1. k1 -> Maybe k1
Just CExpr
happy_var_3)
	)}}

happyReduce_186 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_186 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_186 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 53# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_186
happyReduction_186 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_186 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CTypeQual -> (CTypeQual -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (Attrs -> CTypeQual) -> P CTypeQual
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CTypeQual) -> P CTypeQual)
-> (Attrs -> CTypeQual) -> P CTypeQual
forall a b. (a -> b) -> a -> b
$ Attrs -> CTypeQual
CConstQual)})
	) (\r :: CTypeQual
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeQual -> HappyAbsSyn
happyIn57 CTypeQual
r))

happyReduce_187 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_187 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_187 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 53# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_187
happyReduction_187 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_187 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CTypeQual -> (CTypeQual -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (Attrs -> CTypeQual) -> P CTypeQual
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CTypeQual) -> P CTypeQual)
-> (Attrs -> CTypeQual) -> P CTypeQual
forall a b. (a -> b) -> a -> b
$ Attrs -> CTypeQual
CVolatQual)})
	) (\r :: CTypeQual
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeQual -> HappyAbsSyn
happyIn57 CTypeQual
r))

happyReduce_188 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_188 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_188 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 53# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_188
happyReduction_188 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_188 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CTypeQual -> (CTypeQual -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (Attrs -> CTypeQual) -> P CTypeQual
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CTypeQual) -> P CTypeQual)
-> (Attrs -> CTypeQual) -> P CTypeQual
forall a b. (a -> b) -> a -> b
$ Attrs -> CTypeQual
CRestrQual)})
	) (\r :: CTypeQual
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeQual -> HappyAbsSyn
happyIn57 CTypeQual
r))

happyReduce_189 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_189 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_189 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 53# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_189
happyReduction_189 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_189 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CTypeQual -> (CTypeQual -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (Attrs -> CTypeQual) -> P CTypeQual
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CTypeQual) -> P CTypeQual)
-> (Attrs -> CTypeQual) -> P CTypeQual
forall a b. (a -> b) -> a -> b
$ Attrs -> CTypeQual
CInlinQual)})
	) (\r :: CTypeQual
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeQual -> HappyAbsSyn
happyIn57 CTypeQual
r))

happyReduce_190 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_190 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_190 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  54# HappyAbsSyn -> HappyAbsSyn
happyReduction_190
happyReduction_190 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_190 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap67
happyOut67 HappyAbsSyn
happy_x_1 of { (HappyWrap67 happy_var_1 :: CDeclr
happy_var_1) -> 
	CDeclr -> HappyAbsSyn
happyIn58
		 (CDeclr
happy_var_1
	)}

happyReduce_191 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_191 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_191 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  54# HappyAbsSyn -> HappyAbsSyn
happyReduction_191
happyReduction_191 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_191 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap60
happyOut60 HappyAbsSyn
happy_x_1 of { (HappyWrap60 happy_var_1 :: CDeclr
happy_var_1) -> 
	CDeclr -> HappyAbsSyn
happyIn58
		 (CDeclr
happy_var_1
	)}

happyReduce_192 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_192 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_192 = Int#
-> HappyAbsSyn
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_0  55# HappyAbsSyn
happyReduction_192
happyReduction_192 :: HappyAbsSyn
happyReduction_192  =  () -> HappyAbsSyn
happyIn59
		 (()
	)

happyReduce_193 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_193 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_193 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce 4# 55# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_193
happyReduction_193 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_193 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest)
	 = () -> HappyAbsSyn
happyIn59
		 (()
	) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest

happyReduce_194 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_194 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_194 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  56# HappyAbsSyn -> HappyAbsSyn
happyReduction_194
happyReduction_194 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_194 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap64
happyOut64 HappyAbsSyn
happy_x_1 of { (HappyWrap64 happy_var_1 :: CDeclr
happy_var_1) -> 
	CDeclr -> HappyAbsSyn
happyIn60
		 (CDeclr
happy_var_1
	)}

happyReduce_195 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_195 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_195 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  56# HappyAbsSyn -> HappyAbsSyn
happyReduction_195
happyReduction_195 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_195 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap61
happyOut61 HappyAbsSyn
happy_x_1 of { (HappyWrap61 happy_var_1 :: CDeclr
happy_var_1) -> 
	CDeclr -> HappyAbsSyn
happyIn60
		 (CDeclr
happy_var_1
	)}

happyReduce_196 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_196 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_196 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 57# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_196
happyReduction_196 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_196 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDeclr -> (CDeclr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { (CTokTyIdent _ happy_var_1 :: Ident
happy_var_1) -> 
	( Ident -> (Attrs -> CDeclr) -> P CDeclr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs Ident
happy_var_1 ((Attrs -> CDeclr) -> P CDeclr) -> (Attrs -> CDeclr) -> P CDeclr
forall a b. (a -> b) -> a -> b
$ Maybe Ident -> Attrs -> CDeclr
CVarDeclr (Ident -> Maybe Ident
forall k1. k1 -> Maybe k1
Just Ident
happy_var_1))})
	) (\r :: CDeclr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclr -> HappyAbsSyn
happyIn61 CDeclr
r))

happyReduce_197 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_197 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_197 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 57# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_197
happyReduction_197 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_197 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDeclr -> (CDeclr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { (CTokTyIdent _ happy_var_1 :: Ident
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap80
happyOut80 HappyAbsSyn
happy_x_2 of { (HappyWrap80 happy_var_2 :: CDeclr -> CDeclr
happy_var_2) -> 
	( Ident -> (Attrs -> CDeclr) -> P CDeclr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs Ident
happy_var_1 ((Attrs -> CDeclr) -> P CDeclr) -> (Attrs -> CDeclr) -> P CDeclr
forall a b. (a -> b) -> a -> b
$ \attrs :: Attrs
attrs -> CDeclr -> CDeclr
happy_var_2 (Maybe Ident -> Attrs -> CDeclr
CVarDeclr (Ident -> Maybe Ident
forall k1. k1 -> Maybe k1
Just Ident
happy_var_1) Attrs
attrs))}})
	) (\r :: CDeclr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclr -> HappyAbsSyn
happyIn61 CDeclr
r))

happyReduce_198 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_198 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_198 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  57# HappyAbsSyn -> HappyAbsSyn
happyReduction_198
happyReduction_198 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_198 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap62
happyOut62 HappyAbsSyn
happy_x_1 of { (HappyWrap62 happy_var_1 :: CDeclr
happy_var_1) -> 
	CDeclr -> HappyAbsSyn
happyIn61
		 (CDeclr
happy_var_1
	)}

happyReduce_199 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_199 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_199 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  58# HappyAbsSyn -> HappyAbsSyn
happyReduction_199
happyReduction_199 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_199 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap63
happyOut63 HappyAbsSyn
happy_x_1 of { (HappyWrap63 happy_var_1 :: CDeclr
happy_var_1) -> 
	CDeclr -> HappyAbsSyn
happyIn62
		 (CDeclr
happy_var_1
	)}

happyReduce_200 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_200 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_200 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 58# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_200
happyReduction_200 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_200 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDeclr -> (CDeclr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap61
happyOut61 HappyAbsSyn
happy_x_2 of { (HappyWrap61 happy_var_2 :: CDeclr
happy_var_2) -> 
	( CToken -> (Attrs -> CDeclr) -> P CDeclr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CDeclr) -> P CDeclr) -> (Attrs -> CDeclr) -> P CDeclr
forall a b. (a -> b) -> a -> b
$ [CTypeQual] -> CDeclr -> Attrs -> CDeclr
CPtrDeclr [] CDeclr
happy_var_2)}})
	) (\r :: CDeclr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclr -> HappyAbsSyn
happyIn62 CDeclr
r))

happyReduce_201 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_201 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_201 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 58# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_201
happyReduction_201 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_201 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDeclr -> (CDeclr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap73
happyOut73 HappyAbsSyn
happy_x_2 of { (HappyWrap73 happy_var_2 :: Reversed [CTypeQual]
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap61
happyOut61 HappyAbsSyn
happy_x_3 of { (HappyWrap61 happy_var_3 :: CDeclr
happy_var_3) -> 
	( CToken -> (Attrs -> CDeclr) -> P CDeclr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CDeclr) -> P CDeclr) -> (Attrs -> CDeclr) -> P CDeclr
forall a b. (a -> b) -> a -> b
$ [CTypeQual] -> CDeclr -> Attrs -> CDeclr
CPtrDeclr (Reversed [CTypeQual] -> [CTypeQual]
forall a. Reversed [a] -> [a]
reverse Reversed [CTypeQual]
happy_var_2) CDeclr
happy_var_3)}}})
	) (\r :: CDeclr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclr -> HappyAbsSyn
happyIn62 CDeclr
r))

happyReduce_202 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_202 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_202 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 58# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_202
happyReduction_202 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_202 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDeclr -> (CDeclr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap61
happyOut61 HappyAbsSyn
happy_x_3 of { (HappyWrap61 happy_var_3 :: CDeclr
happy_var_3) -> 
	( CToken -> (Attrs -> CDeclr) -> P CDeclr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CDeclr) -> P CDeclr) -> (Attrs -> CDeclr) -> P CDeclr
forall a b. (a -> b) -> a -> b
$ [CTypeQual] -> CDeclr -> Attrs -> CDeclr
CPtrDeclr [] CDeclr
happy_var_3)}})
	) (\r :: CDeclr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclr -> HappyAbsSyn
happyIn62 CDeclr
r))

happyReduce_203 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_203 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_203 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 58# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_203
happyReduction_203 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_203 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDeclr -> (CDeclr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap73
happyOut73 HappyAbsSyn
happy_x_3 of { (HappyWrap73 happy_var_3 :: Reversed [CTypeQual]
happy_var_3) -> 
	case HappyAbsSyn -> HappyWrap61
happyOut61 HappyAbsSyn
happy_x_4 of { (HappyWrap61 happy_var_4 :: CDeclr
happy_var_4) -> 
	( CToken -> (Attrs -> CDeclr) -> P CDeclr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CDeclr) -> P CDeclr) -> (Attrs -> CDeclr) -> P CDeclr
forall a b. (a -> b) -> a -> b
$ [CTypeQual] -> CDeclr -> Attrs -> CDeclr
CPtrDeclr (Reversed [CTypeQual] -> [CTypeQual]
forall a. Reversed [a] -> [a]
reverse Reversed [CTypeQual]
happy_var_3) CDeclr
happy_var_4)}}})
	) (\r :: CDeclr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclr -> HappyAbsSyn
happyIn62 CDeclr
r))

happyReduce_204 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_204 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_204 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  59# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p p. p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_204
happyReduction_204 :: p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_204 happy_x_3 :: p
happy_x_3
	happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: p
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap62
happyOut62 HappyAbsSyn
happy_x_2 of { (HappyWrap62 happy_var_2 :: CDeclr
happy_var_2) -> 
	CDeclr -> HappyAbsSyn
happyIn63
		 (CDeclr
happy_var_2
	)}

happyReduce_205 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_205 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_205 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce 4# 59# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_205
happyReduction_205 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_205 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest)
	 = case HappyAbsSyn -> HappyWrap62
happyOut62 HappyAbsSyn
happy_x_3 of { (HappyWrap62 happy_var_3 :: CDeclr
happy_var_3) -> 
	CDeclr -> HappyAbsSyn
happyIn63
		 (CDeclr
happy_var_3
	) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}

happyReduce_206 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_206 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_206 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce 4# 59# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_206
happyReduction_206 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_206 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest)
	 = case HappyAbsSyn -> HappyWrap62
happyOut62 HappyAbsSyn
happy_x_2 of { (HappyWrap62 happy_var_2 :: CDeclr
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap80
happyOut80 HappyAbsSyn
happy_x_4 of { (HappyWrap80 happy_var_4 :: CDeclr -> CDeclr
happy_var_4) -> 
	CDeclr -> HappyAbsSyn
happyIn63
		 (CDeclr -> CDeclr
happy_var_4 CDeclr
happy_var_2
	) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}

happyReduce_207 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_207 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_207 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce 5# 59# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_207
happyReduction_207 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_207 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest)
	 = case HappyAbsSyn -> HappyWrap62
happyOut62 HappyAbsSyn
happy_x_3 of { (HappyWrap62 happy_var_3 :: CDeclr
happy_var_3) -> 
	case HappyAbsSyn -> HappyWrap80
happyOut80 HappyAbsSyn
happy_x_5 of { (HappyWrap80 happy_var_5 :: CDeclr -> CDeclr
happy_var_5) -> 
	CDeclr -> HappyAbsSyn
happyIn63
		 (CDeclr -> CDeclr
happy_var_5 CDeclr
happy_var_3
	) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}

happyReduce_208 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_208 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_208 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  60# HappyAbsSyn -> HappyAbsSyn
happyReduction_208
happyReduction_208 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_208 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap65
happyOut65 HappyAbsSyn
happy_x_1 of { (HappyWrap65 happy_var_1 :: CDeclr
happy_var_1) -> 
	CDeclr -> HappyAbsSyn
happyIn64
		 (CDeclr
happy_var_1
	)}

happyReduce_209 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_209 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_209 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 60# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_209
happyReduction_209 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_209 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDeclr -> (CDeclr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap66
happyOut66 HappyAbsSyn
happy_x_3 of { (HappyWrap66 happy_var_3 :: CDeclr
happy_var_3) -> 
	( CToken -> (Attrs -> CDeclr) -> P CDeclr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CDeclr) -> P CDeclr) -> (Attrs -> CDeclr) -> P CDeclr
forall a b. (a -> b) -> a -> b
$ [CTypeQual] -> CDeclr -> Attrs -> CDeclr
CPtrDeclr [] CDeclr
happy_var_3)}})
	) (\r :: CDeclr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclr -> HappyAbsSyn
happyIn64 CDeclr
r))

happyReduce_210 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_210 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_210 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 5# 60# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_210
happyReduction_210 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_210 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDeclr -> (CDeclr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap73
happyOut73 HappyAbsSyn
happy_x_2 of { (HappyWrap73 happy_var_2 :: Reversed [CTypeQual]
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap66
happyOut66 HappyAbsSyn
happy_x_4 of { (HappyWrap66 happy_var_4 :: CDeclr
happy_var_4) -> 
	( CToken -> (Attrs -> CDeclr) -> P CDeclr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CDeclr) -> P CDeclr) -> (Attrs -> CDeclr) -> P CDeclr
forall a b. (a -> b) -> a -> b
$ [CTypeQual] -> CDeclr -> Attrs -> CDeclr
CPtrDeclr (Reversed [CTypeQual] -> [CTypeQual]
forall a. Reversed [a] -> [a]
reverse Reversed [CTypeQual]
happy_var_2) CDeclr
happy_var_4)}}})
	) (\r :: CDeclr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclr -> HappyAbsSyn
happyIn64 CDeclr
r))

happyReduce_211 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_211 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_211 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 60# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_211
happyReduction_211 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_211 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDeclr -> (CDeclr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap64
happyOut64 HappyAbsSyn
happy_x_2 of { (HappyWrap64 happy_var_2 :: CDeclr
happy_var_2) -> 
	( CToken -> (Attrs -> CDeclr) -> P CDeclr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CDeclr) -> P CDeclr) -> (Attrs -> CDeclr) -> P CDeclr
forall a b. (a -> b) -> a -> b
$ [CTypeQual] -> CDeclr -> Attrs -> CDeclr
CPtrDeclr [] CDeclr
happy_var_2)}})
	) (\r :: CDeclr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclr -> HappyAbsSyn
happyIn64 CDeclr
r))

happyReduce_212 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_212 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_212 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 60# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_212
happyReduction_212 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_212 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDeclr -> (CDeclr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap73
happyOut73 HappyAbsSyn
happy_x_2 of { (HappyWrap73 happy_var_2 :: Reversed [CTypeQual]
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap64
happyOut64 HappyAbsSyn
happy_x_3 of { (HappyWrap64 happy_var_3 :: CDeclr
happy_var_3) -> 
	( CToken -> (Attrs -> CDeclr) -> P CDeclr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CDeclr) -> P CDeclr) -> (Attrs -> CDeclr) -> P CDeclr
forall a b. (a -> b) -> a -> b
$ [CTypeQual] -> CDeclr -> Attrs -> CDeclr
CPtrDeclr (Reversed [CTypeQual] -> [CTypeQual]
forall a. Reversed [a] -> [a]
reverse Reversed [CTypeQual]
happy_var_2) CDeclr
happy_var_3)}}})
	) (\r :: CDeclr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclr -> HappyAbsSyn
happyIn64 CDeclr
r))

happyReduce_213 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_213 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_213 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 5# 60# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_213
happyReduction_213 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_213 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDeclr -> (CDeclr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap66
happyOut66 HappyAbsSyn
happy_x_4 of { (HappyWrap66 happy_var_4 :: CDeclr
happy_var_4) -> 
	( CToken -> (Attrs -> CDeclr) -> P CDeclr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CDeclr) -> P CDeclr) -> (Attrs -> CDeclr) -> P CDeclr
forall a b. (a -> b) -> a -> b
$ [CTypeQual] -> CDeclr -> Attrs -> CDeclr
CPtrDeclr [] CDeclr
happy_var_4)}})
	) (\r :: CDeclr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclr -> HappyAbsSyn
happyIn64 CDeclr
r))

happyReduce_214 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_214 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_214 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 6# 60# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_214
happyReduction_214 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_214 (happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
	happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDeclr -> (CDeclr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap73
happyOut73 HappyAbsSyn
happy_x_3 of { (HappyWrap73 happy_var_3 :: Reversed [CTypeQual]
happy_var_3) -> 
	case HappyAbsSyn -> HappyWrap66
happyOut66 HappyAbsSyn
happy_x_5 of { (HappyWrap66 happy_var_5 :: CDeclr
happy_var_5) -> 
	( CToken -> (Attrs -> CDeclr) -> P CDeclr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CDeclr) -> P CDeclr) -> (Attrs -> CDeclr) -> P CDeclr
forall a b. (a -> b) -> a -> b
$ [CTypeQual] -> CDeclr -> Attrs -> CDeclr
CPtrDeclr (Reversed [CTypeQual] -> [CTypeQual]
forall a. Reversed [a] -> [a]
reverse Reversed [CTypeQual]
happy_var_3) CDeclr
happy_var_5)}}})
	) (\r :: CDeclr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclr -> HappyAbsSyn
happyIn64 CDeclr
r))

happyReduce_215 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_215 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_215 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 60# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_215
happyReduction_215 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_215 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDeclr -> (CDeclr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap64
happyOut64 HappyAbsSyn
happy_x_3 of { (HappyWrap64 happy_var_3 :: CDeclr
happy_var_3) -> 
	( CToken -> (Attrs -> CDeclr) -> P CDeclr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CDeclr) -> P CDeclr) -> (Attrs -> CDeclr) -> P CDeclr
forall a b. (a -> b) -> a -> b
$ [CTypeQual] -> CDeclr -> Attrs -> CDeclr
CPtrDeclr [] CDeclr
happy_var_3)}})
	) (\r :: CDeclr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclr -> HappyAbsSyn
happyIn64 CDeclr
r))

happyReduce_216 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_216 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_216 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 60# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_216
happyReduction_216 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_216 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDeclr -> (CDeclr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap73
happyOut73 HappyAbsSyn
happy_x_3 of { (HappyWrap73 happy_var_3 :: Reversed [CTypeQual]
happy_var_3) -> 
	case HappyAbsSyn -> HappyWrap64
happyOut64 HappyAbsSyn
happy_x_4 of { (HappyWrap64 happy_var_4 :: CDeclr
happy_var_4) -> 
	( CToken -> (Attrs -> CDeclr) -> P CDeclr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CDeclr) -> P CDeclr) -> (Attrs -> CDeclr) -> P CDeclr
forall a b. (a -> b) -> a -> b
$ [CTypeQual] -> CDeclr -> Attrs -> CDeclr
CPtrDeclr (Reversed [CTypeQual] -> [CTypeQual]
forall a. Reversed [a] -> [a]
reverse Reversed [CTypeQual]
happy_var_3) CDeclr
happy_var_4)}}})
	) (\r :: CDeclr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclr -> HappyAbsSyn
happyIn64 CDeclr
r))

happyReduce_217 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_217 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_217 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  61# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p p. p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_217
happyReduction_217 :: p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_217 happy_x_3 :: p
happy_x_3
	happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: p
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap64
happyOut64 HappyAbsSyn
happy_x_2 of { (HappyWrap64 happy_var_2 :: CDeclr
happy_var_2) -> 
	CDeclr -> HappyAbsSyn
happyIn65
		 (CDeclr
happy_var_2
	)}

happyReduce_218 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_218 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_218 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce 4# 61# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_218
happyReduction_218 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_218 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest)
	 = case HappyAbsSyn -> HappyWrap66
happyOut66 HappyAbsSyn
happy_x_2 of { (HappyWrap66 happy_var_2 :: CDeclr
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap80
happyOut80 HappyAbsSyn
happy_x_3 of { (HappyWrap80 happy_var_3 :: CDeclr -> CDeclr
happy_var_3) -> 
	CDeclr -> HappyAbsSyn
happyIn65
		 (CDeclr -> CDeclr
happy_var_3 CDeclr
happy_var_2
	) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}

happyReduce_219 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_219 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_219 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce 4# 61# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_219
happyReduction_219 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_219 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest)
	 = case HappyAbsSyn -> HappyWrap64
happyOut64 HappyAbsSyn
happy_x_2 of { (HappyWrap64 happy_var_2 :: CDeclr
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap80
happyOut80 HappyAbsSyn
happy_x_4 of { (HappyWrap80 happy_var_4 :: CDeclr -> CDeclr
happy_var_4) -> 
	CDeclr -> HappyAbsSyn
happyIn65
		 (CDeclr -> CDeclr
happy_var_4 CDeclr
happy_var_2
	) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}

happyReduce_220 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_220 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_220 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 62# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_220
happyReduction_220 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_220 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDeclr -> (CDeclr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { (CTokTyIdent _ happy_var_1 :: Ident
happy_var_1) -> 
	( Ident -> (Attrs -> CDeclr) -> P CDeclr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs Ident
happy_var_1 ((Attrs -> CDeclr) -> P CDeclr) -> (Attrs -> CDeclr) -> P CDeclr
forall a b. (a -> b) -> a -> b
$ Maybe Ident -> Attrs -> CDeclr
CVarDeclr (Ident -> Maybe Ident
forall k1. k1 -> Maybe k1
Just Ident
happy_var_1))})
	) (\r :: CDeclr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclr -> HappyAbsSyn
happyIn66 CDeclr
r))

happyReduce_221 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_221 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_221 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  62# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p p. p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_221
happyReduction_221 :: p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_221 happy_x_3 :: p
happy_x_3
	happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: p
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap66
happyOut66 HappyAbsSyn
happy_x_2 of { (HappyWrap66 happy_var_2 :: CDeclr
happy_var_2) -> 
	CDeclr -> HappyAbsSyn
happyIn66
		 (CDeclr
happy_var_2
	)}

happyReduce_222 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_222 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_222 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  63# HappyAbsSyn -> HappyAbsSyn
happyReduction_222
happyReduction_222 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_222 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap68
happyOut68 HappyAbsSyn
happy_x_1 of { (HappyWrap68 happy_var_1 :: CDeclr
happy_var_1) -> 
	CDeclr -> HappyAbsSyn
happyIn67
		 (CDeclr
happy_var_1
	)}

happyReduce_223 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_223 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_223 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  63# HappyAbsSyn -> HappyAbsSyn
happyReduction_223
happyReduction_223 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_223 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap70
happyOut70 HappyAbsSyn
happy_x_1 of { (HappyWrap70 happy_var_1 :: CDeclr
happy_var_1) -> 
	CDeclr -> HappyAbsSyn
happyIn67
		 (CDeclr
happy_var_1
	)}

happyReduce_224 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_224 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_224 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  64# HappyAbsSyn -> HappyAbsSyn
happyReduction_224
happyReduction_224 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_224 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap69
happyOut69 HappyAbsSyn
happy_x_1 of { (HappyWrap69 happy_var_1 :: CDeclr
happy_var_1) -> 
	CDeclr -> HappyAbsSyn
happyIn68
		 (CDeclr
happy_var_1
	)}

happyReduce_225 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_225 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_225 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 64# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_225
happyReduction_225 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_225 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDeclr -> (CDeclr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap67
happyOut67 HappyAbsSyn
happy_x_2 of { (HappyWrap67 happy_var_2 :: CDeclr
happy_var_2) -> 
	( CToken -> (Attrs -> CDeclr) -> P CDeclr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CDeclr) -> P CDeclr) -> (Attrs -> CDeclr) -> P CDeclr
forall a b. (a -> b) -> a -> b
$ [CTypeQual] -> CDeclr -> Attrs -> CDeclr
CPtrDeclr [] CDeclr
happy_var_2)}})
	) (\r :: CDeclr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclr -> HappyAbsSyn
happyIn68 CDeclr
r))

happyReduce_226 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_226 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_226 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 64# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_226
happyReduction_226 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_226 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDeclr -> (CDeclr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap73
happyOut73 HappyAbsSyn
happy_x_2 of { (HappyWrap73 happy_var_2 :: Reversed [CTypeQual]
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap67
happyOut67 HappyAbsSyn
happy_x_3 of { (HappyWrap67 happy_var_3 :: CDeclr
happy_var_3) -> 
	( CToken -> (Attrs -> CDeclr) -> P CDeclr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CDeclr) -> P CDeclr) -> (Attrs -> CDeclr) -> P CDeclr
forall a b. (a -> b) -> a -> b
$ [CTypeQual] -> CDeclr -> Attrs -> CDeclr
CPtrDeclr (Reversed [CTypeQual] -> [CTypeQual]
forall a. Reversed [a] -> [a]
reverse Reversed [CTypeQual]
happy_var_2) CDeclr
happy_var_3)}}})
	) (\r :: CDeclr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclr -> HappyAbsSyn
happyIn68 CDeclr
r))

happyReduce_227 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_227 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_227 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 64# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_227
happyReduction_227 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_227 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDeclr -> (CDeclr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap67
happyOut67 HappyAbsSyn
happy_x_3 of { (HappyWrap67 happy_var_3 :: CDeclr
happy_var_3) -> 
	( CToken -> (Attrs -> CDeclr) -> P CDeclr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CDeclr) -> P CDeclr) -> (Attrs -> CDeclr) -> P CDeclr
forall a b. (a -> b) -> a -> b
$ [CTypeQual] -> CDeclr -> Attrs -> CDeclr
CPtrDeclr [] CDeclr
happy_var_3)}})
	) (\r :: CDeclr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclr -> HappyAbsSyn
happyIn68 CDeclr
r))

happyReduce_228 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_228 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_228 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 64# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_228
happyReduction_228 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_228 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDeclr -> (CDeclr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap73
happyOut73 HappyAbsSyn
happy_x_3 of { (HappyWrap73 happy_var_3 :: Reversed [CTypeQual]
happy_var_3) -> 
	case HappyAbsSyn -> HappyWrap67
happyOut67 HappyAbsSyn
happy_x_4 of { (HappyWrap67 happy_var_4 :: CDeclr
happy_var_4) -> 
	( CToken -> (Attrs -> CDeclr) -> P CDeclr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CDeclr) -> P CDeclr) -> (Attrs -> CDeclr) -> P CDeclr
forall a b. (a -> b) -> a -> b
$ [CTypeQual] -> CDeclr -> Attrs -> CDeclr
CPtrDeclr (Reversed [CTypeQual] -> [CTypeQual]
forall a. Reversed [a] -> [a]
reverse Reversed [CTypeQual]
happy_var_3) CDeclr
happy_var_4)}}})
	) (\r :: CDeclr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclr -> HappyAbsSyn
happyIn68 CDeclr
r))

happyReduce_229 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_229 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_229 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  65# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_229
happyReduction_229 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_229 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap70
happyOut70 HappyAbsSyn
happy_x_1 of { (HappyWrap70 happy_var_1 :: CDeclr
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap80
happyOut80 HappyAbsSyn
happy_x_2 of { (HappyWrap80 happy_var_2 :: CDeclr -> CDeclr
happy_var_2) -> 
	CDeclr -> HappyAbsSyn
happyIn69
		 (CDeclr -> CDeclr
happy_var_2 CDeclr
happy_var_1
	)}}

happyReduce_230 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_230 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_230 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  65# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p p. p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_230
happyReduction_230 :: p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_230 happy_x_3 :: p
happy_x_3
	happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: p
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap68
happyOut68 HappyAbsSyn
happy_x_2 of { (HappyWrap68 happy_var_2 :: CDeclr
happy_var_2) -> 
	CDeclr -> HappyAbsSyn
happyIn69
		 (CDeclr
happy_var_2
	)}

happyReduce_231 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_231 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_231 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce 4# 65# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_231
happyReduction_231 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_231 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest)
	 = case HappyAbsSyn -> HappyWrap68
happyOut68 HappyAbsSyn
happy_x_2 of { (HappyWrap68 happy_var_2 :: CDeclr
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap80
happyOut80 HappyAbsSyn
happy_x_4 of { (HappyWrap80 happy_var_4 :: CDeclr -> CDeclr
happy_var_4) -> 
	CDeclr -> HappyAbsSyn
happyIn69
		 (CDeclr -> CDeclr
happy_var_4 CDeclr
happy_var_2
	) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}

happyReduce_232 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_232 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_232 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce 4# 65# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_232
happyReduction_232 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_232 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest)
	 = case HappyAbsSyn -> HappyWrap68
happyOut68 HappyAbsSyn
happy_x_3 of { (HappyWrap68 happy_var_3 :: CDeclr
happy_var_3) -> 
	CDeclr -> HappyAbsSyn
happyIn69
		 (CDeclr
happy_var_3
	) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}

happyReduce_233 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_233 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_233 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce 5# 65# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_233
happyReduction_233 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_233 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest)
	 = case HappyAbsSyn -> HappyWrap68
happyOut68 HappyAbsSyn
happy_x_3 of { (HappyWrap68 happy_var_3 :: CDeclr
happy_var_3) -> 
	case HappyAbsSyn -> HappyWrap80
happyOut80 HappyAbsSyn
happy_x_5 of { (HappyWrap80 happy_var_5 :: CDeclr -> CDeclr
happy_var_5) -> 
	CDeclr -> HappyAbsSyn
happyIn69
		 (CDeclr -> CDeclr
happy_var_5 CDeclr
happy_var_3
	) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}

happyReduce_234 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_234 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_234 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 66# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_234
happyReduction_234 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_234 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDeclr -> (CDeclr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { (CTokIdent  _ happy_var_1 :: Ident
happy_var_1) -> 
	( Ident -> (Attrs -> CDeclr) -> P CDeclr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs Ident
happy_var_1 ((Attrs -> CDeclr) -> P CDeclr) -> (Attrs -> CDeclr) -> P CDeclr
forall a b. (a -> b) -> a -> b
$ Maybe Ident -> Attrs -> CDeclr
CVarDeclr (Ident -> Maybe Ident
forall k1. k1 -> Maybe k1
Just Ident
happy_var_1))})
	) (\r :: CDeclr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclr -> HappyAbsSyn
happyIn70 CDeclr
r))

happyReduce_235 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_235 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_235 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  66# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p p. p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_235
happyReduction_235 :: p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_235 happy_x_3 :: p
happy_x_3
	happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: p
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap70
happyOut70 HappyAbsSyn
happy_x_2 of { (HappyWrap70 happy_var_2 :: CDeclr
happy_var_2) -> 
	CDeclr -> HappyAbsSyn
happyIn70
		 (CDeclr
happy_var_2
	)}

happyReduce_236 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_236 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_236 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  67# HappyAbsSyn -> HappyAbsSyn
happyReduction_236
happyReduction_236 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_236 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap72
happyOut72 HappyAbsSyn
happy_x_1 of { (HappyWrap72 happy_var_1 :: CDeclr
happy_var_1) -> 
	CDeclr -> HappyAbsSyn
happyIn71
		 (CDeclr
happy_var_1
	)}

happyReduce_237 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_237 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_237 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 67# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_237
happyReduction_237 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_237 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDeclr -> (CDeclr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap71
happyOut71 HappyAbsSyn
happy_x_2 of { (HappyWrap71 happy_var_2 :: CDeclr
happy_var_2) -> 
	( CToken -> (Attrs -> CDeclr) -> P CDeclr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CDeclr) -> P CDeclr) -> (Attrs -> CDeclr) -> P CDeclr
forall a b. (a -> b) -> a -> b
$ [CTypeQual] -> CDeclr -> Attrs -> CDeclr
CPtrDeclr [] CDeclr
happy_var_2)}})
	) (\r :: CDeclr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclr -> HappyAbsSyn
happyIn71 CDeclr
r))

happyReduce_238 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_238 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_238 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 67# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_238
happyReduction_238 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_238 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDeclr -> (CDeclr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap73
happyOut73 HappyAbsSyn
happy_x_2 of { (HappyWrap73 happy_var_2 :: Reversed [CTypeQual]
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap71
happyOut71 HappyAbsSyn
happy_x_3 of { (HappyWrap71 happy_var_3 :: CDeclr
happy_var_3) -> 
	( CToken -> (Attrs -> CDeclr) -> P CDeclr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CDeclr) -> P CDeclr) -> (Attrs -> CDeclr) -> P CDeclr
forall a b. (a -> b) -> a -> b
$ [CTypeQual] -> CDeclr -> Attrs -> CDeclr
CPtrDeclr (Reversed [CTypeQual] -> [CTypeQual]
forall a. Reversed [a] -> [a]
reverse Reversed [CTypeQual]
happy_var_2) CDeclr
happy_var_3)}}})
	) (\r :: CDeclr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclr -> HappyAbsSyn
happyIn71 CDeclr
r))

happyReduce_239 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_239 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_239 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 68# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_239
happyReduction_239 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_239 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDeclr -> (CDeclr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap70
happyOut70 HappyAbsSyn
happy_x_1 of { (HappyWrap70 happy_var_1 :: CDeclr
happy_var_1) -> 
	case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_2 of { happy_var_2 :: CToken
happy_var_2 -> 
	( CToken -> (Attrs -> CDeclr) -> P CDeclr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_2 ((Attrs -> CDeclr) -> P CDeclr) -> (Attrs -> CDeclr) -> P CDeclr
forall a b. (a -> b) -> a -> b
$ CDeclr -> [CDecl] -> Bool -> Attrs -> CDeclr
CFunDeclr CDeclr
happy_var_1 [] Bool
False)}})
	) (\r :: CDeclr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclr -> HappyAbsSyn
happyIn72 CDeclr
r))

happyReduce_240 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_240 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_240 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  68# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p p. p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_240
happyReduction_240 :: p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_240 happy_x_3 :: p
happy_x_3
	happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: p
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap71
happyOut71 HappyAbsSyn
happy_x_2 of { (HappyWrap71 happy_var_2 :: CDeclr
happy_var_2) -> 
	CDeclr -> HappyAbsSyn
happyIn72
		 (CDeclr
happy_var_2
	)}

happyReduce_241 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_241 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_241 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce 4# 68# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_241
happyReduction_241 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_241 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest)
	 = case HappyAbsSyn -> HappyWrap71
happyOut71 HappyAbsSyn
happy_x_2 of { (HappyWrap71 happy_var_2 :: CDeclr
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap80
happyOut80 HappyAbsSyn
happy_x_4 of { (HappyWrap80 happy_var_4 :: CDeclr -> CDeclr
happy_var_4) -> 
	CDeclr -> HappyAbsSyn
happyIn72
		 (CDeclr -> CDeclr
happy_var_4 CDeclr
happy_var_2
	) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}

happyReduce_242 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_242 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_242 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  69# HappyAbsSyn -> HappyAbsSyn
happyReduction_242
happyReduction_242 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_242 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap57
happyOut57 HappyAbsSyn
happy_x_1 of { (HappyWrap57 happy_var_1 :: CTypeQual
happy_var_1) -> 
	Reversed [CTypeQual] -> HappyAbsSyn
happyIn73
		 (CTypeQual -> Reversed [CTypeQual]
forall a. a -> Reversed [a]
singleton CTypeQual
happy_var_1
	)}

happyReduce_243 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_243 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_243 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  69# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_243
happyReduction_243 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_243 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap73
happyOut73 HappyAbsSyn
happy_x_1 of { (HappyWrap73 happy_var_1 :: Reversed [CTypeQual]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap57
happyOut57 HappyAbsSyn
happy_x_2 of { (HappyWrap57 happy_var_2 :: CTypeQual
happy_var_2) -> 
	Reversed [CTypeQual] -> HappyAbsSyn
happyIn73
		 (Reversed [CTypeQual]
happy_var_1 Reversed [CTypeQual] -> CTypeQual -> Reversed [CTypeQual]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CTypeQual
happy_var_2
	)}}

happyReduce_244 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_244 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_244 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  69# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_244
happyReduction_244 :: p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_244 happy_x_2 :: p
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap73
happyOut73 HappyAbsSyn
happy_x_1 of { (HappyWrap73 happy_var_1 :: Reversed [CTypeQual]
happy_var_1) -> 
	Reversed [CTypeQual] -> HappyAbsSyn
happyIn73
		 (Reversed [CTypeQual]
happy_var_1
	)}

happyReduce_245 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_245 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_245 = Int#
-> HappyAbsSyn
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_0  70# HappyAbsSyn
happyReduction_245
happyReduction_245 :: HappyAbsSyn
happyReduction_245  =  ([CDecl], Bool) -> HappyAbsSyn
happyIn74
		 (([], Bool
False)
	)

happyReduce_246 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_246 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_246 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  70# HappyAbsSyn -> HappyAbsSyn
happyReduction_246
happyReduction_246 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_246 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap75
happyOut75 HappyAbsSyn
happy_x_1 of { (HappyWrap75 happy_var_1 :: Reversed [CDecl]
happy_var_1) -> 
	([CDecl], Bool) -> HappyAbsSyn
happyIn74
		 ((Reversed [CDecl] -> [CDecl]
forall a. Reversed [a] -> [a]
reverse Reversed [CDecl]
happy_var_1, Bool
False)
	)}

happyReduce_247 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_247 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_247 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  70# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p p. p -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_247
happyReduction_247 :: p -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_247 happy_x_3 :: p
happy_x_3
	happy_x_2 :: p
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap75
happyOut75 HappyAbsSyn
happy_x_1 of { (HappyWrap75 happy_var_1 :: Reversed [CDecl]
happy_var_1) -> 
	([CDecl], Bool) -> HappyAbsSyn
happyIn74
		 ((Reversed [CDecl] -> [CDecl]
forall a. Reversed [a] -> [a]
reverse Reversed [CDecl]
happy_var_1, Bool
True)
	)}

happyReduce_248 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_248 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_248 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  71# HappyAbsSyn -> HappyAbsSyn
happyReduction_248
happyReduction_248 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_248 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap76
happyOut76 HappyAbsSyn
happy_x_1 of { (HappyWrap76 happy_var_1 :: CDecl
happy_var_1) -> 
	Reversed [CDecl] -> HappyAbsSyn
happyIn75
		 (CDecl -> Reversed [CDecl]
forall a. a -> Reversed [a]
singleton CDecl
happy_var_1
	)}

happyReduce_249 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_249 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_249 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  71# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_249
happyReduction_249 :: HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_249 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: p
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap76
happyOut76 HappyAbsSyn
happy_x_2 of { (HappyWrap76 happy_var_2 :: CDecl
happy_var_2) -> 
	Reversed [CDecl] -> HappyAbsSyn
happyIn75
		 (CDecl -> Reversed [CDecl]
forall a. a -> Reversed [a]
singleton CDecl
happy_var_2
	)}

happyReduce_250 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_250 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_250 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce 4# 71# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_250
happyReduction_250 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_250 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest)
	 = case HappyAbsSyn -> HappyWrap75
happyOut75 HappyAbsSyn
happy_x_1 of { (HappyWrap75 happy_var_1 :: Reversed [CDecl]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap76
happyOut76 HappyAbsSyn
happy_x_4 of { (HappyWrap76 happy_var_4 :: CDecl
happy_var_4) -> 
	Reversed [CDecl] -> HappyAbsSyn
happyIn75
		 (Reversed [CDecl]
happy_var_1 Reversed [CDecl] -> CDecl -> Reversed [CDecl]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CDecl
happy_var_4
	) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}

happyReduce_251 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_251 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_251 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 72# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_251
happyReduction_251 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_251 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap33
happyOut33 HappyAbsSyn
happy_x_1 of { (HappyWrap33 happy_var_1 :: [CDeclSpec]
happy_var_1) -> 
	( [CDeclSpec] -> (Attrs -> CDecl) -> P CDecl
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs [CDeclSpec]
happy_var_1 ((Attrs -> CDecl) -> P CDecl) -> (Attrs -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> Attrs -> CDecl
CDecl [CDeclSpec]
happy_var_1 [])})
	) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn76 CDecl
r))

happyReduce_252 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_252 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_252 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 72# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_252
happyReduction_252 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_252 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap33
happyOut33 HappyAbsSyn
happy_x_1 of { (HappyWrap33 happy_var_1 :: [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap79
happyOut79 HappyAbsSyn
happy_x_2 of { (HappyWrap79 happy_var_2 :: CDeclr
happy_var_2) -> 
	( [CDeclSpec] -> (Attrs -> CDecl) -> P CDecl
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs [CDeclSpec]
happy_var_1 ((Attrs -> CDecl) -> P CDecl) -> (Attrs -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> Attrs -> CDecl
CDecl [CDeclSpec]
happy_var_1 [(CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just CDeclr
happy_var_2, Maybe CInit
forall k1. Maybe k1
Nothing, Maybe CExpr
forall k1. Maybe k1
Nothing)])}})
	) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn76 CDecl
r))

happyReduce_253 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_253 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_253 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 72# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_253
happyReduction_253 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_253 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap33
happyOut33 HappyAbsSyn
happy_x_1 of { (HappyWrap33 happy_var_1 :: [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap67
happyOut67 HappyAbsSyn
happy_x_2 of { (HappyWrap67 happy_var_2 :: CDeclr
happy_var_2) -> 
	( [CDeclSpec] -> (Attrs -> CDecl) -> P CDecl
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs [CDeclSpec]
happy_var_1 ((Attrs -> CDecl) -> P CDecl) -> (Attrs -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> Attrs -> CDecl
CDecl [CDeclSpec]
happy_var_1 [(CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just CDeclr
happy_var_2, Maybe CInit
forall k1. Maybe k1
Nothing, Maybe CExpr
forall k1. Maybe k1
Nothing)])}})
	) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn76 CDecl
r))

happyReduce_254 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_254 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_254 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 72# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_254
happyReduction_254 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_254 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap33
happyOut33 HappyAbsSyn
happy_x_1 of { (HappyWrap33 happy_var_1 :: [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap61
happyOut61 HappyAbsSyn
happy_x_2 of { (HappyWrap61 happy_var_2 :: CDeclr
happy_var_2) -> 
	( [CDeclSpec] -> (Attrs -> CDecl) -> P CDecl
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs [CDeclSpec]
happy_var_1 ((Attrs -> CDecl) -> P CDecl) -> (Attrs -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> Attrs -> CDecl
CDecl [CDeclSpec]
happy_var_1 [(CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just CDeclr
happy_var_2, Maybe CInit
forall k1. Maybe k1
Nothing, Maybe CExpr
forall k1. Maybe k1
Nothing)])}})
	) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn76 CDecl
r))

happyReduce_255 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_255 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_255 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 72# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_255
happyReduction_255 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_255 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap34
happyOut34 HappyAbsSyn
happy_x_1 of { (HappyWrap34 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	( Reversed [CDeclSpec] -> (Attrs -> CDecl) -> P CDecl
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs Reversed [CDeclSpec]
happy_var_1 ((Attrs -> CDecl) -> P CDecl) -> (Attrs -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> Attrs -> CDecl
CDecl (Reversed [CDeclSpec] -> [CDeclSpec]
forall a. Reversed [a] -> [a]
reverse Reversed [CDeclSpec]
happy_var_1) [])})
	) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn76 CDecl
r))

happyReduce_256 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_256 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_256 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 72# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_256
happyReduction_256 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_256 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap34
happyOut34 HappyAbsSyn
happy_x_1 of { (HappyWrap34 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap79
happyOut79 HappyAbsSyn
happy_x_2 of { (HappyWrap79 happy_var_2 :: CDeclr
happy_var_2) -> 
	( Reversed [CDeclSpec] -> (Attrs -> CDecl) -> P CDecl
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs Reversed [CDeclSpec]
happy_var_1 ((Attrs -> CDecl) -> P CDecl) -> (Attrs -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> Attrs -> CDecl
CDecl (Reversed [CDeclSpec] -> [CDeclSpec]
forall a. Reversed [a] -> [a]
reverse Reversed [CDeclSpec]
happy_var_1) [(CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just CDeclr
happy_var_2, Maybe CInit
forall k1. Maybe k1
Nothing, Maybe CExpr
forall k1. Maybe k1
Nothing)])}})
	) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn76 CDecl
r))

happyReduce_257 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_257 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_257 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 72# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_257
happyReduction_257 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_257 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap34
happyOut34 HappyAbsSyn
happy_x_1 of { (HappyWrap34 happy_var_1 :: Reversed [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap67
happyOut67 HappyAbsSyn
happy_x_2 of { (HappyWrap67 happy_var_2 :: CDeclr
happy_var_2) -> 
	( Reversed [CDeclSpec] -> (Attrs -> CDecl) -> P CDecl
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs Reversed [CDeclSpec]
happy_var_1 ((Attrs -> CDecl) -> P CDecl) -> (Attrs -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> Attrs -> CDecl
CDecl (Reversed [CDeclSpec] -> [CDeclSpec]
forall a. Reversed [a] -> [a]
reverse Reversed [CDeclSpec]
happy_var_1) [(CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just CDeclr
happy_var_2, Maybe CInit
forall k1. Maybe k1
Nothing, Maybe CExpr
forall k1. Maybe k1
Nothing)])}})
	) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn76 CDecl
r))

happyReduce_258 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_258 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_258 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 72# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_258
happyReduction_258 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_258 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap37
happyOut37 HappyAbsSyn
happy_x_1 of { (HappyWrap37 happy_var_1 :: [CDeclSpec]
happy_var_1) -> 
	( [CDeclSpec] -> (Attrs -> CDecl) -> P CDecl
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs [CDeclSpec]
happy_var_1 ((Attrs -> CDecl) -> P CDecl) -> (Attrs -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> Attrs -> CDecl
CDecl [CDeclSpec]
happy_var_1 [])})
	) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn76 CDecl
r))

happyReduce_259 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_259 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_259 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 72# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_259
happyReduction_259 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_259 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap37
happyOut37 HappyAbsSyn
happy_x_1 of { (HappyWrap37 happy_var_1 :: [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap79
happyOut79 HappyAbsSyn
happy_x_2 of { (HappyWrap79 happy_var_2 :: CDeclr
happy_var_2) -> 
	( [CDeclSpec] -> (Attrs -> CDecl) -> P CDecl
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs [CDeclSpec]
happy_var_1 ((Attrs -> CDecl) -> P CDecl) -> (Attrs -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> Attrs -> CDecl
CDecl [CDeclSpec]
happy_var_1 [(CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just CDeclr
happy_var_2, Maybe CInit
forall k1. Maybe k1
Nothing, Maybe CExpr
forall k1. Maybe k1
Nothing)])}})
	) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn76 CDecl
r))

happyReduce_260 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_260 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_260 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 72# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_260
happyReduction_260 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_260 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap37
happyOut37 HappyAbsSyn
happy_x_1 of { (HappyWrap37 happy_var_1 :: [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap67
happyOut67 HappyAbsSyn
happy_x_2 of { (HappyWrap67 happy_var_2 :: CDeclr
happy_var_2) -> 
	( [CDeclSpec] -> (Attrs -> CDecl) -> P CDecl
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs [CDeclSpec]
happy_var_1 ((Attrs -> CDecl) -> P CDecl) -> (Attrs -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> Attrs -> CDecl
CDecl [CDeclSpec]
happy_var_1 [(CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just CDeclr
happy_var_2, Maybe CInit
forall k1. Maybe k1
Nothing, Maybe CExpr
forall k1. Maybe k1
Nothing)])}})
	) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn76 CDecl
r))

happyReduce_261 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_261 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_261 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 72# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_261
happyReduction_261 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_261 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap37
happyOut37 HappyAbsSyn
happy_x_1 of { (HappyWrap37 happy_var_1 :: [CDeclSpec]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap61
happyOut61 HappyAbsSyn
happy_x_2 of { (HappyWrap61 happy_var_2 :: CDeclr
happy_var_2) -> 
	( [CDeclSpec] -> (Attrs -> CDecl) -> P CDecl
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs [CDeclSpec]
happy_var_1 ((Attrs -> CDecl) -> P CDecl) -> (Attrs -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> Attrs -> CDecl
CDecl [CDeclSpec]
happy_var_1 [(CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just CDeclr
happy_var_2, Maybe CInit
forall k1. Maybe k1
Nothing, Maybe CExpr
forall k1. Maybe k1
Nothing)])}})
	) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn76 CDecl
r))

happyReduce_262 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_262 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_262 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 72# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_262
happyReduction_262 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_262 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap73
happyOut73 HappyAbsSyn
happy_x_1 of { (HappyWrap73 happy_var_1 :: Reversed [CTypeQual]
happy_var_1) -> 
	( Reversed [CTypeQual] -> (Attrs -> CDecl) -> P CDecl
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs Reversed [CTypeQual]
happy_var_1 ((Attrs -> CDecl) -> P CDecl) -> (Attrs -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> Attrs -> CDecl
CDecl (Reversed [CTypeQual] -> [CDeclSpec]
liftTypeQuals Reversed [CTypeQual]
happy_var_1) [])})
	) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn76 CDecl
r))

happyReduce_263 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_263 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_263 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 72# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_263
happyReduction_263 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_263 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap73
happyOut73 HappyAbsSyn
happy_x_1 of { (HappyWrap73 happy_var_1 :: Reversed [CTypeQual]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap79
happyOut79 HappyAbsSyn
happy_x_2 of { (HappyWrap79 happy_var_2 :: CDeclr
happy_var_2) -> 
	( Reversed [CTypeQual] -> (Attrs -> CDecl) -> P CDecl
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs Reversed [CTypeQual]
happy_var_1 ((Attrs -> CDecl) -> P CDecl) -> (Attrs -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> Attrs -> CDecl
CDecl (Reversed [CTypeQual] -> [CDeclSpec]
liftTypeQuals Reversed [CTypeQual]
happy_var_1) [(CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just CDeclr
happy_var_2, Maybe CInit
forall k1. Maybe k1
Nothing, Maybe CExpr
forall k1. Maybe k1
Nothing)])}})
	) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn76 CDecl
r))

happyReduce_264 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_264 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_264 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 72# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_264
happyReduction_264 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_264 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap73
happyOut73 HappyAbsSyn
happy_x_1 of { (HappyWrap73 happy_var_1 :: Reversed [CTypeQual]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap67
happyOut67 HappyAbsSyn
happy_x_2 of { (HappyWrap67 happy_var_2 :: CDeclr
happy_var_2) -> 
	( Reversed [CTypeQual] -> (Attrs -> CDecl) -> P CDecl
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs Reversed [CTypeQual]
happy_var_1 ((Attrs -> CDecl) -> P CDecl) -> (Attrs -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> Attrs -> CDecl
CDecl (Reversed [CTypeQual] -> [CDeclSpec]
liftTypeQuals Reversed [CTypeQual]
happy_var_1) [(CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just CDeclr
happy_var_2, Maybe CInit
forall k1. Maybe k1
Nothing, Maybe CExpr
forall k1. Maybe k1
Nothing)])}})
	) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn76 CDecl
r))

happyReduce_265 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_265 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_265 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  73# HappyAbsSyn -> HappyAbsSyn
happyReduction_265
happyReduction_265 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_265 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { (CTokIdent  _ happy_var_1 :: Ident
happy_var_1) -> 
	Reversed [Ident] -> HappyAbsSyn
happyIn77
		 (Ident -> Reversed [Ident]
forall a. a -> Reversed [a]
singleton Ident
happy_var_1
	)}

happyReduce_266 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_266 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_266 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  73# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_266
happyReduction_266 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_266 happy_x_3 :: HappyAbsSyn
happy_x_3
	happy_x_2 :: p
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap77
happyOut77 HappyAbsSyn
happy_x_1 of { (HappyWrap77 happy_var_1 :: Reversed [Ident]
happy_var_1) -> 
	case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_3 of { (CTokIdent  _ happy_var_3 :: Ident
happy_var_3) -> 
	Reversed [Ident] -> HappyAbsSyn
happyIn77
		 (Reversed [Ident]
happy_var_1 Reversed [Ident] -> Ident -> Reversed [Ident]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` Ident
happy_var_3
	)}}

happyReduce_267 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_267 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_267 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 74# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_267
happyReduction_267 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_267 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap37
happyOut37 HappyAbsSyn
happy_x_2 of { (HappyWrap37 happy_var_2 :: [CDeclSpec]
happy_var_2) -> 
	( [CDeclSpec] -> (Attrs -> CDecl) -> P CDecl
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs [CDeclSpec]
happy_var_2 ((Attrs -> CDecl) -> P CDecl) -> (Attrs -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> Attrs -> CDecl
CDecl [CDeclSpec]
happy_var_2 [])})
	) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn78 CDecl
r))

happyReduce_268 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_268 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_268 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 74# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_268
happyReduction_268 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_268 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap37
happyOut37 HappyAbsSyn
happy_x_2 of { (HappyWrap37 happy_var_2 :: [CDeclSpec]
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap79
happyOut79 HappyAbsSyn
happy_x_3 of { (HappyWrap79 happy_var_3 :: CDeclr
happy_var_3) -> 
	( [CDeclSpec] -> (Attrs -> CDecl) -> P CDecl
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs [CDeclSpec]
happy_var_2 ((Attrs -> CDecl) -> P CDecl) -> (Attrs -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> Attrs -> CDecl
CDecl [CDeclSpec]
happy_var_2 [(CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just CDeclr
happy_var_3, Maybe CInit
forall k1. Maybe k1
Nothing, Maybe CExpr
forall k1. Maybe k1
Nothing)])}})
	) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn78 CDecl
r))

happyReduce_269 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_269 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_269 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 74# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_269
happyReduction_269 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_269 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap73
happyOut73 HappyAbsSyn
happy_x_2 of { (HappyWrap73 happy_var_2 :: Reversed [CTypeQual]
happy_var_2) -> 
	( Reversed [CTypeQual] -> (Attrs -> CDecl) -> P CDecl
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs Reversed [CTypeQual]
happy_var_2 ((Attrs -> CDecl) -> P CDecl) -> (Attrs -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> Attrs -> CDecl
CDecl (Reversed [CTypeQual] -> [CDeclSpec]
liftTypeQuals Reversed [CTypeQual]
happy_var_2) [])})
	) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn78 CDecl
r))

happyReduce_270 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_270 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_270 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 74# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_270
happyReduction_270 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_270 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap73
happyOut73 HappyAbsSyn
happy_x_2 of { (HappyWrap73 happy_var_2 :: Reversed [CTypeQual]
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap79
happyOut79 HappyAbsSyn
happy_x_3 of { (HappyWrap79 happy_var_3 :: CDeclr
happy_var_3) -> 
	( Reversed [CTypeQual] -> (Attrs -> CDecl) -> P CDecl
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs Reversed [CTypeQual]
happy_var_2 ((Attrs -> CDecl) -> P CDecl) -> (Attrs -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> Attrs -> CDecl
CDecl (Reversed [CTypeQual] -> [CDeclSpec]
liftTypeQuals Reversed [CTypeQual]
happy_var_2) [(CDeclr -> Maybe CDeclr
forall k1. k1 -> Maybe k1
Just CDeclr
happy_var_3, Maybe CInit
forall k1. Maybe k1
Nothing, Maybe CExpr
forall k1. Maybe k1
Nothing)])}})
	) (\r :: CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn78 CDecl
r))

happyReduce_271 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_271 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_271 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  75# HappyAbsSyn -> HappyAbsSyn
happyReduction_271
happyReduction_271 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_271 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap83
happyOut83 HappyAbsSyn
happy_x_1 of { (HappyWrap83 happy_var_1 :: CDeclr
happy_var_1) -> 
	CDeclr -> HappyAbsSyn
happyIn79
		 (CDeclr
happy_var_1
	)}

happyReduce_272 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_272 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_272 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  75# HappyAbsSyn -> HappyAbsSyn
happyReduction_272
happyReduction_272 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_272 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap84
happyOut84 HappyAbsSyn
happy_x_1 of { (HappyWrap84 happy_var_1 :: CDeclr
happy_var_1) -> 
	CDeclr -> HappyAbsSyn
happyIn79
		 (CDeclr
happy_var_1
	)}

happyReduce_273 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_273 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_273 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  75# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_273
happyReduction_273 :: p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_273 happy_x_2 :: p
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap80
happyOut80 HappyAbsSyn
happy_x_1 of { (HappyWrap80 happy_var_1 :: CDeclr -> CDeclr
happy_var_1) -> 
	CDeclr -> HappyAbsSyn
happyIn79
		 (CDeclr -> CDeclr
happy_var_1 CDeclr
emptyDeclr
	)}

happyReduce_274 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_274 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_274 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  76# HappyAbsSyn -> HappyAbsSyn
happyReduction_274
happyReduction_274 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_274 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap81
happyOut81 HappyAbsSyn
happy_x_1 of { (HappyWrap81 happy_var_1 :: CDeclr -> CDeclr
happy_var_1) -> 
	(CDeclr -> CDeclr) -> HappyAbsSyn
happyIn80
		 (CDeclr -> CDeclr
happy_var_1
	)}

happyReduce_275 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_275 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_275 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 76# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_275
happyReduction_275 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_275 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P (CDeclr -> CDeclr)
-> ((CDeclr -> CDeclr) -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap74
happyOut74 HappyAbsSyn
happy_x_2 of { (HappyWrap74 happy_var_2 :: ([CDecl], Bool)
happy_var_2) -> 
	( CToken -> (Attrs -> CDeclr -> CDeclr) -> P (CDeclr -> CDeclr)
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CDeclr -> CDeclr) -> P (CDeclr -> CDeclr))
-> (Attrs -> CDeclr -> CDeclr) -> P (CDeclr -> CDeclr)
forall a b. (a -> b) -> a -> b
$ \attrs :: Attrs
attrs declr :: CDeclr
declr -> case ([CDecl], Bool)
happy_var_2 of
             (params :: [CDecl]
params, variadic :: Bool
variadic) -> CDeclr -> [CDecl] -> Bool -> Attrs -> CDeclr
CFunDeclr CDeclr
declr [CDecl]
params Bool
variadic Attrs
attrs)}})
	) (\r :: CDeclr -> CDeclr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn ((CDeclr -> CDeclr) -> HappyAbsSyn
happyIn80 CDeclr -> CDeclr
r))

happyReduce_276 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_276 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_276 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  77# HappyAbsSyn -> HappyAbsSyn
happyReduction_276
happyReduction_276 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_276 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap82
happyOut82 HappyAbsSyn
happy_x_1 of { (HappyWrap82 happy_var_1 :: CDeclr -> CDeclr
happy_var_1) -> 
	(CDeclr -> CDeclr) -> HappyAbsSyn
happyIn81
		 (CDeclr -> CDeclr
happy_var_1
	)}

happyReduce_277 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_277 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_277 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  77# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_277
happyReduction_277 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_277 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap81
happyOut81 HappyAbsSyn
happy_x_1 of { (HappyWrap81 happy_var_1 :: CDeclr -> CDeclr
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap82
happyOut82 HappyAbsSyn
happy_x_2 of { (HappyWrap82 happy_var_2 :: CDeclr -> CDeclr
happy_var_2) -> 
	(CDeclr -> CDeclr) -> HappyAbsSyn
happyIn81
		 (\decl :: CDeclr
decl -> CDeclr -> CDeclr
happy_var_2 (CDeclr -> CDeclr
happy_var_1 CDeclr
decl)
	)}}

happyReduce_278 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_278 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_278 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 78# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_278
happyReduction_278 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_278 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P (CDeclr -> CDeclr)
-> ((CDeclr -> CDeclr) -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap115
happyOut115 HappyAbsSyn
happy_x_2 of { (HappyWrap115 happy_var_2 :: Maybe CExpr
happy_var_2) -> 
	( CToken -> (Attrs -> CDeclr -> CDeclr) -> P (CDeclr -> CDeclr)
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CDeclr -> CDeclr) -> P (CDeclr -> CDeclr))
-> (Attrs -> CDeclr -> CDeclr) -> P (CDeclr -> CDeclr)
forall a b. (a -> b) -> a -> b
$ \attrs :: Attrs
attrs declr :: CDeclr
declr -> CDeclr -> [CTypeQual] -> Maybe CExpr -> Attrs -> CDeclr
CArrDeclr CDeclr
declr [] Maybe CExpr
happy_var_2 Attrs
attrs)}})
	) (\r :: CDeclr -> CDeclr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn ((CDeclr -> CDeclr) -> HappyAbsSyn
happyIn82 CDeclr -> CDeclr
r))

happyReduce_279 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_279 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_279 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 78# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_279
happyReduction_279 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_279 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P (CDeclr -> CDeclr)
-> ((CDeclr -> CDeclr) -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap73
happyOut73 HappyAbsSyn
happy_x_2 of { (HappyWrap73 happy_var_2 :: Reversed [CTypeQual]
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap115
happyOut115 HappyAbsSyn
happy_x_3 of { (HappyWrap115 happy_var_3 :: Maybe CExpr
happy_var_3) -> 
	( CToken -> (Attrs -> CDeclr -> CDeclr) -> P (CDeclr -> CDeclr)
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CDeclr -> CDeclr) -> P (CDeclr -> CDeclr))
-> (Attrs -> CDeclr -> CDeclr) -> P (CDeclr -> CDeclr)
forall a b. (a -> b) -> a -> b
$ \attrs :: Attrs
attrs declr :: CDeclr
declr -> CDeclr -> [CTypeQual] -> Maybe CExpr -> Attrs -> CDeclr
CArrDeclr CDeclr
declr (Reversed [CTypeQual] -> [CTypeQual]
forall a. Reversed [a] -> [a]
reverse Reversed [CTypeQual]
happy_var_2) Maybe CExpr
happy_var_3 Attrs
attrs)}}})
	) (\r :: CDeclr -> CDeclr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn ((CDeclr -> CDeclr) -> HappyAbsSyn
happyIn82 CDeclr -> CDeclr
r))

happyReduce_280 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_280 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_280 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 78# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_280
happyReduction_280 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_280 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P (CDeclr -> CDeclr)
-> ((CDeclr -> CDeclr) -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap110
happyOut110 HappyAbsSyn
happy_x_3 of { (HappyWrap110 happy_var_3 :: CExpr
happy_var_3) -> 
	( CToken -> (Attrs -> CDeclr -> CDeclr) -> P (CDeclr -> CDeclr)
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CDeclr -> CDeclr) -> P (CDeclr -> CDeclr))
-> (Attrs -> CDeclr -> CDeclr) -> P (CDeclr -> CDeclr)
forall a b. (a -> b) -> a -> b
$ \attrs :: Attrs
attrs declr :: CDeclr
declr -> CDeclr -> [CTypeQual] -> Maybe CExpr -> Attrs -> CDeclr
CArrDeclr CDeclr
declr [] (CExpr -> Maybe CExpr
forall k1. k1 -> Maybe k1
Just CExpr
happy_var_3) Attrs
attrs)}})
	) (\r :: CDeclr -> CDeclr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn ((CDeclr -> CDeclr) -> HappyAbsSyn
happyIn82 CDeclr -> CDeclr
r))

happyReduce_281 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_281 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_281 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 5# 78# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_281
happyReduction_281 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_281 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P (CDeclr -> CDeclr)
-> ((CDeclr -> CDeclr) -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap73
happyOut73 HappyAbsSyn
happy_x_3 of { (HappyWrap73 happy_var_3 :: Reversed [CTypeQual]
happy_var_3) -> 
	case HappyAbsSyn -> HappyWrap110
happyOut110 HappyAbsSyn
happy_x_4 of { (HappyWrap110 happy_var_4 :: CExpr
happy_var_4) -> 
	( CToken -> (Attrs -> CDeclr -> CDeclr) -> P (CDeclr -> CDeclr)
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CDeclr -> CDeclr) -> P (CDeclr -> CDeclr))
-> (Attrs -> CDeclr -> CDeclr) -> P (CDeclr -> CDeclr)
forall a b. (a -> b) -> a -> b
$ \attrs :: Attrs
attrs declr :: CDeclr
declr -> CDeclr -> [CTypeQual] -> Maybe CExpr -> Attrs -> CDeclr
CArrDeclr CDeclr
declr (Reversed [CTypeQual] -> [CTypeQual]
forall a. Reversed [a] -> [a]
reverse Reversed [CTypeQual]
happy_var_3) (CExpr -> Maybe CExpr
forall k1. k1 -> Maybe k1
Just CExpr
happy_var_4) Attrs
attrs)}}})
	) (\r :: CDeclr -> CDeclr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn ((CDeclr -> CDeclr) -> HappyAbsSyn
happyIn82 CDeclr -> CDeclr
r))

happyReduce_282 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_282 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_282 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 5# 78# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_282
happyReduction_282 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_282 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P (CDeclr -> CDeclr)
-> ((CDeclr -> CDeclr) -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap73
happyOut73 HappyAbsSyn
happy_x_2 of { (HappyWrap73 happy_var_2 :: Reversed [CTypeQual]
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap110
happyOut110 HappyAbsSyn
happy_x_4 of { (HappyWrap110 happy_var_4 :: CExpr
happy_var_4) -> 
	( CToken -> (Attrs -> CDeclr -> CDeclr) -> P (CDeclr -> CDeclr)
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CDeclr -> CDeclr) -> P (CDeclr -> CDeclr))
-> (Attrs -> CDeclr -> CDeclr) -> P (CDeclr -> CDeclr)
forall a b. (a -> b) -> a -> b
$ \attrs :: Attrs
attrs declr :: CDeclr
declr -> CDeclr -> [CTypeQual] -> Maybe CExpr -> Attrs -> CDeclr
CArrDeclr CDeclr
declr (Reversed [CTypeQual] -> [CTypeQual]
forall a. Reversed [a] -> [a]
reverse Reversed [CTypeQual]
happy_var_2) (CExpr -> Maybe CExpr
forall k1. k1 -> Maybe k1
Just CExpr
happy_var_4) Attrs
attrs)}}})
	) (\r :: CDeclr -> CDeclr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn ((CDeclr -> CDeclr) -> HappyAbsSyn
happyIn82 CDeclr -> CDeclr
r))

happyReduce_283 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_283 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_283 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 78# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_283
happyReduction_283 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_283 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P (CDeclr -> CDeclr)
-> ((CDeclr -> CDeclr) -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (Attrs -> CDeclr -> CDeclr) -> P (CDeclr -> CDeclr)
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CDeclr -> CDeclr) -> P (CDeclr -> CDeclr))
-> (Attrs -> CDeclr -> CDeclr) -> P (CDeclr -> CDeclr)
forall a b. (a -> b) -> a -> b
$ \attrs :: Attrs
attrs declr :: CDeclr
declr -> CDeclr -> [CTypeQual] -> Maybe CExpr -> Attrs -> CDeclr
CArrDeclr CDeclr
declr [] Maybe CExpr
forall k1. Maybe k1
Nothing Attrs
attrs)})
	) (\r :: CDeclr -> CDeclr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn ((CDeclr -> CDeclr) -> HappyAbsSyn
happyIn82 CDeclr -> CDeclr
r))

happyReduce_284 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_284 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_284 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 78# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_284
happyReduction_284 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_284 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P (CDeclr -> CDeclr)
-> ((CDeclr -> CDeclr) -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap73
happyOut73 HappyAbsSyn
happy_x_2 of { (HappyWrap73 happy_var_2 :: Reversed [CTypeQual]
happy_var_2) -> 
	( CToken -> (Attrs -> CDeclr -> CDeclr) -> P (CDeclr -> CDeclr)
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CDeclr -> CDeclr) -> P (CDeclr -> CDeclr))
-> (Attrs -> CDeclr -> CDeclr) -> P (CDeclr -> CDeclr)
forall a b. (a -> b) -> a -> b
$ \attrs :: Attrs
attrs declr :: CDeclr
declr -> CDeclr -> [CTypeQual] -> Maybe CExpr -> Attrs -> CDeclr
CArrDeclr CDeclr
declr (Reversed [CTypeQual] -> [CTypeQual]
forall a. Reversed [a] -> [a]
reverse Reversed [CTypeQual]
happy_var_2) Maybe CExpr
forall k1. Maybe k1
Nothing Attrs
attrs)}})
	) (\r :: CDeclr -> CDeclr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn ((CDeclr -> CDeclr) -> HappyAbsSyn
happyIn82 CDeclr -> CDeclr
r))

happyReduce_285 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_285 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_285 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 79# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_285
happyReduction_285 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_285 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDeclr -> (CDeclr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (Attrs -> CDeclr) -> P CDeclr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CDeclr) -> P CDeclr) -> (Attrs -> CDeclr) -> P CDeclr
forall a b. (a -> b) -> a -> b
$ [CTypeQual] -> CDeclr -> Attrs -> CDeclr
CPtrDeclr [] CDeclr
emptyDeclr)})
	) (\r :: CDeclr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclr -> HappyAbsSyn
happyIn83 CDeclr
r))

happyReduce_286 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_286 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_286 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 79# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_286
happyReduction_286 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_286 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDeclr -> (CDeclr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap73
happyOut73 HappyAbsSyn
happy_x_2 of { (HappyWrap73 happy_var_2 :: Reversed [CTypeQual]
happy_var_2) -> 
	( CToken -> (Attrs -> CDeclr) -> P CDeclr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CDeclr) -> P CDeclr) -> (Attrs -> CDeclr) -> P CDeclr
forall a b. (a -> b) -> a -> b
$ [CTypeQual] -> CDeclr -> Attrs -> CDeclr
CPtrDeclr (Reversed [CTypeQual] -> [CTypeQual]
forall a. Reversed [a] -> [a]
reverse Reversed [CTypeQual]
happy_var_2) CDeclr
emptyDeclr)}})
	) (\r :: CDeclr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclr -> HappyAbsSyn
happyIn83 CDeclr
r))

happyReduce_287 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_287 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_287 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 79# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_287
happyReduction_287 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_287 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDeclr -> (CDeclr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap79
happyOut79 HappyAbsSyn
happy_x_2 of { (HappyWrap79 happy_var_2 :: CDeclr
happy_var_2) -> 
	( CToken -> (Attrs -> CDeclr) -> P CDeclr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CDeclr) -> P CDeclr) -> (Attrs -> CDeclr) -> P CDeclr
forall a b. (a -> b) -> a -> b
$ [CTypeQual] -> CDeclr -> Attrs -> CDeclr
CPtrDeclr [] CDeclr
happy_var_2)}})
	) (\r :: CDeclr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclr -> HappyAbsSyn
happyIn83 CDeclr
r))

happyReduce_288 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_288 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_288 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 79# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_288
happyReduction_288 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_288 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDeclr -> (CDeclr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap73
happyOut73 HappyAbsSyn
happy_x_2 of { (HappyWrap73 happy_var_2 :: Reversed [CTypeQual]
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap79
happyOut79 HappyAbsSyn
happy_x_3 of { (HappyWrap79 happy_var_3 :: CDeclr
happy_var_3) -> 
	( CToken -> (Attrs -> CDeclr) -> P CDeclr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CDeclr) -> P CDeclr) -> (Attrs -> CDeclr) -> P CDeclr
forall a b. (a -> b) -> a -> b
$ [CTypeQual] -> CDeclr -> Attrs -> CDeclr
CPtrDeclr (Reversed [CTypeQual] -> [CTypeQual]
forall a. Reversed [a] -> [a]
reverse Reversed [CTypeQual]
happy_var_2) CDeclr
happy_var_3)}}})
	) (\r :: CDeclr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclr -> HappyAbsSyn
happyIn83 CDeclr
r))

happyReduce_289 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_289 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_289 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 79# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_289
happyReduction_289 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_289 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDeclr -> (CDeclr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (Attrs -> CDeclr) -> P CDeclr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CDeclr) -> P CDeclr) -> (Attrs -> CDeclr) -> P CDeclr
forall a b. (a -> b) -> a -> b
$ [CTypeQual] -> CDeclr -> Attrs -> CDeclr
CPtrDeclr [] CDeclr
emptyDeclr)})
	) (\r :: CDeclr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclr -> HappyAbsSyn
happyIn83 CDeclr
r))

happyReduce_290 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_290 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_290 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 79# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_290
happyReduction_290 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_290 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDeclr -> (CDeclr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap73
happyOut73 HappyAbsSyn
happy_x_3 of { (HappyWrap73 happy_var_3 :: Reversed [CTypeQual]
happy_var_3) -> 
	( CToken -> (Attrs -> CDeclr) -> P CDeclr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CDeclr) -> P CDeclr) -> (Attrs -> CDeclr) -> P CDeclr
forall a b. (a -> b) -> a -> b
$ [CTypeQual] -> CDeclr -> Attrs -> CDeclr
CPtrDeclr (Reversed [CTypeQual] -> [CTypeQual]
forall a. Reversed [a] -> [a]
reverse Reversed [CTypeQual]
happy_var_3) CDeclr
emptyDeclr)}})
	) (\r :: CDeclr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclr -> HappyAbsSyn
happyIn83 CDeclr
r))

happyReduce_291 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_291 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_291 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 79# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_291
happyReduction_291 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_291 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDeclr -> (CDeclr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap79
happyOut79 HappyAbsSyn
happy_x_3 of { (HappyWrap79 happy_var_3 :: CDeclr
happy_var_3) -> 
	( CToken -> (Attrs -> CDeclr) -> P CDeclr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CDeclr) -> P CDeclr) -> (Attrs -> CDeclr) -> P CDeclr
forall a b. (a -> b) -> a -> b
$ [CTypeQual] -> CDeclr -> Attrs -> CDeclr
CPtrDeclr [] CDeclr
happy_var_3)}})
	) (\r :: CDeclr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclr -> HappyAbsSyn
happyIn83 CDeclr
r))

happyReduce_292 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_292 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_292 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 79# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_292
happyReduction_292 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_292 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDeclr -> (CDeclr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap73
happyOut73 HappyAbsSyn
happy_x_3 of { (HappyWrap73 happy_var_3 :: Reversed [CTypeQual]
happy_var_3) -> 
	case HappyAbsSyn -> HappyWrap79
happyOut79 HappyAbsSyn
happy_x_4 of { (HappyWrap79 happy_var_4 :: CDeclr
happy_var_4) -> 
	( CToken -> (Attrs -> CDeclr) -> P CDeclr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CDeclr) -> P CDeclr) -> (Attrs -> CDeclr) -> P CDeclr
forall a b. (a -> b) -> a -> b
$ [CTypeQual] -> CDeclr -> Attrs -> CDeclr
CPtrDeclr (Reversed [CTypeQual] -> [CTypeQual]
forall a. Reversed [a] -> [a]
reverse Reversed [CTypeQual]
happy_var_3) CDeclr
happy_var_4)}}})
	) (\r :: CDeclr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclr -> HappyAbsSyn
happyIn83 CDeclr
r))

happyReduce_293 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_293 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_293 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  80# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p p. p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_293
happyReduction_293 :: p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_293 happy_x_3 :: p
happy_x_3
	happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: p
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap83
happyOut83 HappyAbsSyn
happy_x_2 of { (HappyWrap83 happy_var_2 :: CDeclr
happy_var_2) -> 
	CDeclr -> HappyAbsSyn
happyIn84
		 (CDeclr
happy_var_2
	)}

happyReduce_294 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_294 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_294 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  80# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p p. p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_294
happyReduction_294 :: p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_294 happy_x_3 :: p
happy_x_3
	happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: p
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap84
happyOut84 HappyAbsSyn
happy_x_2 of { (HappyWrap84 happy_var_2 :: CDeclr
happy_var_2) -> 
	CDeclr -> HappyAbsSyn
happyIn84
		 (CDeclr
happy_var_2
	)}

happyReduce_295 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_295 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_295 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  80# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p p. p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_295
happyReduction_295 :: p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_295 happy_x_3 :: p
happy_x_3
	happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: p
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap80
happyOut80 HappyAbsSyn
happy_x_2 of { (HappyWrap80 happy_var_2 :: CDeclr -> CDeclr
happy_var_2) -> 
	CDeclr -> HappyAbsSyn
happyIn84
		 (CDeclr -> CDeclr
happy_var_2 CDeclr
emptyDeclr
	)}

happyReduce_296 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_296 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_296 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce 4# 80# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_296
happyReduction_296 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_296 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest)
	 = case HappyAbsSyn -> HappyWrap83
happyOut83 HappyAbsSyn
happy_x_2 of { (HappyWrap83 happy_var_2 :: CDeclr
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap80
happyOut80 HappyAbsSyn
happy_x_4 of { (HappyWrap80 happy_var_4 :: CDeclr -> CDeclr
happy_var_4) -> 
	CDeclr -> HappyAbsSyn
happyIn84
		 (CDeclr -> CDeclr
happy_var_4 CDeclr
happy_var_2
	) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}

happyReduce_297 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_297 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_297 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce 4# 80# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_297
happyReduction_297 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_297 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest)
	 = case HappyAbsSyn -> HappyWrap83
happyOut83 HappyAbsSyn
happy_x_3 of { (HappyWrap83 happy_var_3 :: CDeclr
happy_var_3) -> 
	CDeclr -> HappyAbsSyn
happyIn84
		 (CDeclr
happy_var_3
	) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}

happyReduce_298 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_298 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_298 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce 4# 80# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_298
happyReduction_298 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_298 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest)
	 = case HappyAbsSyn -> HappyWrap84
happyOut84 HappyAbsSyn
happy_x_3 of { (HappyWrap84 happy_var_3 :: CDeclr
happy_var_3) -> 
	CDeclr -> HappyAbsSyn
happyIn84
		 (CDeclr
happy_var_3
	) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}

happyReduce_299 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_299 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_299 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce 4# 80# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_299
happyReduction_299 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_299 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest)
	 = case HappyAbsSyn -> HappyWrap80
happyOut80 HappyAbsSyn
happy_x_3 of { (HappyWrap80 happy_var_3 :: CDeclr -> CDeclr
happy_var_3) -> 
	CDeclr -> HappyAbsSyn
happyIn84
		 (CDeclr -> CDeclr
happy_var_3 CDeclr
emptyDeclr
	) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}

happyReduce_300 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_300 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_300 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce 5# 80# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_300
happyReduction_300 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_300 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest)
	 = case HappyAbsSyn -> HappyWrap83
happyOut83 HappyAbsSyn
happy_x_3 of { (HappyWrap83 happy_var_3 :: CDeclr
happy_var_3) -> 
	case HappyAbsSyn -> HappyWrap80
happyOut80 HappyAbsSyn
happy_x_5 of { (HappyWrap80 happy_var_5 :: CDeclr -> CDeclr
happy_var_5) -> 
	CDeclr -> HappyAbsSyn
happyIn84
		 (CDeclr -> CDeclr
happy_var_5 CDeclr
happy_var_3
	) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}

happyReduce_301 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_301 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_301 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  80# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_301
happyReduction_301 :: p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_301 happy_x_2 :: p
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap84
happyOut84 HappyAbsSyn
happy_x_1 of { (HappyWrap84 happy_var_1 :: CDeclr
happy_var_1) -> 
	CDeclr -> HappyAbsSyn
happyIn84
		 (CDeclr
happy_var_1
	)}

happyReduce_302 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_302 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_302 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 81# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_302
happyReduction_302 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_302 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CInit -> (CInit -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap110
happyOut110 HappyAbsSyn
happy_x_1 of { (HappyWrap110 happy_var_1 :: CExpr
happy_var_1) -> 
	( CExpr -> (Attrs -> CInit) -> P CInit
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CExpr
happy_var_1 ((Attrs -> CInit) -> P CInit) -> (Attrs -> CInit) -> P CInit
forall a b. (a -> b) -> a -> b
$ CExpr -> Attrs -> CInit
CInitExpr CExpr
happy_var_1)})
	) (\r :: CInit
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CInit -> HappyAbsSyn
happyIn85 CInit
r))

happyReduce_303 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_303 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_303 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 81# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_303
happyReduction_303 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_303 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CInit -> (CInit -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap87
happyOut87 HappyAbsSyn
happy_x_2 of { (HappyWrap87 happy_var_2 :: Reversed CInitList
happy_var_2) -> 
	( CToken -> (Attrs -> CInit) -> P CInit
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CInit) -> P CInit) -> (Attrs -> CInit) -> P CInit
forall a b. (a -> b) -> a -> b
$ CInitList -> Attrs -> CInit
CInitList (Reversed CInitList -> CInitList
forall a. Reversed [a] -> [a]
reverse Reversed CInitList
happy_var_2))}})
	) (\r :: CInit
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CInit -> HappyAbsSyn
happyIn85 CInit
r))

happyReduce_304 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_304 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_304 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 81# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_304
happyReduction_304 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_304 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CInit -> (CInit -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap87
happyOut87 HappyAbsSyn
happy_x_2 of { (HappyWrap87 happy_var_2 :: Reversed CInitList
happy_var_2) -> 
	( CToken -> (Attrs -> CInit) -> P CInit
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CInit) -> P CInit) -> (Attrs -> CInit) -> P CInit
forall a b. (a -> b) -> a -> b
$ CInitList -> Attrs -> CInit
CInitList (Reversed CInitList -> CInitList
forall a. Reversed [a] -> [a]
reverse Reversed CInitList
happy_var_2))}})
	) (\r :: CInit
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CInit -> HappyAbsSyn
happyIn85 CInit
r))

happyReduce_305 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_305 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_305 = Int#
-> HappyAbsSyn
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_0  82# HappyAbsSyn
happyReduction_305
happyReduction_305 :: HappyAbsSyn
happyReduction_305  =  Maybe CInit -> HappyAbsSyn
happyIn86
		 (Maybe CInit
forall k1. Maybe k1
Nothing
	)

happyReduce_306 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_306 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_306 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  82# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_306
happyReduction_306 :: HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_306 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: p
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap85
happyOut85 HappyAbsSyn
happy_x_2 of { (HappyWrap85 happy_var_2 :: CInit
happy_var_2) -> 
	Maybe CInit -> HappyAbsSyn
happyIn86
		 (CInit -> Maybe CInit
forall k1. k1 -> Maybe k1
Just CInit
happy_var_2
	)}

happyReduce_307 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_307 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_307 = Int#
-> HappyAbsSyn
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_0  83# HappyAbsSyn
happyReduction_307
happyReduction_307 :: HappyAbsSyn
happyReduction_307  =  Reversed CInitList -> HappyAbsSyn
happyIn87
		 (Reversed CInitList
forall a. Reversed [a]
empty
	)

happyReduce_308 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_308 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_308 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  83# HappyAbsSyn -> HappyAbsSyn
happyReduction_308
happyReduction_308 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_308 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap85
happyOut85 HappyAbsSyn
happy_x_1 of { (HappyWrap85 happy_var_1 :: CInit
happy_var_1) -> 
	Reversed CInitList -> HappyAbsSyn
happyIn87
		 (([CDesignator], CInit) -> Reversed CInitList
forall a. a -> Reversed [a]
singleton ([],CInit
happy_var_1)
	)}

happyReduce_309 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_309 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_309 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  83# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_309
happyReduction_309 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_309 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap88
happyOut88 HappyAbsSyn
happy_x_1 of { (HappyWrap88 happy_var_1 :: [CDesignator]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap85
happyOut85 HappyAbsSyn
happy_x_2 of { (HappyWrap85 happy_var_2 :: CInit
happy_var_2) -> 
	Reversed CInitList -> HappyAbsSyn
happyIn87
		 (([CDesignator], CInit) -> Reversed CInitList
forall a. a -> Reversed [a]
singleton ([CDesignator]
happy_var_1,CInit
happy_var_2)
	)}}

happyReduce_310 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_310 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_310 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  83# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_310
happyReduction_310 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_310 happy_x_3 :: HappyAbsSyn
happy_x_3
	happy_x_2 :: p
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap87
happyOut87 HappyAbsSyn
happy_x_1 of { (HappyWrap87 happy_var_1 :: Reversed CInitList
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap85
happyOut85 HappyAbsSyn
happy_x_3 of { (HappyWrap85 happy_var_3 :: CInit
happy_var_3) -> 
	Reversed CInitList -> HappyAbsSyn
happyIn87
		 (Reversed CInitList
happy_var_1 Reversed CInitList -> ([CDesignator], CInit) -> Reversed CInitList
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` ([],CInit
happy_var_3)
	)}}

happyReduce_311 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_311 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_311 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce 4# 83# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_311
happyReduction_311 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_311 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest)
	 = case HappyAbsSyn -> HappyWrap87
happyOut87 HappyAbsSyn
happy_x_1 of { (HappyWrap87 happy_var_1 :: Reversed CInitList
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap88
happyOut88 HappyAbsSyn
happy_x_3 of { (HappyWrap88 happy_var_3 :: [CDesignator]
happy_var_3) -> 
	case HappyAbsSyn -> HappyWrap85
happyOut85 HappyAbsSyn
happy_x_4 of { (HappyWrap85 happy_var_4 :: CInit
happy_var_4) -> 
	Reversed CInitList -> HappyAbsSyn
happyIn87
		 (Reversed CInitList
happy_var_1 Reversed CInitList -> ([CDesignator], CInit) -> Reversed CInitList
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` ([CDesignator]
happy_var_3,CInit
happy_var_4)
	) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}}

happyReduce_312 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_312 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_312 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  84# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_312
happyReduction_312 :: p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_312 happy_x_2 :: p
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap89
happyOut89 HappyAbsSyn
happy_x_1 of { (HappyWrap89 happy_var_1 :: Reversed [CDesignator]
happy_var_1) -> 
	[CDesignator] -> HappyAbsSyn
happyIn88
		 (Reversed [CDesignator] -> [CDesignator]
forall a. Reversed [a] -> [a]
reverse Reversed [CDesignator]
happy_var_1
	)}

happyReduce_313 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_313 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_313 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 84# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_313
happyReduction_313 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_313 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P [CDesignator]
-> ([CDesignator] -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap120
happyOut120 HappyAbsSyn
happy_x_1 of { (HappyWrap120 happy_var_1 :: Ident
happy_var_1) -> 
	( Ident -> (Attrs -> [CDesignator]) -> P [CDesignator]
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs Ident
happy_var_1 ((Attrs -> [CDesignator]) -> P [CDesignator])
-> (Attrs -> [CDesignator]) -> P [CDesignator]
forall a b. (a -> b) -> a -> b
$ \at :: Attrs
at -> [Ident -> Attrs -> CDesignator
CMemberDesig Ident
happy_var_1 Attrs
at])})
	) (\r :: [CDesignator]
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn ([CDesignator] -> HappyAbsSyn
happyIn88 [CDesignator]
r))

happyReduce_314 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_314 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_314 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  84# HappyAbsSyn -> HappyAbsSyn
happyReduction_314
happyReduction_314 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_314 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap91
happyOut91 HappyAbsSyn
happy_x_1 of { (HappyWrap91 happy_var_1 :: CDesignator
happy_var_1) -> 
	[CDesignator] -> HappyAbsSyn
happyIn88
		 ([CDesignator
happy_var_1]
	)}

happyReduce_315 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_315 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_315 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  85# HappyAbsSyn -> HappyAbsSyn
happyReduction_315
happyReduction_315 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_315 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap90
happyOut90 HappyAbsSyn
happy_x_1 of { (HappyWrap90 happy_var_1 :: CDesignator
happy_var_1) -> 
	Reversed [CDesignator] -> HappyAbsSyn
happyIn89
		 (CDesignator -> Reversed [CDesignator]
forall a. a -> Reversed [a]
singleton CDesignator
happy_var_1
	)}

happyReduce_316 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_316 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_316 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  85# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_316
happyReduction_316 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_316 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap89
happyOut89 HappyAbsSyn
happy_x_1 of { (HappyWrap89 happy_var_1 :: Reversed [CDesignator]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap90
happyOut90 HappyAbsSyn
happy_x_2 of { (HappyWrap90 happy_var_2 :: CDesignator
happy_var_2) -> 
	Reversed [CDesignator] -> HappyAbsSyn
happyIn89
		 (Reversed [CDesignator]
happy_var_1 Reversed [CDesignator] -> CDesignator -> Reversed [CDesignator]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CDesignator
happy_var_2
	)}}

happyReduce_317 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_317 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_317 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 86# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_317
happyReduction_317 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_317 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDesignator -> (CDesignator -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap116
happyOut116 HappyAbsSyn
happy_x_2 of { (HappyWrap116 happy_var_2 :: CExpr
happy_var_2) -> 
	( CToken -> (Attrs -> CDesignator) -> P CDesignator
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CDesignator) -> P CDesignator)
-> (Attrs -> CDesignator) -> P CDesignator
forall a b. (a -> b) -> a -> b
$ CExpr -> Attrs -> CDesignator
CArrDesig CExpr
happy_var_2)}})
	) (\r :: CDesignator
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDesignator -> HappyAbsSyn
happyIn90 CDesignator
r))

happyReduce_318 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_318 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_318 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 86# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_318
happyReduction_318 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_318 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDesignator -> (CDesignator -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap120
happyOut120 HappyAbsSyn
happy_x_2 of { (HappyWrap120 happy_var_2 :: Ident
happy_var_2) -> 
	( CToken -> (Attrs -> CDesignator) -> P CDesignator
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CDesignator) -> P CDesignator)
-> (Attrs -> CDesignator) -> P CDesignator
forall a b. (a -> b) -> a -> b
$ Ident -> Attrs -> CDesignator
CMemberDesig Ident
happy_var_2)}})
	) (\r :: CDesignator
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDesignator -> HappyAbsSyn
happyIn90 CDesignator
r))

happyReduce_319 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_319 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_319 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  86# HappyAbsSyn -> HappyAbsSyn
happyReduction_319
happyReduction_319 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_319 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap91
happyOut91 HappyAbsSyn
happy_x_1 of { (HappyWrap91 happy_var_1 :: CDesignator
happy_var_1) -> 
	CDesignator -> HappyAbsSyn
happyIn90
		 (CDesignator
happy_var_1
	)}

happyReduce_320 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_320 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_320 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 5# 87# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_320
happyReduction_320 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_320 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CDesignator -> (CDesignator -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap116
happyOut116 HappyAbsSyn
happy_x_2 of { (HappyWrap116 happy_var_2 :: CExpr
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap116
happyOut116 HappyAbsSyn
happy_x_4 of { (HappyWrap116 happy_var_4 :: CExpr
happy_var_4) -> 
	( CToken -> (Attrs -> CDesignator) -> P CDesignator
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CDesignator) -> P CDesignator)
-> (Attrs -> CDesignator) -> P CDesignator
forall a b. (a -> b) -> a -> b
$ CExpr -> CExpr -> Attrs -> CDesignator
CRangeDesig CExpr
happy_var_2 CExpr
happy_var_4)}}})
	) (\r :: CDesignator
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDesignator -> HappyAbsSyn
happyIn91 CDesignator
r))

happyReduce_321 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_321 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_321 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 88# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_321
happyReduction_321 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_321 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { (CTokIdent  _ happy_var_1 :: Ident
happy_var_1) -> 
	( Ident -> (Attrs -> CExpr) -> P CExpr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs Ident
happy_var_1 ((Attrs -> CExpr) -> P CExpr) -> (Attrs -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ Ident -> Attrs -> CExpr
CVar Ident
happy_var_1)})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn92 CExpr
r))

happyReduce_322 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_322 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_322 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 88# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_322
happyReduction_322 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_322 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap117
happyOut117 HappyAbsSyn
happy_x_1 of { (HappyWrap117 happy_var_1 :: CConst
happy_var_1) -> 
	( CConst -> (Attrs -> CExpr) -> P CExpr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CConst
happy_var_1 ((Attrs -> CExpr) -> P CExpr) -> (Attrs -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CConst -> Attrs -> CExpr
CConst CConst
happy_var_1)})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn92 CExpr
r))

happyReduce_323 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_323 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_323 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 88# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_323
happyReduction_323 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_323 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap118
happyOut118 HappyAbsSyn
happy_x_1 of { (HappyWrap118 happy_var_1 :: CConst
happy_var_1) -> 
	( CConst -> (Attrs -> CExpr) -> P CExpr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CConst
happy_var_1 ((Attrs -> CExpr) -> P CExpr) -> (Attrs -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CConst -> Attrs -> CExpr
CConst CConst
happy_var_1)})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn92 CExpr
r))

happyReduce_324 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_324 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_324 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  88# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p p. p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_324
happyReduction_324 :: p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_324 happy_x_3 :: p
happy_x_3
	happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: p
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap112
happyOut112 HappyAbsSyn
happy_x_2 of { (HappyWrap112 happy_var_2 :: CExpr
happy_var_2) -> 
	CExpr -> HappyAbsSyn
happyIn92
		 (CExpr
happy_var_2
	)}

happyReduce_325 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_325 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_325 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 88# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_325
happyReduction_325 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_325 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap12
happyOut12 HappyAbsSyn
happy_x_2 of { (HappyWrap12 happy_var_2 :: CStat
happy_var_2) -> 
	( CToken -> (Attrs -> CExpr) -> P CExpr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CExpr) -> P CExpr) -> (Attrs -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CStat -> Attrs -> CExpr
CStatExpr CStat
happy_var_2)}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn92 CExpr
r))

happyReduce_326 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_326 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_326 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 6# 88# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_326
happyReduction_326 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_326 (happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
	happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (Attrs -> CExpr) -> P CExpr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 Attrs -> CExpr
CBuiltinExpr)})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn92 CExpr
r))

happyReduce_327 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_327 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_327 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 6# 88# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_327
happyReduction_327 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_327 (happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
	happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (Attrs -> CExpr) -> P CExpr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 Attrs -> CExpr
CBuiltinExpr)})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn92 CExpr
r))

happyReduce_328 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_328 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_328 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 6# 88# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_328
happyReduction_328 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_328 (happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
	happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (Attrs -> CExpr) -> P CExpr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 Attrs -> CExpr
CBuiltinExpr)})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn92 CExpr
r))

happyReduce_329 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_329 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_329 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  89# HappyAbsSyn -> HappyAbsSyn
forall p. p -> HappyAbsSyn
happyReduction_329
happyReduction_329 :: p -> HappyAbsSyn
happyReduction_329 happy_x_1 :: p
happy_x_1
	 =  () -> HappyAbsSyn
happyIn93
		 (()
	)

happyReduce_330 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_330 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_330 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  89# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p p p. p -> p -> p -> HappyAbsSyn
happyReduction_330
happyReduction_330 :: p -> p -> p -> HappyAbsSyn
happyReduction_330 happy_x_3 :: p
happy_x_3
	happy_x_2 :: p
happy_x_2
	happy_x_1 :: p
happy_x_1
	 =  () -> HappyAbsSyn
happyIn93
		 (()
	)

happyReduce_331 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_331 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_331 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce 4# 89# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_331
happyReduction_331 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_331 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest)
	 = () -> HappyAbsSyn
happyIn93
		 (()
	) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest

happyReduce_332 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_332 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_332 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  90# HappyAbsSyn -> HappyAbsSyn
happyReduction_332
happyReduction_332 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_332 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap92
happyOut92 HappyAbsSyn
happy_x_1 of { (HappyWrap92 happy_var_1 :: CExpr
happy_var_1) -> 
	CExpr -> HappyAbsSyn
happyIn94
		 (CExpr
happy_var_1
	)}

happyReduce_333 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_333 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_333 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 90# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_333
happyReduction_333 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_333 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap94
happyOut94 HappyAbsSyn
happy_x_1 of { (HappyWrap94 happy_var_1 :: CExpr
happy_var_1) -> 
	case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_2 of { happy_var_2 :: CToken
happy_var_2 -> 
	case HappyAbsSyn -> HappyWrap112
happyOut112 HappyAbsSyn
happy_x_3 of { (HappyWrap112 happy_var_3 :: CExpr
happy_var_3) -> 
	( CToken -> (Attrs -> CExpr) -> P CExpr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_2 ((Attrs -> CExpr) -> P CExpr) -> (Attrs -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CExpr -> CExpr -> Attrs -> CExpr
CIndex CExpr
happy_var_1 CExpr
happy_var_3)}}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn94 CExpr
r))

happyReduce_334 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_334 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_334 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 90# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_334
happyReduction_334 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_334 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap94
happyOut94 HappyAbsSyn
happy_x_1 of { (HappyWrap94 happy_var_1 :: CExpr
happy_var_1) -> 
	case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_2 of { happy_var_2 :: CToken
happy_var_2 -> 
	( CToken -> (Attrs -> CExpr) -> P CExpr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_2 ((Attrs -> CExpr) -> P CExpr) -> (Attrs -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CExpr -> [CExpr] -> Attrs -> CExpr
CCall CExpr
happy_var_1 [])}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn94 CExpr
r))

happyReduce_335 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_335 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_335 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 90# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_335
happyReduction_335 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_335 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap94
happyOut94 HappyAbsSyn
happy_x_1 of { (HappyWrap94 happy_var_1 :: CExpr
happy_var_1) -> 
	case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_2 of { happy_var_2 :: CToken
happy_var_2 -> 
	case HappyAbsSyn -> HappyWrap95
happyOut95 HappyAbsSyn
happy_x_3 of { (HappyWrap95 happy_var_3 :: Reversed [CExpr]
happy_var_3) -> 
	( CToken -> (Attrs -> CExpr) -> P CExpr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_2 ((Attrs -> CExpr) -> P CExpr) -> (Attrs -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CExpr -> [CExpr] -> Attrs -> CExpr
CCall CExpr
happy_var_1 (Reversed [CExpr] -> [CExpr]
forall a. Reversed [a] -> [a]
reverse Reversed [CExpr]
happy_var_3))}}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn94 CExpr
r))

happyReduce_336 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_336 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_336 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 90# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_336
happyReduction_336 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_336 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap94
happyOut94 HappyAbsSyn
happy_x_1 of { (HappyWrap94 happy_var_1 :: CExpr
happy_var_1) -> 
	case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_2 of { happy_var_2 :: CToken
happy_var_2 -> 
	case HappyAbsSyn -> HappyWrap120
happyOut120 HappyAbsSyn
happy_x_3 of { (HappyWrap120 happy_var_3 :: Ident
happy_var_3) -> 
	( CToken -> (Attrs -> CExpr) -> P CExpr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_2 ((Attrs -> CExpr) -> P CExpr) -> (Attrs -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CExpr -> Ident -> Bool -> Attrs -> CExpr
CMember CExpr
happy_var_1 Ident
happy_var_3 Bool
False)}}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn94 CExpr
r))

happyReduce_337 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_337 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_337 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 90# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_337
happyReduction_337 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_337 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap94
happyOut94 HappyAbsSyn
happy_x_1 of { (HappyWrap94 happy_var_1 :: CExpr
happy_var_1) -> 
	case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_2 of { happy_var_2 :: CToken
happy_var_2 -> 
	case HappyAbsSyn -> HappyWrap120
happyOut120 HappyAbsSyn
happy_x_3 of { (HappyWrap120 happy_var_3 :: Ident
happy_var_3) -> 
	( CToken -> (Attrs -> CExpr) -> P CExpr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_2 ((Attrs -> CExpr) -> P CExpr) -> (Attrs -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CExpr -> Ident -> Bool -> Attrs -> CExpr
CMember CExpr
happy_var_1 Ident
happy_var_3 Bool
True)}}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn94 CExpr
r))

happyReduce_338 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_338 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_338 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 90# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_338
happyReduction_338 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_338 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap94
happyOut94 HappyAbsSyn
happy_x_1 of { (HappyWrap94 happy_var_1 :: CExpr
happy_var_1) -> 
	case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_2 of { happy_var_2 :: CToken
happy_var_2 -> 
	( CToken -> (Attrs -> CExpr) -> P CExpr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_2 ((Attrs -> CExpr) -> P CExpr) -> (Attrs -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CUnaryOp -> CExpr -> Attrs -> CExpr
CUnary CUnaryOp
CPostIncOp CExpr
happy_var_1)}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn94 CExpr
r))

happyReduce_339 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_339 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_339 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 90# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_339
happyReduction_339 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_339 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap94
happyOut94 HappyAbsSyn
happy_x_1 of { (HappyWrap94 happy_var_1 :: CExpr
happy_var_1) -> 
	case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_2 of { happy_var_2 :: CToken
happy_var_2 -> 
	( CToken -> (Attrs -> CExpr) -> P CExpr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_2 ((Attrs -> CExpr) -> P CExpr) -> (Attrs -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CUnaryOp -> CExpr -> Attrs -> CExpr
CUnary CUnaryOp
CPostDecOp CExpr
happy_var_1)}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn94 CExpr
r))

happyReduce_340 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_340 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_340 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 6# 90# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_340
happyReduction_340 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_340 (happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
	happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap78
happyOut78 HappyAbsSyn
happy_x_2 of { (HappyWrap78 happy_var_2 :: CDecl
happy_var_2) -> 
	case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_4 of { happy_var_4 :: CToken
happy_var_4 -> 
	case HappyAbsSyn -> HappyWrap87
happyOut87 HappyAbsSyn
happy_x_5 of { (HappyWrap87 happy_var_5 :: Reversed CInitList
happy_var_5) -> 
	( CToken -> (Attrs -> CExpr) -> P CExpr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_4 ((Attrs -> CExpr) -> P CExpr) -> (Attrs -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CDecl -> CInitList -> Attrs -> CExpr
CCompoundLit CDecl
happy_var_2 (Reversed CInitList -> CInitList
forall a. Reversed [a] -> [a]
reverse Reversed CInitList
happy_var_5))}}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn94 CExpr
r))

happyReduce_341 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_341 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_341 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 7# 90# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_341
happyReduction_341 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_341 (happy_x_7 :: HappyAbsSyn
happy_x_7 `HappyStk`
	happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
	happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap78
happyOut78 HappyAbsSyn
happy_x_2 of { (HappyWrap78 happy_var_2 :: CDecl
happy_var_2) -> 
	case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_4 of { happy_var_4 :: CToken
happy_var_4 -> 
	case HappyAbsSyn -> HappyWrap87
happyOut87 HappyAbsSyn
happy_x_5 of { (HappyWrap87 happy_var_5 :: Reversed CInitList
happy_var_5) -> 
	( CToken -> (Attrs -> CExpr) -> P CExpr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_4 ((Attrs -> CExpr) -> P CExpr) -> (Attrs -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CDecl -> CInitList -> Attrs -> CExpr
CCompoundLit CDecl
happy_var_2 (Reversed CInitList -> CInitList
forall a. Reversed [a] -> [a]
reverse Reversed CInitList
happy_var_5))}}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn94 CExpr
r))

happyReduce_342 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_342 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_342 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  91# HappyAbsSyn -> HappyAbsSyn
happyReduction_342
happyReduction_342 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_342 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap110
happyOut110 HappyAbsSyn
happy_x_1 of { (HappyWrap110 happy_var_1 :: CExpr
happy_var_1) -> 
	Reversed [CExpr] -> HappyAbsSyn
happyIn95
		 (CExpr -> Reversed [CExpr]
forall a. a -> Reversed [a]
singleton CExpr
happy_var_1
	)}

happyReduce_343 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_343 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_343 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  91# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_343
happyReduction_343 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_343 happy_x_3 :: HappyAbsSyn
happy_x_3
	happy_x_2 :: p
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap95
happyOut95 HappyAbsSyn
happy_x_1 of { (HappyWrap95 happy_var_1 :: Reversed [CExpr]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap110
happyOut110 HappyAbsSyn
happy_x_3 of { (HappyWrap110 happy_var_3 :: CExpr
happy_var_3) -> 
	Reversed [CExpr] -> HappyAbsSyn
happyIn95
		 (Reversed [CExpr]
happy_var_1 Reversed [CExpr] -> CExpr -> Reversed [CExpr]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CExpr
happy_var_3
	)}}

happyReduce_344 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_344 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_344 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  92# HappyAbsSyn -> HappyAbsSyn
happyReduction_344
happyReduction_344 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_344 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap94
happyOut94 HappyAbsSyn
happy_x_1 of { (HappyWrap94 happy_var_1 :: CExpr
happy_var_1) -> 
	CExpr -> HappyAbsSyn
happyIn96
		 (CExpr
happy_var_1
	)}

happyReduce_345 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_345 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_345 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 92# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_345
happyReduction_345 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_345 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap96
happyOut96 HappyAbsSyn
happy_x_2 of { (HappyWrap96 happy_var_2 :: CExpr
happy_var_2) -> 
	( CToken -> (Attrs -> CExpr) -> P CExpr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CExpr) -> P CExpr) -> (Attrs -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CUnaryOp -> CExpr -> Attrs -> CExpr
CUnary CUnaryOp
CPreIncOp CExpr
happy_var_2)}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn96 CExpr
r))

happyReduce_346 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_346 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_346 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 92# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_346
happyReduction_346 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_346 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap96
happyOut96 HappyAbsSyn
happy_x_2 of { (HappyWrap96 happy_var_2 :: CExpr
happy_var_2) -> 
	( CToken -> (Attrs -> CExpr) -> P CExpr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CExpr) -> P CExpr) -> (Attrs -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CUnaryOp -> CExpr -> Attrs -> CExpr
CUnary CUnaryOp
CPreDecOp CExpr
happy_var_2)}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn96 CExpr
r))

happyReduce_347 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_347 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_347 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  92# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_347
happyReduction_347 :: HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_347 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: p
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap98
happyOut98 HappyAbsSyn
happy_x_2 of { (HappyWrap98 happy_var_2 :: CExpr
happy_var_2) -> 
	CExpr -> HappyAbsSyn
happyIn96
		 (CExpr
happy_var_2
	)}

happyReduce_348 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_348 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_348 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 92# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_348
happyReduction_348 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_348 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap97
happyOut97 HappyAbsSyn
happy_x_1 of { (HappyWrap97 happy_var_1 :: Located CUnaryOp
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap98
happyOut98 HappyAbsSyn
happy_x_2 of { (HappyWrap98 happy_var_2 :: CExpr
happy_var_2) -> 
	( Located CUnaryOp -> (Attrs -> CExpr) -> P CExpr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs Located CUnaryOp
happy_var_1 ((Attrs -> CExpr) -> P CExpr) -> (Attrs -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CUnaryOp -> CExpr -> Attrs -> CExpr
CUnary (Located CUnaryOp -> CUnaryOp
forall a. Located a -> a
unL Located CUnaryOp
happy_var_1) CExpr
happy_var_2)}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn96 CExpr
r))

happyReduce_349 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_349 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_349 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 92# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_349
happyReduction_349 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_349 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap96
happyOut96 HappyAbsSyn
happy_x_2 of { (HappyWrap96 happy_var_2 :: CExpr
happy_var_2) -> 
	( CToken -> (Attrs -> CExpr) -> P CExpr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CExpr) -> P CExpr) -> (Attrs -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CExpr -> Attrs -> CExpr
CSizeofExpr CExpr
happy_var_2)}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn96 CExpr
r))

happyReduce_350 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_350 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_350 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 92# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_350
happyReduction_350 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_350 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap78
happyOut78 HappyAbsSyn
happy_x_3 of { (HappyWrap78 happy_var_3 :: CDecl
happy_var_3) -> 
	( CToken -> (Attrs -> CExpr) -> P CExpr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CExpr) -> P CExpr) -> (Attrs -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CDecl -> Attrs -> CExpr
CSizeofType CDecl
happy_var_3)}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn96 CExpr
r))

happyReduce_351 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_351 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_351 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 92# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_351
happyReduction_351 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_351 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap96
happyOut96 HappyAbsSyn
happy_x_2 of { (HappyWrap96 happy_var_2 :: CExpr
happy_var_2) -> 
	( CToken -> (Attrs -> CExpr) -> P CExpr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CExpr) -> P CExpr) -> (Attrs -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CExpr -> Attrs -> CExpr
CAlignofExpr CExpr
happy_var_2)}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn96 CExpr
r))

happyReduce_352 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_352 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_352 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 92# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_352
happyReduction_352 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_352 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap78
happyOut78 HappyAbsSyn
happy_x_3 of { (HappyWrap78 happy_var_3 :: CDecl
happy_var_3) -> 
	( CToken -> (Attrs -> CExpr) -> P CExpr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CExpr) -> P CExpr) -> (Attrs -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CDecl -> Attrs -> CExpr
CAlignofType CDecl
happy_var_3)}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn96 CExpr
r))

happyReduce_353 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_353 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_353 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 92# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_353
happyReduction_353 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_353 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap120
happyOut120 HappyAbsSyn
happy_x_2 of { (HappyWrap120 happy_var_2 :: Ident
happy_var_2) -> 
	( CToken -> (Attrs -> CExpr) -> P CExpr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CExpr) -> P CExpr) -> (Attrs -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ Ident -> Attrs -> CExpr
CLabAddrExpr Ident
happy_var_2)}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn96 CExpr
r))

happyReduce_354 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_354 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_354 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  93# HappyAbsSyn -> HappyAbsSyn
happyReduction_354
happyReduction_354 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_354 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	Located CUnaryOp -> HappyAbsSyn
happyIn97
		 (CUnaryOp -> Position -> Located CUnaryOp
forall a. a -> Position -> Located a
L CUnaryOp
CAdrOp  (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
	)}

happyReduce_355 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_355 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_355 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  93# HappyAbsSyn -> HappyAbsSyn
happyReduction_355
happyReduction_355 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_355 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	Located CUnaryOp -> HappyAbsSyn
happyIn97
		 (CUnaryOp -> Position -> Located CUnaryOp
forall a. a -> Position -> Located a
L CUnaryOp
CIndOp  (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
	)}

happyReduce_356 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_356 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_356 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  93# HappyAbsSyn -> HappyAbsSyn
happyReduction_356
happyReduction_356 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_356 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	Located CUnaryOp -> HappyAbsSyn
happyIn97
		 (CUnaryOp -> Position -> Located CUnaryOp
forall a. a -> Position -> Located a
L CUnaryOp
CPlusOp (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
	)}

happyReduce_357 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_357 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_357 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  93# HappyAbsSyn -> HappyAbsSyn
happyReduction_357
happyReduction_357 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_357 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	Located CUnaryOp -> HappyAbsSyn
happyIn97
		 (CUnaryOp -> Position -> Located CUnaryOp
forall a. a -> Position -> Located a
L CUnaryOp
CMinOp  (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
	)}

happyReduce_358 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_358 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_358 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  93# HappyAbsSyn -> HappyAbsSyn
happyReduction_358
happyReduction_358 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_358 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	Located CUnaryOp -> HappyAbsSyn
happyIn97
		 (CUnaryOp -> Position -> Located CUnaryOp
forall a. a -> Position -> Located a
L CUnaryOp
CCompOp (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
	)}

happyReduce_359 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_359 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_359 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  93# HappyAbsSyn -> HappyAbsSyn
happyReduction_359
happyReduction_359 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_359 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	Located CUnaryOp -> HappyAbsSyn
happyIn97
		 (CUnaryOp -> Position -> Located CUnaryOp
forall a. a -> Position -> Located a
L CUnaryOp
CNegOp  (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
	)}

happyReduce_360 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_360 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_360 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  94# HappyAbsSyn -> HappyAbsSyn
happyReduction_360
happyReduction_360 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_360 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap96
happyOut96 HappyAbsSyn
happy_x_1 of { (HappyWrap96 happy_var_1 :: CExpr
happy_var_1) -> 
	CExpr -> HappyAbsSyn
happyIn98
		 (CExpr
happy_var_1
	)}

happyReduce_361 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_361 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_361 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 94# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_361
happyReduction_361 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_361 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap78
happyOut78 HappyAbsSyn
happy_x_2 of { (HappyWrap78 happy_var_2 :: CDecl
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap98
happyOut98 HappyAbsSyn
happy_x_4 of { (HappyWrap98 happy_var_4 :: CExpr
happy_var_4) -> 
	( CToken -> (Attrs -> CExpr) -> P CExpr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CExpr) -> P CExpr) -> (Attrs -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CDecl -> CExpr -> Attrs -> CExpr
CCast CDecl
happy_var_2 CExpr
happy_var_4)}}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn98 CExpr
r))

happyReduce_362 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_362 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_362 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  95# HappyAbsSyn -> HappyAbsSyn
happyReduction_362
happyReduction_362 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_362 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap98
happyOut98 HappyAbsSyn
happy_x_1 of { (HappyWrap98 happy_var_1 :: CExpr
happy_var_1) -> 
	CExpr -> HappyAbsSyn
happyIn99
		 (CExpr
happy_var_1
	)}

happyReduce_363 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_363 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_363 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 95# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_363
happyReduction_363 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_363 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap99
happyOut99 HappyAbsSyn
happy_x_1 of { (HappyWrap99 happy_var_1 :: CExpr
happy_var_1) -> 
	case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_2 of { happy_var_2 :: CToken
happy_var_2 -> 
	case HappyAbsSyn -> HappyWrap98
happyOut98 HappyAbsSyn
happy_x_3 of { (HappyWrap98 happy_var_3 :: CExpr
happy_var_3) -> 
	( CToken -> (Attrs -> CExpr) -> P CExpr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_2 ((Attrs -> CExpr) -> P CExpr) -> (Attrs -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBinaryOp -> CExpr -> CExpr -> Attrs -> CExpr
CBinary CBinaryOp
CMulOp CExpr
happy_var_1 CExpr
happy_var_3)}}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn99 CExpr
r))

happyReduce_364 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_364 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_364 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 95# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_364
happyReduction_364 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_364 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap99
happyOut99 HappyAbsSyn
happy_x_1 of { (HappyWrap99 happy_var_1 :: CExpr
happy_var_1) -> 
	case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_2 of { happy_var_2 :: CToken
happy_var_2 -> 
	case HappyAbsSyn -> HappyWrap98
happyOut98 HappyAbsSyn
happy_x_3 of { (HappyWrap98 happy_var_3 :: CExpr
happy_var_3) -> 
	( CToken -> (Attrs -> CExpr) -> P CExpr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_2 ((Attrs -> CExpr) -> P CExpr) -> (Attrs -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBinaryOp -> CExpr -> CExpr -> Attrs -> CExpr
CBinary CBinaryOp
CDivOp CExpr
happy_var_1 CExpr
happy_var_3)}}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn99 CExpr
r))

happyReduce_365 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_365 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_365 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 95# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_365
happyReduction_365 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_365 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap99
happyOut99 HappyAbsSyn
happy_x_1 of { (HappyWrap99 happy_var_1 :: CExpr
happy_var_1) -> 
	case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_2 of { happy_var_2 :: CToken
happy_var_2 -> 
	case HappyAbsSyn -> HappyWrap98
happyOut98 HappyAbsSyn
happy_x_3 of { (HappyWrap98 happy_var_3 :: CExpr
happy_var_3) -> 
	( CToken -> (Attrs -> CExpr) -> P CExpr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_2 ((Attrs -> CExpr) -> P CExpr) -> (Attrs -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBinaryOp -> CExpr -> CExpr -> Attrs -> CExpr
CBinary CBinaryOp
CRmdOp CExpr
happy_var_1 CExpr
happy_var_3)}}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn99 CExpr
r))

happyReduce_366 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_366 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_366 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  96# HappyAbsSyn -> HappyAbsSyn
happyReduction_366
happyReduction_366 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_366 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap99
happyOut99 HappyAbsSyn
happy_x_1 of { (HappyWrap99 happy_var_1 :: CExpr
happy_var_1) -> 
	CExpr -> HappyAbsSyn
happyIn100
		 (CExpr
happy_var_1
	)}

happyReduce_367 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_367 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_367 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 96# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_367
happyReduction_367 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_367 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap100
happyOut100 HappyAbsSyn
happy_x_1 of { (HappyWrap100 happy_var_1 :: CExpr
happy_var_1) -> 
	case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_2 of { happy_var_2 :: CToken
happy_var_2 -> 
	case HappyAbsSyn -> HappyWrap99
happyOut99 HappyAbsSyn
happy_x_3 of { (HappyWrap99 happy_var_3 :: CExpr
happy_var_3) -> 
	( CToken -> (Attrs -> CExpr) -> P CExpr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_2 ((Attrs -> CExpr) -> P CExpr) -> (Attrs -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBinaryOp -> CExpr -> CExpr -> Attrs -> CExpr
CBinary CBinaryOp
CAddOp CExpr
happy_var_1 CExpr
happy_var_3)}}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn100 CExpr
r))

happyReduce_368 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_368 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_368 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 96# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_368
happyReduction_368 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_368 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap100
happyOut100 HappyAbsSyn
happy_x_1 of { (HappyWrap100 happy_var_1 :: CExpr
happy_var_1) -> 
	case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_2 of { happy_var_2 :: CToken
happy_var_2 -> 
	case HappyAbsSyn -> HappyWrap99
happyOut99 HappyAbsSyn
happy_x_3 of { (HappyWrap99 happy_var_3 :: CExpr
happy_var_3) -> 
	( CToken -> (Attrs -> CExpr) -> P CExpr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_2 ((Attrs -> CExpr) -> P CExpr) -> (Attrs -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBinaryOp -> CExpr -> CExpr -> Attrs -> CExpr
CBinary CBinaryOp
CSubOp CExpr
happy_var_1 CExpr
happy_var_3)}}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn100 CExpr
r))

happyReduce_369 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_369 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_369 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  97# HappyAbsSyn -> HappyAbsSyn
happyReduction_369
happyReduction_369 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_369 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap100
happyOut100 HappyAbsSyn
happy_x_1 of { (HappyWrap100 happy_var_1 :: CExpr
happy_var_1) -> 
	CExpr -> HappyAbsSyn
happyIn101
		 (CExpr
happy_var_1
	)}

happyReduce_370 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_370 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_370 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 97# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_370
happyReduction_370 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_370 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap101
happyOut101 HappyAbsSyn
happy_x_1 of { (HappyWrap101 happy_var_1 :: CExpr
happy_var_1) -> 
	case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_2 of { happy_var_2 :: CToken
happy_var_2 -> 
	case HappyAbsSyn -> HappyWrap100
happyOut100 HappyAbsSyn
happy_x_3 of { (HappyWrap100 happy_var_3 :: CExpr
happy_var_3) -> 
	( CToken -> (Attrs -> CExpr) -> P CExpr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_2 ((Attrs -> CExpr) -> P CExpr) -> (Attrs -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBinaryOp -> CExpr -> CExpr -> Attrs -> CExpr
CBinary CBinaryOp
CShlOp CExpr
happy_var_1 CExpr
happy_var_3)}}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn101 CExpr
r))

happyReduce_371 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_371 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_371 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 97# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_371
happyReduction_371 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_371 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap101
happyOut101 HappyAbsSyn
happy_x_1 of { (HappyWrap101 happy_var_1 :: CExpr
happy_var_1) -> 
	case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_2 of { happy_var_2 :: CToken
happy_var_2 -> 
	case HappyAbsSyn -> HappyWrap100
happyOut100 HappyAbsSyn
happy_x_3 of { (HappyWrap100 happy_var_3 :: CExpr
happy_var_3) -> 
	( CToken -> (Attrs -> CExpr) -> P CExpr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_2 ((Attrs -> CExpr) -> P CExpr) -> (Attrs -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBinaryOp -> CExpr -> CExpr -> Attrs -> CExpr
CBinary CBinaryOp
CShrOp CExpr
happy_var_1 CExpr
happy_var_3)}}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn101 CExpr
r))

happyReduce_372 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_372 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_372 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  98# HappyAbsSyn -> HappyAbsSyn
happyReduction_372
happyReduction_372 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_372 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap101
happyOut101 HappyAbsSyn
happy_x_1 of { (HappyWrap101 happy_var_1 :: CExpr
happy_var_1) -> 
	CExpr -> HappyAbsSyn
happyIn102
		 (CExpr
happy_var_1
	)}

happyReduce_373 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_373 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_373 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 98# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_373
happyReduction_373 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_373 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap102
happyOut102 HappyAbsSyn
happy_x_1 of { (HappyWrap102 happy_var_1 :: CExpr
happy_var_1) -> 
	case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_2 of { happy_var_2 :: CToken
happy_var_2 -> 
	case HappyAbsSyn -> HappyWrap101
happyOut101 HappyAbsSyn
happy_x_3 of { (HappyWrap101 happy_var_3 :: CExpr
happy_var_3) -> 
	( CToken -> (Attrs -> CExpr) -> P CExpr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_2 ((Attrs -> CExpr) -> P CExpr) -> (Attrs -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBinaryOp -> CExpr -> CExpr -> Attrs -> CExpr
CBinary CBinaryOp
CLeOp CExpr
happy_var_1 CExpr
happy_var_3)}}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn102 CExpr
r))

happyReduce_374 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_374 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_374 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 98# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_374
happyReduction_374 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_374 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap102
happyOut102 HappyAbsSyn
happy_x_1 of { (HappyWrap102 happy_var_1 :: CExpr
happy_var_1) -> 
	case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_2 of { happy_var_2 :: CToken
happy_var_2 -> 
	case HappyAbsSyn -> HappyWrap101
happyOut101 HappyAbsSyn
happy_x_3 of { (HappyWrap101 happy_var_3 :: CExpr
happy_var_3) -> 
	( CToken -> (Attrs -> CExpr) -> P CExpr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_2 ((Attrs -> CExpr) -> P CExpr) -> (Attrs -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBinaryOp -> CExpr -> CExpr -> Attrs -> CExpr
CBinary CBinaryOp
CGrOp CExpr
happy_var_1 CExpr
happy_var_3)}}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn102 CExpr
r))

happyReduce_375 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_375 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_375 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 98# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_375
happyReduction_375 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_375 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap102
happyOut102 HappyAbsSyn
happy_x_1 of { (HappyWrap102 happy_var_1 :: CExpr
happy_var_1) -> 
	case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_2 of { happy_var_2 :: CToken
happy_var_2 -> 
	case HappyAbsSyn -> HappyWrap101
happyOut101 HappyAbsSyn
happy_x_3 of { (HappyWrap101 happy_var_3 :: CExpr
happy_var_3) -> 
	( CToken -> (Attrs -> CExpr) -> P CExpr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_2 ((Attrs -> CExpr) -> P CExpr) -> (Attrs -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBinaryOp -> CExpr -> CExpr -> Attrs -> CExpr
CBinary CBinaryOp
CLeqOp CExpr
happy_var_1 CExpr
happy_var_3)}}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn102 CExpr
r))

happyReduce_376 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_376 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_376 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 98# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_376
happyReduction_376 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_376 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap102
happyOut102 HappyAbsSyn
happy_x_1 of { (HappyWrap102 happy_var_1 :: CExpr
happy_var_1) -> 
	case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_2 of { happy_var_2 :: CToken
happy_var_2 -> 
	case HappyAbsSyn -> HappyWrap101
happyOut101 HappyAbsSyn
happy_x_3 of { (HappyWrap101 happy_var_3 :: CExpr
happy_var_3) -> 
	( CToken -> (Attrs -> CExpr) -> P CExpr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_2 ((Attrs -> CExpr) -> P CExpr) -> (Attrs -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBinaryOp -> CExpr -> CExpr -> Attrs -> CExpr
CBinary CBinaryOp
CGeqOp CExpr
happy_var_1 CExpr
happy_var_3)}}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn102 CExpr
r))

happyReduce_377 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_377 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_377 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  99# HappyAbsSyn -> HappyAbsSyn
happyReduction_377
happyReduction_377 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_377 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap102
happyOut102 HappyAbsSyn
happy_x_1 of { (HappyWrap102 happy_var_1 :: CExpr
happy_var_1) -> 
	CExpr -> HappyAbsSyn
happyIn103
		 (CExpr
happy_var_1
	)}

happyReduce_378 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_378 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_378 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 99# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_378
happyReduction_378 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_378 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap103
happyOut103 HappyAbsSyn
happy_x_1 of { (HappyWrap103 happy_var_1 :: CExpr
happy_var_1) -> 
	case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_2 of { happy_var_2 :: CToken
happy_var_2 -> 
	case HappyAbsSyn -> HappyWrap102
happyOut102 HappyAbsSyn
happy_x_3 of { (HappyWrap102 happy_var_3 :: CExpr
happy_var_3) -> 
	( CToken -> (Attrs -> CExpr) -> P CExpr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_2 ((Attrs -> CExpr) -> P CExpr) -> (Attrs -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBinaryOp -> CExpr -> CExpr -> Attrs -> CExpr
CBinary CBinaryOp
CEqOp  CExpr
happy_var_1 CExpr
happy_var_3)}}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn103 CExpr
r))

happyReduce_379 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_379 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_379 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 99# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_379
happyReduction_379 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_379 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap103
happyOut103 HappyAbsSyn
happy_x_1 of { (HappyWrap103 happy_var_1 :: CExpr
happy_var_1) -> 
	case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_2 of { happy_var_2 :: CToken
happy_var_2 -> 
	case HappyAbsSyn -> HappyWrap102
happyOut102 HappyAbsSyn
happy_x_3 of { (HappyWrap102 happy_var_3 :: CExpr
happy_var_3) -> 
	( CToken -> (Attrs -> CExpr) -> P CExpr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_2 ((Attrs -> CExpr) -> P CExpr) -> (Attrs -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBinaryOp -> CExpr -> CExpr -> Attrs -> CExpr
CBinary CBinaryOp
CNeqOp CExpr
happy_var_1 CExpr
happy_var_3)}}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn103 CExpr
r))

happyReduce_380 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_380 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_380 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  100# HappyAbsSyn -> HappyAbsSyn
happyReduction_380
happyReduction_380 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_380 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap103
happyOut103 HappyAbsSyn
happy_x_1 of { (HappyWrap103 happy_var_1 :: CExpr
happy_var_1) -> 
	CExpr -> HappyAbsSyn
happyIn104
		 (CExpr
happy_var_1
	)}

happyReduce_381 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_381 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_381 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 100# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_381
happyReduction_381 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_381 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap104
happyOut104 HappyAbsSyn
happy_x_1 of { (HappyWrap104 happy_var_1 :: CExpr
happy_var_1) -> 
	case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_2 of { happy_var_2 :: CToken
happy_var_2 -> 
	case HappyAbsSyn -> HappyWrap103
happyOut103 HappyAbsSyn
happy_x_3 of { (HappyWrap103 happy_var_3 :: CExpr
happy_var_3) -> 
	( CToken -> (Attrs -> CExpr) -> P CExpr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_2 ((Attrs -> CExpr) -> P CExpr) -> (Attrs -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBinaryOp -> CExpr -> CExpr -> Attrs -> CExpr
CBinary CBinaryOp
CAndOp CExpr
happy_var_1 CExpr
happy_var_3)}}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn104 CExpr
r))

happyReduce_382 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_382 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_382 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  101# HappyAbsSyn -> HappyAbsSyn
happyReduction_382
happyReduction_382 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_382 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap104
happyOut104 HappyAbsSyn
happy_x_1 of { (HappyWrap104 happy_var_1 :: CExpr
happy_var_1) -> 
	CExpr -> HappyAbsSyn
happyIn105
		 (CExpr
happy_var_1
	)}

happyReduce_383 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_383 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_383 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 101# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_383
happyReduction_383 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_383 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap105
happyOut105 HappyAbsSyn
happy_x_1 of { (HappyWrap105 happy_var_1 :: CExpr
happy_var_1) -> 
	case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_2 of { happy_var_2 :: CToken
happy_var_2 -> 
	case HappyAbsSyn -> HappyWrap104
happyOut104 HappyAbsSyn
happy_x_3 of { (HappyWrap104 happy_var_3 :: CExpr
happy_var_3) -> 
	( CToken -> (Attrs -> CExpr) -> P CExpr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_2 ((Attrs -> CExpr) -> P CExpr) -> (Attrs -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBinaryOp -> CExpr -> CExpr -> Attrs -> CExpr
CBinary CBinaryOp
CXorOp CExpr
happy_var_1 CExpr
happy_var_3)}}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn105 CExpr
r))

happyReduce_384 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_384 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_384 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  102# HappyAbsSyn -> HappyAbsSyn
happyReduction_384
happyReduction_384 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_384 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap105
happyOut105 HappyAbsSyn
happy_x_1 of { (HappyWrap105 happy_var_1 :: CExpr
happy_var_1) -> 
	CExpr -> HappyAbsSyn
happyIn106
		 (CExpr
happy_var_1
	)}

happyReduce_385 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_385 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_385 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 102# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_385
happyReduction_385 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_385 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap106
happyOut106 HappyAbsSyn
happy_x_1 of { (HappyWrap106 happy_var_1 :: CExpr
happy_var_1) -> 
	case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_2 of { happy_var_2 :: CToken
happy_var_2 -> 
	case HappyAbsSyn -> HappyWrap105
happyOut105 HappyAbsSyn
happy_x_3 of { (HappyWrap105 happy_var_3 :: CExpr
happy_var_3) -> 
	( CToken -> (Attrs -> CExpr) -> P CExpr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_2 ((Attrs -> CExpr) -> P CExpr) -> (Attrs -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBinaryOp -> CExpr -> CExpr -> Attrs -> CExpr
CBinary CBinaryOp
COrOp CExpr
happy_var_1 CExpr
happy_var_3)}}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn106 CExpr
r))

happyReduce_386 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_386 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_386 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  103# HappyAbsSyn -> HappyAbsSyn
happyReduction_386
happyReduction_386 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_386 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap106
happyOut106 HappyAbsSyn
happy_x_1 of { (HappyWrap106 happy_var_1 :: CExpr
happy_var_1) -> 
	CExpr -> HappyAbsSyn
happyIn107
		 (CExpr
happy_var_1
	)}

happyReduce_387 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_387 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_387 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 103# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_387
happyReduction_387 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_387 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap107
happyOut107 HappyAbsSyn
happy_x_1 of { (HappyWrap107 happy_var_1 :: CExpr
happy_var_1) -> 
	case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_2 of { happy_var_2 :: CToken
happy_var_2 -> 
	case HappyAbsSyn -> HappyWrap106
happyOut106 HappyAbsSyn
happy_x_3 of { (HappyWrap106 happy_var_3 :: CExpr
happy_var_3) -> 
	( CToken -> (Attrs -> CExpr) -> P CExpr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_2 ((Attrs -> CExpr) -> P CExpr) -> (Attrs -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBinaryOp -> CExpr -> CExpr -> Attrs -> CExpr
CBinary CBinaryOp
CLndOp CExpr
happy_var_1 CExpr
happy_var_3)}}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn107 CExpr
r))

happyReduce_388 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_388 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_388 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  104# HappyAbsSyn -> HappyAbsSyn
happyReduction_388
happyReduction_388 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_388 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap107
happyOut107 HappyAbsSyn
happy_x_1 of { (HappyWrap107 happy_var_1 :: CExpr
happy_var_1) -> 
	CExpr -> HappyAbsSyn
happyIn108
		 (CExpr
happy_var_1
	)}

happyReduce_389 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_389 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_389 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 104# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_389
happyReduction_389 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_389 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap108
happyOut108 HappyAbsSyn
happy_x_1 of { (HappyWrap108 happy_var_1 :: CExpr
happy_var_1) -> 
	case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_2 of { happy_var_2 :: CToken
happy_var_2 -> 
	case HappyAbsSyn -> HappyWrap107
happyOut107 HappyAbsSyn
happy_x_3 of { (HappyWrap107 happy_var_3 :: CExpr
happy_var_3) -> 
	( CToken -> (Attrs -> CExpr) -> P CExpr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_2 ((Attrs -> CExpr) -> P CExpr) -> (Attrs -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBinaryOp -> CExpr -> CExpr -> Attrs -> CExpr
CBinary CBinaryOp
CLorOp CExpr
happy_var_1 CExpr
happy_var_3)}}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn108 CExpr
r))

happyReduce_390 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_390 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_390 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  105# HappyAbsSyn -> HappyAbsSyn
happyReduction_390
happyReduction_390 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_390 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap108
happyOut108 HappyAbsSyn
happy_x_1 of { (HappyWrap108 happy_var_1 :: CExpr
happy_var_1) -> 
	CExpr -> HappyAbsSyn
happyIn109
		 (CExpr
happy_var_1
	)}

happyReduce_391 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_391 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_391 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 5# 105# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_391
happyReduction_391 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_391 (happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap108
happyOut108 HappyAbsSyn
happy_x_1 of { (HappyWrap108 happy_var_1 :: CExpr
happy_var_1) -> 
	case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_2 of { happy_var_2 :: CToken
happy_var_2 -> 
	case HappyAbsSyn -> HappyWrap112
happyOut112 HappyAbsSyn
happy_x_3 of { (HappyWrap112 happy_var_3 :: CExpr
happy_var_3) -> 
	case HappyAbsSyn -> HappyWrap109
happyOut109 HappyAbsSyn
happy_x_5 of { (HappyWrap109 happy_var_5 :: CExpr
happy_var_5) -> 
	( CToken -> (Attrs -> CExpr) -> P CExpr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_2 ((Attrs -> CExpr) -> P CExpr) -> (Attrs -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CExpr -> Maybe CExpr -> CExpr -> Attrs -> CExpr
CCond CExpr
happy_var_1 (CExpr -> Maybe CExpr
forall k1. k1 -> Maybe k1
Just CExpr
happy_var_3) CExpr
happy_var_5)}}}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn109 CExpr
r))

happyReduce_392 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_392 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_392 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 4# 105# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_392
happyReduction_392 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_392 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap108
happyOut108 HappyAbsSyn
happy_x_1 of { (HappyWrap108 happy_var_1 :: CExpr
happy_var_1) -> 
	case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_2 of { happy_var_2 :: CToken
happy_var_2 -> 
	case HappyAbsSyn -> HappyWrap109
happyOut109 HappyAbsSyn
happy_x_4 of { (HappyWrap109 happy_var_4 :: CExpr
happy_var_4) -> 
	( CToken -> (Attrs -> CExpr) -> P CExpr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_2 ((Attrs -> CExpr) -> P CExpr) -> (Attrs -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CExpr -> Maybe CExpr -> CExpr -> Attrs -> CExpr
CCond CExpr
happy_var_1 Maybe CExpr
forall k1. Maybe k1
Nothing CExpr
happy_var_4)}}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn109 CExpr
r))

happyReduce_393 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_393 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_393 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  106# HappyAbsSyn -> HappyAbsSyn
happyReduction_393
happyReduction_393 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_393 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap109
happyOut109 HappyAbsSyn
happy_x_1 of { (HappyWrap109 happy_var_1 :: CExpr
happy_var_1) -> 
	CExpr -> HappyAbsSyn
happyIn110
		 (CExpr
happy_var_1
	)}

happyReduce_394 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_394 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_394 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 106# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_394
happyReduction_394 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_394 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap96
happyOut96 HappyAbsSyn
happy_x_1 of { (HappyWrap96 happy_var_1 :: CExpr
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap111
happyOut111 HappyAbsSyn
happy_x_2 of { (HappyWrap111 happy_var_2 :: Located CAssignOp
happy_var_2) -> 
	case HappyAbsSyn -> HappyWrap110
happyOut110 HappyAbsSyn
happy_x_3 of { (HappyWrap110 happy_var_3 :: CExpr
happy_var_3) -> 
	( Located CAssignOp -> (Attrs -> CExpr) -> P CExpr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs Located CAssignOp
happy_var_2 ((Attrs -> CExpr) -> P CExpr) -> (Attrs -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CAssignOp -> CExpr -> CExpr -> Attrs -> CExpr
CAssign (Located CAssignOp -> CAssignOp
forall a. Located a -> a
unL Located CAssignOp
happy_var_2) CExpr
happy_var_1 CExpr
happy_var_3)}}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn110 CExpr
r))

happyReduce_395 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_395 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_395 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  107# HappyAbsSyn -> HappyAbsSyn
happyReduction_395
happyReduction_395 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_395 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	Located CAssignOp -> HappyAbsSyn
happyIn111
		 (CAssignOp -> Position -> Located CAssignOp
forall a. a -> Position -> Located a
L CAssignOp
CAssignOp (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
	)}

happyReduce_396 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_396 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_396 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  107# HappyAbsSyn -> HappyAbsSyn
happyReduction_396
happyReduction_396 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_396 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	Located CAssignOp -> HappyAbsSyn
happyIn111
		 (CAssignOp -> Position -> Located CAssignOp
forall a. a -> Position -> Located a
L CAssignOp
CMulAssOp (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
	)}

happyReduce_397 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_397 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_397 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  107# HappyAbsSyn -> HappyAbsSyn
happyReduction_397
happyReduction_397 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_397 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	Located CAssignOp -> HappyAbsSyn
happyIn111
		 (CAssignOp -> Position -> Located CAssignOp
forall a. a -> Position -> Located a
L CAssignOp
CDivAssOp (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
	)}

happyReduce_398 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_398 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_398 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  107# HappyAbsSyn -> HappyAbsSyn
happyReduction_398
happyReduction_398 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_398 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	Located CAssignOp -> HappyAbsSyn
happyIn111
		 (CAssignOp -> Position -> Located CAssignOp
forall a. a -> Position -> Located a
L CAssignOp
CRmdAssOp (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
	)}

happyReduce_399 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_399 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_399 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  107# HappyAbsSyn -> HappyAbsSyn
happyReduction_399
happyReduction_399 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_399 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	Located CAssignOp -> HappyAbsSyn
happyIn111
		 (CAssignOp -> Position -> Located CAssignOp
forall a. a -> Position -> Located a
L CAssignOp
CAddAssOp (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
	)}

happyReduce_400 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_400 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_400 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  107# HappyAbsSyn -> HappyAbsSyn
happyReduction_400
happyReduction_400 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_400 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	Located CAssignOp -> HappyAbsSyn
happyIn111
		 (CAssignOp -> Position -> Located CAssignOp
forall a. a -> Position -> Located a
L CAssignOp
CSubAssOp (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
	)}

happyReduce_401 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_401 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_401 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  107# HappyAbsSyn -> HappyAbsSyn
happyReduction_401
happyReduction_401 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_401 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	Located CAssignOp -> HappyAbsSyn
happyIn111
		 (CAssignOp -> Position -> Located CAssignOp
forall a. a -> Position -> Located a
L CAssignOp
CShlAssOp (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
	)}

happyReduce_402 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_402 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_402 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  107# HappyAbsSyn -> HappyAbsSyn
happyReduction_402
happyReduction_402 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_402 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	Located CAssignOp -> HappyAbsSyn
happyIn111
		 (CAssignOp -> Position -> Located CAssignOp
forall a. a -> Position -> Located a
L CAssignOp
CShrAssOp (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
	)}

happyReduce_403 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_403 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_403 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  107# HappyAbsSyn -> HappyAbsSyn
happyReduction_403
happyReduction_403 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_403 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	Located CAssignOp -> HappyAbsSyn
happyIn111
		 (CAssignOp -> Position -> Located CAssignOp
forall a. a -> Position -> Located a
L CAssignOp
CAndAssOp (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
	)}

happyReduce_404 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_404 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_404 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  107# HappyAbsSyn -> HappyAbsSyn
happyReduction_404
happyReduction_404 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_404 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	Located CAssignOp -> HappyAbsSyn
happyIn111
		 (CAssignOp -> Position -> Located CAssignOp
forall a. a -> Position -> Located a
L CAssignOp
CXorAssOp (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
	)}

happyReduce_405 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_405 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_405 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  107# HappyAbsSyn -> HappyAbsSyn
happyReduction_405
happyReduction_405 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_405 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	Located CAssignOp -> HappyAbsSyn
happyIn111
		 (CAssignOp -> Position -> Located CAssignOp
forall a. a -> Position -> Located a
L CAssignOp
COrAssOp  (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
	)}

happyReduce_406 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_406 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_406 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  108# HappyAbsSyn -> HappyAbsSyn
happyReduction_406
happyReduction_406 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_406 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap110
happyOut110 HappyAbsSyn
happy_x_1 of { (HappyWrap110 happy_var_1 :: CExpr
happy_var_1) -> 
	CExpr -> HappyAbsSyn
happyIn112
		 (CExpr
happy_var_1
	)}

happyReduce_407 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_407 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_407 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 3# 108# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_407
happyReduction_407 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_407 (happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap110
happyOut110 HappyAbsSyn
happy_x_1 of { (HappyWrap110 happy_var_1 :: CExpr
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap113
happyOut113 HappyAbsSyn
happy_x_3 of { (HappyWrap113 happy_var_3 :: Reversed [CExpr]
happy_var_3) -> 
	( let es :: [CExpr]
es = Reversed [CExpr] -> [CExpr]
forall a. Reversed [a] -> [a]
reverse Reversed [CExpr]
happy_var_3 in [CExpr] -> (Attrs -> CExpr) -> P CExpr
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs [CExpr]
es ((Attrs -> CExpr) -> P CExpr) -> (Attrs -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ [CExpr] -> Attrs -> CExpr
CComma (CExpr
happy_var_1CExpr -> [CExpr] -> [CExpr]
forall k1. k1 -> [k1] -> [k1]
:[CExpr]
es))}})
	) (\r :: CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn112 CExpr
r))

happyReduce_408 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_408 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_408 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  109# HappyAbsSyn -> HappyAbsSyn
happyReduction_408
happyReduction_408 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_408 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap110
happyOut110 HappyAbsSyn
happy_x_1 of { (HappyWrap110 happy_var_1 :: CExpr
happy_var_1) -> 
	Reversed [CExpr] -> HappyAbsSyn
happyIn113
		 (CExpr -> Reversed [CExpr]
forall a. a -> Reversed [a]
singleton CExpr
happy_var_1
	)}

happyReduce_409 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_409 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_409 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  109# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_409
happyReduction_409 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_409 happy_x_3 :: HappyAbsSyn
happy_x_3
	happy_x_2 :: p
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap113
happyOut113 HappyAbsSyn
happy_x_1 of { (HappyWrap113 happy_var_1 :: Reversed [CExpr]
happy_var_1) -> 
	case HappyAbsSyn -> HappyWrap110
happyOut110 HappyAbsSyn
happy_x_3 of { (HappyWrap110 happy_var_3 :: CExpr
happy_var_3) -> 
	Reversed [CExpr] -> HappyAbsSyn
happyIn113
		 (Reversed [CExpr]
happy_var_1 Reversed [CExpr] -> CExpr -> Reversed [CExpr]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` CExpr
happy_var_3
	)}}

happyReduce_410 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_410 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_410 = Int#
-> HappyAbsSyn
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_0  110# HappyAbsSyn
happyReduction_410
happyReduction_410 :: HappyAbsSyn
happyReduction_410  =  Maybe CExpr -> HappyAbsSyn
happyIn114
		 (Maybe CExpr
forall k1. Maybe k1
Nothing
	)

happyReduce_411 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_411 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_411 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  110# HappyAbsSyn -> HappyAbsSyn
happyReduction_411
happyReduction_411 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_411 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap112
happyOut112 HappyAbsSyn
happy_x_1 of { (HappyWrap112 happy_var_1 :: CExpr
happy_var_1) -> 
	Maybe CExpr -> HappyAbsSyn
happyIn114
		 (CExpr -> Maybe CExpr
forall k1. k1 -> Maybe k1
Just CExpr
happy_var_1
	)}

happyReduce_412 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_412 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_412 = Int#
-> HappyAbsSyn
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_0  111# HappyAbsSyn
happyReduction_412
happyReduction_412 :: HappyAbsSyn
happyReduction_412  =  Maybe CExpr -> HappyAbsSyn
happyIn115
		 (Maybe CExpr
forall k1. Maybe k1
Nothing
	)

happyReduce_413 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_413 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_413 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  111# HappyAbsSyn -> HappyAbsSyn
happyReduction_413
happyReduction_413 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_413 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap110
happyOut110 HappyAbsSyn
happy_x_1 of { (HappyWrap110 happy_var_1 :: CExpr
happy_var_1) -> 
	Maybe CExpr -> HappyAbsSyn
happyIn115
		 (CExpr -> Maybe CExpr
forall k1. k1 -> Maybe k1
Just CExpr
happy_var_1
	)}

happyReduce_414 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_414 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_414 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  112# HappyAbsSyn -> HappyAbsSyn
happyReduction_414
happyReduction_414 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_414 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap109
happyOut109 HappyAbsSyn
happy_x_1 of { (HappyWrap109 happy_var_1 :: CExpr
happy_var_1) -> 
	CExpr -> HappyAbsSyn
happyIn116
		 (CExpr
happy_var_1
	)}

happyReduce_415 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_415 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_415 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 113# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_415
happyReduction_415 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_415 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CConst -> (CConst -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (Attrs -> CConst) -> P CConst
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CConst) -> P CConst) -> (Attrs -> CConst) -> P CConst
forall a b. (a -> b) -> a -> b
$ case CToken
happy_var_1 of CTokILit _ i :: Integer
i -> Integer -> Attrs -> CConst
CIntConst Integer
i)})
	) (\r :: CConst
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CConst -> HappyAbsSyn
happyIn117 CConst
r))

happyReduce_416 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_416 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_416 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 113# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_416
happyReduction_416 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_416 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CConst -> (CConst -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (Attrs -> CConst) -> P CConst
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CConst) -> P CConst) -> (Attrs -> CConst) -> P CConst
forall a b. (a -> b) -> a -> b
$ case CToken
happy_var_1 of CTokCLit _ c :: Char
c -> Char -> Attrs -> CConst
CCharConst Char
c)})
	) (\r :: CConst
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CConst -> HappyAbsSyn
happyIn117 CConst
r))

happyReduce_417 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_417 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_417 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 113# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_417
happyReduction_417 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_417 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CConst -> (CConst -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (Attrs -> CConst) -> P CConst
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CConst) -> P CConst) -> (Attrs -> CConst) -> P CConst
forall a b. (a -> b) -> a -> b
$ case CToken
happy_var_1 of CTokFLit _ f :: String
f -> String -> Attrs -> CConst
CFloatConst String
f)})
	) (\r :: CConst
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CConst -> HappyAbsSyn
happyIn117 CConst
r))

happyReduce_418 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_418 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_418 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 1# 114# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_418
happyReduction_418 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_418 (happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CConst -> (CConst -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	( CToken -> (Attrs -> CConst) -> P CConst
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CConst) -> P CConst) -> (Attrs -> CConst) -> P CConst
forall a b. (a -> b) -> a -> b
$ case CToken
happy_var_1 of CTokSLit _ s :: String
s -> String -> Attrs -> CConst
CStrConst String
s)})
	) (\r :: CConst
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CConst -> HappyAbsSyn
happyIn118 CConst
r))

happyReduce_419 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_419 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_419 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce 2# 114# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall p. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_419
happyReduction_419 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_419 (happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest) tk :: p
tk
	 = P CConst -> (CConst -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	case HappyAbsSyn -> HappyWrap119
happyOut119 HappyAbsSyn
happy_x_2 of { (HappyWrap119 happy_var_2 :: Reversed [String]
happy_var_2) -> 
	( CToken -> (Attrs -> CConst) -> P CConst
forall node a. Pos node => node -> (Attrs -> a) -> P a
withAttrs CToken
happy_var_1 ((Attrs -> CConst) -> P CConst) -> (Attrs -> CConst) -> P CConst
forall a b. (a -> b) -> a -> b
$ case CToken
happy_var_1 of CTokSLit _ s :: String
s -> String -> Attrs -> CConst
CStrConst ([String] -> String
forall (t :: * -> *) a. Foldable t => t [a] -> [a]
concat (String
s String -> [String] -> [String]
forall k1. k1 -> [k1] -> [k1]
: Reversed [String] -> [String]
forall a. Reversed [a] -> [a]
reverse Reversed [String]
happy_var_2)))}})
	) (\r :: CConst
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CConst -> HappyAbsSyn
happyIn118 CConst
r))

happyReduce_420 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_420 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_420 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  115# HappyAbsSyn -> HappyAbsSyn
happyReduction_420
happyReduction_420 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_420 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { happy_var_1 :: CToken
happy_var_1 -> 
	Reversed [String] -> HappyAbsSyn
happyIn119
		 (case CToken
happy_var_1 of CTokSLit _ s :: String
s -> String -> Reversed [String]
forall a. a -> Reversed [a]
singleton String
s
	)}

happyReduce_421 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_421 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_421 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  115# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_421
happyReduction_421 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_421 happy_x_2 :: HappyAbsSyn
happy_x_2
	happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> HappyWrap119
happyOut119 HappyAbsSyn
happy_x_1 of { (HappyWrap119 happy_var_1 :: Reversed [String]
happy_var_1) -> 
	case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_2 of { happy_var_2 :: CToken
happy_var_2 -> 
	Reversed [String] -> HappyAbsSyn
happyIn119
		 (case CToken
happy_var_2 of CTokSLit _ s :: String
s -> Reversed [String]
happy_var_1 Reversed [String] -> String -> Reversed [String]
forall a. Reversed [a] -> a -> Reversed [a]
`snoc` String
s
	)}}

happyReduce_422 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_422 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_422 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  116# HappyAbsSyn -> HappyAbsSyn
happyReduction_422
happyReduction_422 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_422 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { (CTokIdent  _ happy_var_1 :: Ident
happy_var_1) -> 
	Ident -> HappyAbsSyn
happyIn120
		 (Ident
happy_var_1
	)}

happyReduce_423 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_423 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_423 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  116# HappyAbsSyn -> HappyAbsSyn
happyReduction_423
happyReduction_423 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_423 happy_x_1 :: HappyAbsSyn
happy_x_1
	 =  case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { (CTokTyIdent _ happy_var_1 :: Ident
happy_var_1) -> 
	Ident -> HappyAbsSyn
happyIn120
		 (Ident
happy_var_1
	)}

happyReduce_424 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_424 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_424 = Int#
-> HappyAbsSyn
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_0  117# HappyAbsSyn
happyReduction_424
happyReduction_424 :: HappyAbsSyn
happyReduction_424  =  () -> HappyAbsSyn
happyIn121
		 (()
	)

happyReduce_425 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_425 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_425 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  117# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p p. p -> p -> HappyAbsSyn
happyReduction_425
happyReduction_425 :: p -> p -> HappyAbsSyn
happyReduction_425 happy_x_2 :: p
happy_x_2
	happy_x_1 :: p
happy_x_1
	 =  () -> HappyAbsSyn
happyIn121
		 (()
	)

happyReduce_426 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_426 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_426 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  118# HappyAbsSyn -> HappyAbsSyn
forall p. p -> HappyAbsSyn
happyReduction_426
happyReduction_426 :: p -> HappyAbsSyn
happyReduction_426 happy_x_1 :: p
happy_x_1
	 =  () -> HappyAbsSyn
happyIn122
		 (()
	)

happyReduce_427 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_427 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_427 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2  118# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p p. p -> p -> HappyAbsSyn
happyReduction_427
happyReduction_427 :: p -> p -> HappyAbsSyn
happyReduction_427 happy_x_2 :: p
happy_x_2
	happy_x_1 :: p
happy_x_1
	 =  () -> HappyAbsSyn
happyIn122
		 (()
	)

happyReduce_428 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_428 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_428 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce 6# 119# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_428
happyReduction_428 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_428 (happy_x_6 :: HappyAbsSyn
happy_x_6 `HappyStk`
	happy_x_5 :: HappyAbsSyn
happy_x_5 `HappyStk`
	happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest)
	 = () -> HappyAbsSyn
happyIn123
		 (()
	) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest

happyReduce_429 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_429 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_429 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  120# HappyAbsSyn -> HappyAbsSyn
forall p. p -> HappyAbsSyn
happyReduction_429
happyReduction_429 :: p -> HappyAbsSyn
happyReduction_429 happy_x_1 :: p
happy_x_1
	 =  () -> HappyAbsSyn
happyIn124
		 (()
	)

happyReduce_430 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_430 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_430 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  120# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p p p. p -> p -> p -> HappyAbsSyn
happyReduction_430
happyReduction_430 :: p -> p -> p -> HappyAbsSyn
happyReduction_430 happy_x_3 :: p
happy_x_3
	happy_x_2 :: p
happy_x_2
	happy_x_1 :: p
happy_x_1
	 =  () -> HappyAbsSyn
happyIn124
		 (()
	)

happyReduce_431 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_431 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_431 = Int#
-> HappyAbsSyn
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_0  121# HappyAbsSyn
happyReduction_431
happyReduction_431 :: HappyAbsSyn
happyReduction_431  =  () -> HappyAbsSyn
happyIn125
		 (()
	)

happyReduce_432 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_432 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_432 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  121# HappyAbsSyn -> HappyAbsSyn
forall p. p -> HappyAbsSyn
happyReduction_432
happyReduction_432 :: p -> HappyAbsSyn
happyReduction_432 happy_x_1 :: p
happy_x_1
	 =  () -> HappyAbsSyn
happyIn125
		 (()
	)

happyReduce_433 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_433 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_433 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  121# HappyAbsSyn -> HappyAbsSyn
forall p. p -> HappyAbsSyn
happyReduction_433
happyReduction_433 :: p -> HappyAbsSyn
happyReduction_433 happy_x_1 :: p
happy_x_1
	 =  () -> HappyAbsSyn
happyIn125
		 (()
	)

happyReduce_434 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_434 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_434 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce 4# 121# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_434
happyReduction_434 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_434 (happy_x_4 :: HappyAbsSyn
happy_x_4 `HappyStk`
	happy_x_3 :: HappyAbsSyn
happy_x_3 `HappyStk`
	happy_x_2 :: HappyAbsSyn
happy_x_2 `HappyStk`
	happy_x_1 :: HappyAbsSyn
happy_x_1 `HappyStk`
	happyRest :: HappyStk HappyAbsSyn
happyRest)
	 = () -> HappyAbsSyn
happyIn125
		 (()
	) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest

happyReduce_435 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_435 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_435 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  121# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p p p. p -> p -> p -> HappyAbsSyn
happyReduction_435
happyReduction_435 :: p -> p -> p -> HappyAbsSyn
happyReduction_435 happy_x_3 :: p
happy_x_3
	happy_x_2 :: p
happy_x_2
	happy_x_1 :: p
happy_x_1
	 =  () -> HappyAbsSyn
happyIn125
		 (()
	)

happyReduce_436 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_436 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_436 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  122# HappyAbsSyn -> HappyAbsSyn
forall p. p -> HappyAbsSyn
happyReduction_436
happyReduction_436 :: p -> HappyAbsSyn
happyReduction_436 happy_x_1 :: p
happy_x_1
	 =  () -> HappyAbsSyn
happyIn126
		 (()
	)

happyReduce_437 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_437 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_437 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  122# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p p p. p -> p -> p -> HappyAbsSyn
happyReduction_437
happyReduction_437 :: p -> p -> p -> HappyAbsSyn
happyReduction_437 happy_x_3 :: p
happy_x_3
	happy_x_2 :: p
happy_x_2
	happy_x_1 :: p
happy_x_1
	 =  () -> HappyAbsSyn
happyIn126
		 (()
	)

happyReduce_438 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_438 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_438 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1  123# HappyAbsSyn -> HappyAbsSyn
forall p. p -> HappyAbsSyn
happyReduction_438
happyReduction_438 :: p -> HappyAbsSyn
happyReduction_438 happy_x_1 :: p
happy_x_1
	 =  () -> HappyAbsSyn
happyIn127
		 (()
	)

happyReduce_439 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_439 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_439 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3  123# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall p p p. p -> p -> p -> HappyAbsSyn
happyReduction_439
happyReduction_439 :: p -> p -> p -> HappyAbsSyn
happyReduction_439 happy_x_3 :: p
happy_x_3
	happy_x_2 :: p
happy_x_2
	happy_x_1 :: p
happy_x_1
	 =  () -> HappyAbsSyn
happyIn127
		 (()
	)

happyNewToken :: Int# -> Happy_IntList -> HappyStk HappyAbsSyn -> P HappyAbsSyn
happyNewToken action :: Int#
action sts :: Happy_IntList
sts stk :: HappyStk HappyAbsSyn
stk
	= (CToken -> P HappyAbsSyn) -> P HappyAbsSyn
forall a. (CToken -> P a) -> P a
lexC(\tk :: CToken
tk -> 
	let cont :: Int# -> P HappyAbsSyn
cont i :: Int#
i = Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyDoAction Int#
i CToken
tk Int#
action Happy_IntList
sts HappyStk HappyAbsSyn
stk in
	case CToken
tk of {
	CTokEof -> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyDoAction 100# CToken
tk Int#
action Happy_IntList
sts HappyStk HappyAbsSyn
stk;
	CTokLParen	_ -> Int# -> P HappyAbsSyn
cont 1#;
	CTokRParen	_ -> Int# -> P HappyAbsSyn
cont 2#;
	CTokLBracket	_ -> Int# -> P HappyAbsSyn
cont 3#;
	CTokRBracket	_ -> Int# -> P HappyAbsSyn
cont 4#;
	CTokArrow	_ -> Int# -> P HappyAbsSyn
cont 5#;
	CTokDot	_ -> Int# -> P HappyAbsSyn
cont 6#;
	CTokExclam	_ -> Int# -> P HappyAbsSyn
cont 7#;
	CTokTilde	_ -> Int# -> P HappyAbsSyn
cont 8#;
	CTokInc	_ -> Int# -> P HappyAbsSyn
cont 9#;
	CTokDec	_ -> Int# -> P HappyAbsSyn
cont 10#;
	CTokPlus	_ -> Int# -> P HappyAbsSyn
cont 11#;
	CTokMinus	_ -> Int# -> P HappyAbsSyn
cont 12#;
	CTokStar	_ -> Int# -> P HappyAbsSyn
cont 13#;
	CTokSlash	_ -> Int# -> P HappyAbsSyn
cont 14#;
	CTokPercent	_ -> Int# -> P HappyAbsSyn
cont 15#;
	CTokAmper	_ -> Int# -> P HappyAbsSyn
cont 16#;
	CTokShiftL	_ -> Int# -> P HappyAbsSyn
cont 17#;
	CTokShiftR	_ -> Int# -> P HappyAbsSyn
cont 18#;
	CTokLess	_ -> Int# -> P HappyAbsSyn
cont 19#;
	CTokLessEq	_ -> Int# -> P HappyAbsSyn
cont 20#;
	CTokHigh	_ -> Int# -> P HappyAbsSyn
cont 21#;
	CTokHighEq	_ -> Int# -> P HappyAbsSyn
cont 22#;
	CTokEqual	_ -> Int# -> P HappyAbsSyn
cont 23#;
	CTokUnequal	_ -> Int# -> P HappyAbsSyn
cont 24#;
	CTokHat	_ -> Int# -> P HappyAbsSyn
cont 25#;
	CTokBar	_ -> Int# -> P HappyAbsSyn
cont 26#;
	CTokAnd	_ -> Int# -> P HappyAbsSyn
cont 27#;
	CTokOr	_ -> Int# -> P HappyAbsSyn
cont 28#;
	CTokQuest	_ -> Int# -> P HappyAbsSyn
cont 29#;
	CTokColon	_ -> Int# -> P HappyAbsSyn
cont 30#;
	CTokAssign	_ -> Int# -> P HappyAbsSyn
cont 31#;
	CTokPlusAss	_ -> Int# -> P HappyAbsSyn
cont 32#;
	CTokMinusAss	_ -> Int# -> P HappyAbsSyn
cont 33#;
	CTokStarAss	_ -> Int# -> P HappyAbsSyn
cont 34#;
	CTokSlashAss	_ -> Int# -> P HappyAbsSyn
cont 35#;
	CTokPercAss	_ -> Int# -> P HappyAbsSyn
cont 36#;
	CTokAmpAss	_ -> Int# -> P HappyAbsSyn
cont 37#;
	CTokHatAss	_ -> Int# -> P HappyAbsSyn
cont 38#;
	CTokBarAss	_ -> Int# -> P HappyAbsSyn
cont 39#;
	CTokSLAss	_ -> Int# -> P HappyAbsSyn
cont 40#;
	CTokSRAss	_ -> Int# -> P HappyAbsSyn
cont 41#;
	CTokComma	_ -> Int# -> P HappyAbsSyn
cont 42#;
	CTokSemic	_ -> Int# -> P HappyAbsSyn
cont 43#;
	CTokLBrace	_ -> Int# -> P HappyAbsSyn
cont 44#;
	CTokRBrace	_ -> Int# -> P HappyAbsSyn
cont 45#;
	CTokEllipsis	_ -> Int# -> P HappyAbsSyn
cont 46#;
	CTokAlignof	_ -> Int# -> P HappyAbsSyn
cont 47#;
	CTokAsm	_ -> Int# -> P HappyAbsSyn
cont 48#;
	CTokAuto	_ -> Int# -> P HappyAbsSyn
cont 49#;
	CTokBreak	_ -> Int# -> P HappyAbsSyn
cont 50#;
	CTokBool	_ -> Int# -> P HappyAbsSyn
cont 51#;
	CTokCase	_ -> Int# -> P HappyAbsSyn
cont 52#;
	CTokChar	_ -> Int# -> P HappyAbsSyn
cont 53#;
	CTokConst	_ -> Int# -> P HappyAbsSyn
cont 54#;
	CTokContinue	_ -> Int# -> P HappyAbsSyn
cont 55#;
	CTokComplex	_ -> Int# -> P HappyAbsSyn
cont 56#;
	CTokDefault	_ -> Int# -> P HappyAbsSyn
cont 57#;
	CTokDo	_ -> Int# -> P HappyAbsSyn
cont 58#;
	CTokDouble	_ -> Int# -> P HappyAbsSyn
cont 59#;
	CTokElse	_ -> Int# -> P HappyAbsSyn
cont 60#;
	CTokEnum	_ -> Int# -> P HappyAbsSyn
cont 61#;
	CTokExtern	_ -> Int# -> P HappyAbsSyn
cont 62#;
	CTokFloat	_ -> Int# -> P HappyAbsSyn
cont 63#;
	CTokFloat128  _ -> Int# -> P HappyAbsSyn
cont 64#;
	CTokFor	_ -> Int# -> P HappyAbsSyn
cont 65#;
	CTokGoto	_ -> Int# -> P HappyAbsSyn
cont 66#;
	CTokIf	_ -> Int# -> P HappyAbsSyn
cont 67#;
	CTokInline	_ -> Int# -> P HappyAbsSyn
cont 68#;
	CTokInt	_ -> Int# -> P HappyAbsSyn
cont 69#;
	CTokLong	_ -> Int# -> P HappyAbsSyn
cont 70#;
	CTokLabel	_ -> Int# -> P HappyAbsSyn
cont 71#;
	CTokRegister	_ -> Int# -> P HappyAbsSyn
cont 72#;
	CTokRestrict	_ -> Int# -> P HappyAbsSyn
cont 73#;
	CTokReturn	_ -> Int# -> P HappyAbsSyn
cont 74#;
	CTokShort	_ -> Int# -> P HappyAbsSyn
cont 75#;
	CTokSigned	_ -> Int# -> P HappyAbsSyn
cont 76#;
	CTokSizeof	_ -> Int# -> P HappyAbsSyn
cont 77#;
	CTokStatic	_ -> Int# -> P HappyAbsSyn
cont 78#;
	CTokStruct	_ -> Int# -> P HappyAbsSyn
cont 79#;
	CTokSwitch	_ -> Int# -> P HappyAbsSyn
cont 80#;
	CTokTypedef	_ -> Int# -> P HappyAbsSyn
cont 81#;
	CTokTypeof	_ -> Int# -> P HappyAbsSyn
cont 82#;
	CTokThread	_ -> Int# -> P HappyAbsSyn
cont 83#;
	CTokUnion	_ -> Int# -> P HappyAbsSyn
cont 84#;
	CTokUnsigned	_ -> Int# -> P HappyAbsSyn
cont 85#;
	CTokVoid	_ -> Int# -> P HappyAbsSyn
cont 86#;
	CTokVolatile	_ -> Int# -> P HappyAbsSyn
cont 87#;
	CTokWhile	_ -> Int# -> P HappyAbsSyn
cont 88#;
	CTokCLit   _ _ -> Int# -> P HappyAbsSyn
cont 89#;
	CTokILit   _ _ -> Int# -> P HappyAbsSyn
cont 90#;
	CTokFLit   _ _ -> Int# -> P HappyAbsSyn
cont 91#;
	CTokSLit   _ _ -> Int# -> P HappyAbsSyn
cont 92#;
	CTokIdent  _ happy_dollar_dollar :: Ident
happy_dollar_dollar -> Int# -> P HappyAbsSyn
cont 93#;
	CTokTyIdent _ happy_dollar_dollar :: Ident
happy_dollar_dollar -> Int# -> P HappyAbsSyn
cont 94#;
	CTokGnuC GnuCAttrTok _ -> Int# -> P HappyAbsSyn
cont 95#;
	CTokGnuC GnuCExtTok  _ -> Int# -> P HappyAbsSyn
cont 96#;
	CTokGnuC GnuCVaArg    _ -> Int# -> P HappyAbsSyn
cont 97#;
	CTokGnuC GnuCOffsetof _ -> Int# -> P HappyAbsSyn
cont 98#;
	CTokGnuC GnuCTyCompat _ -> Int# -> P HappyAbsSyn
cont 99#;
	_ -> (CToken, [String]) -> P HappyAbsSyn
forall a. (CToken, [String]) -> P a
happyError' (CToken
tk, [])
	})

happyError_ :: [String] -> Int# -> CToken -> P a
happyError_ explist :: [String]
explist 100# tk :: CToken
tk = (CToken, [String]) -> P a
forall a. (CToken, [String]) -> P a
happyError' (CToken
tk, [String]
explist)
happyError_ explist :: [String]
explist _ tk :: CToken
tk = (CToken, [String]) -> P a
forall a. (CToken, [String]) -> P a
happyError' (CToken
tk, [String]
explist)

happyThen :: () => P a -> (a -> P b) -> P b
happyThen :: P a -> (a -> P b) -> P b
happyThen = P a -> (a -> P b) -> P b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
(>>=)
happyReturn :: () => a -> P a
happyReturn :: a -> P a
happyReturn = (a -> P a
forall (m :: * -> *) a. Monad m => a -> m a
return)
happyParse :: () => Happy_GHC_Exts.Int# -> P (HappyAbsSyn )

happyNewToken :: () => Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )

happyDoAction :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )

happyReduceArr :: () => Happy_Data_Array.Array Int (Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn ))

happyThen1 :: () => P a -> (a -> P b) -> P b
happyThen1 :: P a -> (a -> P b) -> P b
happyThen1 = P a -> (a -> P b) -> P b
forall a b. P a -> (a -> P b) -> P b
happyThen
happyReturn1 :: () => a -> P a
happyReturn1 :: a -> P a
happyReturn1 = a -> P a
forall a. a -> P a
happyReturn
happyError' :: () => ((CToken), [String]) -> P a
happyError' :: (CToken, [String]) -> P a
happyError' tk :: (CToken, [String])
tk = (\(tokens :: CToken
tokens, explist :: [String]
explist) -> P a
forall a. P a
happyError) (CToken, [String])
tk
header :: P CHeader
header = P CHeader
happySomeParser where
 happySomeParser :: P CHeader
happySomeParser = P HappyAbsSyn -> (HappyAbsSyn -> P CHeader) -> P CHeader
forall a b. P a -> (a -> P b) -> P b
happyThen (Int# -> P HappyAbsSyn
happyParse 0#) (\x :: HappyAbsSyn
x -> CHeader -> P CHeader
forall a. a -> P a
happyReturn (let {(HappyWrap4 x' :: CHeader
x') = HappyAbsSyn -> HappyWrap4
happyOut4 HappyAbsSyn
x} in CHeader
x'))

happySeq :: a -> b -> b
happySeq = a -> b -> b
forall a b. a -> b -> b
happyDontSeq


infixr 5 `snoc`

-- Due to the way the grammar is constructed we very often have to build lists
-- in reverse. To make sure we do this consistently and correctly we have a
-- newtype to wrap the reversed style of list:
--
newtype Reversed a = Reversed a

empty :: Reversed [a]
empty :: Reversed [a]
empty = [a] -> Reversed [a]
forall a. a -> Reversed a
Reversed []

singleton :: a -> Reversed [a]
singleton :: a -> Reversed [a]
singleton x :: a
x = [a] -> Reversed [a]
forall a. a -> Reversed a
Reversed [a
x]

snoc :: Reversed [a] -> a -> Reversed [a]
snoc :: Reversed [a] -> a -> Reversed [a]
snoc (Reversed xs :: [a]
xs) x :: a
x = [a] -> Reversed [a]
forall a. a -> Reversed a
Reversed (a
x a -> [a] -> [a]
forall k1. k1 -> [k1] -> [k1]
: [a]
xs)

rmap :: (a -> b) -> Reversed [a] -> Reversed [b]
rmap :: (a -> b) -> Reversed [a] -> Reversed [b]
rmap f :: a -> b
f (Reversed xs :: [a]
xs) = [b] -> Reversed [b]
forall a. a -> Reversed a
Reversed ((a -> b) -> [a] -> [b]
forall a b. (a -> b) -> [a] -> [b]
map a -> b
f [a]
xs)

reverse :: Reversed [a] -> [a]
reverse :: Reversed [a] -> [a]
reverse (Reversed xs :: [a]
xs) = [a] -> [a]
forall a. [a] -> [a]
List.reverse [a]
xs

-- We occasionally need things to have a location when they don't naturally
-- have one built in as tokens and most AST elements do.
--
data Located a = L !a !Position

unL :: Located a -> a
unL :: Located a -> a
unL (L a :: a
a pos :: Position
pos) = a
a

instance Pos (Located a) where
  posOf :: Located a -> Position
posOf (L _ pos :: Position
pos) = Position
pos

{-# INLINE withAttrs #-}
withAttrs :: Pos node => node -> (Attrs -> a) -> P a
withAttrs :: node -> (Attrs -> a) -> P a
withAttrs node :: node
node mkAttributedNode :: Attrs -> a
mkAttributedNode = do
  Name
name <- P Name
getNewName
  let attrs :: Attrs
attrs = Position -> Name -> Attrs
newAttrs (node -> Position
forall a. Pos a => a -> Position
posOf node
node) Name
name
  Attrs
attrs Attrs -> P a -> P a
forall a b. a -> b -> b
`seq` a -> P a
forall (m :: * -> *) a. Monad m => a -> m a
return (Attrs -> a
mkAttributedNode Attrs
attrs)

-- this functions gets used repeatedly so take them out of line:
--
liftTypeQuals :: Reversed [CTypeQual] -> [CDeclSpec]
liftTypeQuals :: Reversed [CTypeQual] -> [CDeclSpec]
liftTypeQuals (Reversed xs :: [CTypeQual]
xs) = [CDeclSpec] -> [CTypeQual] -> [CDeclSpec]
revmap [] [CTypeQual]
xs
  where revmap :: [CDeclSpec] -> [CTypeQual] -> [CDeclSpec]
revmap a :: [CDeclSpec]
a []     = [CDeclSpec]
a
        revmap a :: [CDeclSpec]
a (x :: CTypeQual
x:xs :: [CTypeQual]
xs) = [CDeclSpec] -> [CTypeQual] -> [CDeclSpec]
revmap (CTypeQual -> CDeclSpec
CTypeQual CTypeQual
x CDeclSpec -> [CDeclSpec] -> [CDeclSpec]
forall k1. k1 -> [k1] -> [k1]
: [CDeclSpec]
a) [CTypeQual]
xs


-- convenient instance, the position of a list of things is the position of
-- the first thing in the list
--
instance Pos a => Pos [a] where
  posOf :: [a] -> Position
posOf (x :: a
x:_) = a -> Position
forall a. Pos a => a -> Position
posOf a
x

instance Pos a => Pos (Reversed a) where
  posOf :: Reversed a -> Position
posOf (Reversed x :: a
x) = a -> Position
forall a. Pos a => a -> Position
posOf a
x

emptyDeclr :: CDeclr
emptyDeclr = Maybe Ident -> Attrs -> CDeclr
CVarDeclr Maybe Ident
forall k1. Maybe k1
Nothing (Position -> Attrs
newAttrsOnlyPos Position
nopos)

-- Take the identifiers and use them to update the typedef'ed identifier set
-- if the decl is defining a typedef then we add it to the set,
-- if it's a var decl then that shadows typedefed identifiers
--
doDeclIdent :: [CDeclSpec] -> CDeclr -> P ()
doDeclIdent :: [CDeclSpec] -> CDeclr -> P ()
doDeclIdent declspecs :: [CDeclSpec]
declspecs declr :: CDeclr
declr =
  case CDeclr -> Maybe Ident
getCDeclrIdent CDeclr
declr of
    Nothing -> () -> P ()
forall (m :: * -> *) a. Monad m => a -> m a
return ()
    Just ident :: Ident
ident | (CDeclSpec -> Bool) -> [CDeclSpec] -> Bool
forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
any CDeclSpec -> Bool
isTypeDef [CDeclSpec]
declspecs -> Ident -> P ()
addTypedef Ident
ident
               | Bool
otherwise               -> Ident -> P ()
shadowTypedef Ident
ident

  where isTypeDef :: CDeclSpec -> Bool
isTypeDef (CStorageSpec (CTypedef _)) = Bool
True
        isTypeDef _                           = Bool
False

doFuncParamDeclIdent :: CDeclr -> P ()
doFuncParamDeclIdent :: CDeclr -> P ()
doFuncParamDeclIdent (CFunDeclr _ params :: [CDecl]
params _ _) =
  [P ()] -> P ()
forall (t :: * -> *) (m :: * -> *) a.
(Foldable t, Monad m) =>
t (m a) -> m ()
sequence_
    [ case CDeclr -> Maybe Ident
getCDeclrIdent CDeclr
declr of
        Nothing -> () -> P ()
forall (m :: * -> *) a. Monad m => a -> m a
return ()
        Just ident :: Ident
ident -> Ident -> P ()
shadowTypedef Ident
ident
    | CDecl _ dle :: [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dle _ <- [CDecl]
params
    , (Just declr :: CDeclr
declr, _, _) <- [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dle ]
doFuncParamDeclIdent (CPtrDeclr _ declr :: CDeclr
declr _ ) = CDeclr -> P ()
doFuncParamDeclIdent CDeclr
declr
doFuncParamDeclIdent _ = () -> P ()
forall (m :: * -> *) a. Monad m => a -> m a
return ()

-- extract all identifiers
getCDeclrIdent :: CDeclr -> Maybe Ident
getCDeclrIdent :: CDeclr -> Maybe Ident
getCDeclrIdent (CVarDeclr optIde :: Maybe Ident
optIde    _) = Maybe Ident
optIde
getCDeclrIdent (CPtrDeclr _ declr :: CDeclr
declr   _) = CDeclr -> Maybe Ident
getCDeclrIdent CDeclr
declr
getCDeclrIdent (CArrDeclr declr :: CDeclr
declr _ _ _) = CDeclr -> Maybe Ident
getCDeclrIdent CDeclr
declr
getCDeclrIdent (CFunDeclr declr :: CDeclr
declr _ _ _) = CDeclr -> Maybe Ident
getCDeclrIdent CDeclr
declr


happyError :: P a
happyError :: P a
happyError = P a
forall a. P a
parseError

parseC :: String -> Position -> PreCST s s' CHeader
parseC :: String -> Position -> PreCST s s' CHeader
parseC input :: String
input initialPosition :: Position
initialPosition  = do
  NameSupply
nameSupply <- PreCST s s' NameSupply
forall e s. PreCST e s NameSupply
getNameSupply
  let ns :: [Name]
ns = NameSupply -> [Name]
names NameSupply
nameSupply
  case P CHeader
-> String
-> Position
-> [Ident]
-> [Name]
-> Either CHeader ([String], Position)
forall a.
P a
-> String
-> Position
-> [Ident]
-> [Name]
-> Either a ([String], Position)
execParser P CHeader
header String
input
                  Position
initialPosition (((Ident, CObj) -> Ident) -> [(Ident, CObj)] -> [Ident]
forall a b. (a -> b) -> [a] -> [b]
map (Ident, CObj) -> Ident
forall a b. (a, b) -> a
fst [(Ident, CObj)]
builtinTypeNames) [Name]
ns of
    Left header :: CHeader
header -> CHeader -> PreCST s s' CHeader
forall (m :: * -> *) a. Monad m => a -> m a
return CHeader
header
    Right (message :: [String]
message, position :: Position
position) -> String -> Position -> [String] -> PreCST s s' CHeader
forall e s a. String -> Position -> [String] -> PreCST e s a
raiseFatal "Error in C header file."
                                            Position
position [String]
message
{-# LINE 1 "templates/GenericTemplate.hs" #-}
-- $Id: GenericTemplate.hs,v 1.26 2005/01/14 14:47:22 simonmar Exp $













-- Do not remove this comment. Required to fix CPP parsing when using GCC and a clang-compiled alex.
#if __GLASGOW_HASKELL__ > 706
#define LT(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.<# m)) :: Bool)
#define GTE(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.>=# m)) :: Bool)
#define EQ(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.==# m)) :: Bool)
#else
#define LT(n,m) (n Happy_GHC_Exts.<# m)
#define GTE(n,m) (n Happy_GHC_Exts.>=# m)
#define EQ(n,m) (n Happy_GHC_Exts.==# m)
#endif



















data Happy_IntList = HappyCons Happy_GHC_Exts.Int# Happy_IntList








































infixr 9 `HappyStk`
data HappyStk a = HappyStk a (HappyStk a)

-----------------------------------------------------------------------------
-- starting the parse

happyParse start_state = happyNewToken start_state notHappyAtAll notHappyAtAll

-----------------------------------------------------------------------------
-- Accepting the parse

-- If the current token is ERROR_TOK, it means we've just accepted a partial
-- parse (a %partial parser).  We must ignore the saved token on the top of
-- the stack in this case.
happyAccept 0# tk st sts (_ `HappyStk` ans `HappyStk` _) =
        happyReturn1 ans
happyAccept j tk st sts (HappyStk ans _) = 
        (happyTcHack j (happyTcHack st)) (happyReturn1 ans)

-----------------------------------------------------------------------------
-- Arrays only: do the next action



happyDoAction i tk st
        = {- nothing -}
          case action of
                0#           -> {- nothing -}
                                     happyFail (happyExpListPerState ((Happy_GHC_Exts.I# (st)) :: Int)) i tk st
                -1#          -> {- nothing -}
                                     happyAccept i tk st
                n | LT(n,(0# :: Happy_GHC_Exts.Int#)) -> {- nothing -}
                                                   (happyReduceArr Happy_Data_Array.! rule) i tk st
                                                   where rule = (Happy_GHC_Exts.I# ((Happy_GHC_Exts.negateInt# ((n Happy_GHC_Exts.+# (1# :: Happy_GHC_Exts.Int#))))))
                n                 -> {- nothing -}
                                     happyShift new_state i tk st
                                     where new_state = (n Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#))
   where off    = happyAdjustOffset (indexShortOffAddr happyActOffsets st)
         off_i  = (off Happy_GHC_Exts.+# i)
         check  = if GTE(off_i,(0# :: Happy_GHC_Exts.Int#))
                  then EQ(indexShortOffAddr happyCheck off_i, i)
                  else False
         action
          | check     = indexShortOffAddr happyTable off_i
          | otherwise = indexShortOffAddr happyDefActions st




indexShortOffAddr (HappyA# arr) off =
        Happy_GHC_Exts.narrow16Int# i
  where
        i = Happy_GHC_Exts.word2Int# (Happy_GHC_Exts.or# (Happy_GHC_Exts.uncheckedShiftL# high 8#) low)
        high = Happy_GHC_Exts.int2Word# (Happy_GHC_Exts.ord# (Happy_GHC_Exts.indexCharOffAddr# arr (off' Happy_GHC_Exts.+# 1#)))
        low  = Happy_GHC_Exts.int2Word# (Happy_GHC_Exts.ord# (Happy_GHC_Exts.indexCharOffAddr# arr off'))
        off' = off Happy_GHC_Exts.*# 2#




{-# INLINE happyLt #-}
happyLt x y = LT(x,y)


readArrayBit arr bit =
    Bits.testBit (Happy_GHC_Exts.I# (indexShortOffAddr arr ((unbox_int bit) `Happy_GHC_Exts.iShiftRA#` 4#))) (bit `mod` 16)
  where unbox_int (Happy_GHC_Exts.I# x) = x






data HappyAddr = HappyA# Happy_GHC_Exts.Addr#


-----------------------------------------------------------------------------
-- HappyState data type (not arrays)













-----------------------------------------------------------------------------
-- Shifting a token

happyShift new_state 0# tk st sts stk@(x `HappyStk` _) =
     let i = (case Happy_GHC_Exts.unsafeCoerce# x of { (Happy_GHC_Exts.I# (i)) -> i }) in
--     trace "shifting the error token" $
     happyDoAction i tk new_state (HappyCons (st) (sts)) (stk)

happyShift new_state i tk st sts stk =
     happyNewToken new_state (HappyCons (st) (sts)) ((happyInTok (tk))`HappyStk`stk)

-- happyReduce is specialised for the common cases.

happySpecReduce_0 i fn 0# tk st sts stk
     = happyFail [] 0# tk st sts stk
happySpecReduce_0 nt fn j tk st@((action)) sts stk
     = happyGoto nt j tk st (HappyCons (st) (sts)) (fn `HappyStk` stk)

happySpecReduce_1 i fn 0# tk st sts stk
     = happyFail [] 0# tk st sts stk
happySpecReduce_1 nt fn j tk _ sts@((HappyCons (st@(action)) (_))) (v1`HappyStk`stk')
     = let r = fn v1 in
       happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk'))

happySpecReduce_2 i fn 0# tk st sts stk
     = happyFail [] 0# tk st sts stk
happySpecReduce_2 nt fn j tk _ (HappyCons (_) (sts@((HappyCons (st@(action)) (_))))) (v1`HappyStk`v2`HappyStk`stk')
     = let r = fn v1 v2 in
       happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk'))

happySpecReduce_3 i fn 0# tk st sts stk
     = happyFail [] 0# tk st sts stk
happySpecReduce_3 nt fn j tk _ (HappyCons (_) ((HappyCons (_) (sts@((HappyCons (st@(action)) (_))))))) (v1`HappyStk`v2`HappyStk`v3`HappyStk`stk')
     = let r = fn v1 v2 v3 in
       happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk'))

happyReduce k i fn 0# tk st sts stk
     = happyFail [] 0# tk st sts stk
happyReduce k nt fn j tk st sts stk
     = case happyDrop (k Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#)) sts of
         sts1@((HappyCons (st1@(action)) (_))) ->
                let r = fn stk in  -- it doesn't hurt to always seq here...
                happyDoSeq r (happyGoto nt j tk st1 sts1 r)

happyMonadReduce k nt fn 0# tk st sts stk
     = happyFail [] 0# tk st sts stk
happyMonadReduce k nt fn j tk st sts stk =
      case happyDrop k (HappyCons (st) (sts)) of
        sts1@((HappyCons (st1@(action)) (_))) ->
          let drop_stk = happyDropStk k stk in
          happyThen1 (fn stk tk) (\r -> happyGoto nt j tk st1 sts1 (r `HappyStk` drop_stk))

happyMonad2Reduce k nt fn 0# tk st sts stk
     = happyFail [] 0# tk st sts stk
happyMonad2Reduce k nt fn j tk st sts stk =
      case happyDrop k (HappyCons (st) (sts)) of
        sts1@((HappyCons (st1@(action)) (_))) ->
         let drop_stk = happyDropStk k stk

             off = happyAdjustOffset (indexShortOffAddr happyGotoOffsets st1)
             off_i = (off Happy_GHC_Exts.+# nt)
             new_state = indexShortOffAddr happyTable off_i




          in
          happyThen1 (fn stk tk) (\r -> happyNewToken new_state sts1 (r `HappyStk` drop_stk))

happyDrop 0# l = l
happyDrop n (HappyCons (_) (t)) = happyDrop (n Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#)) t

happyDropStk 0# l = l
happyDropStk n (x `HappyStk` xs) = happyDropStk (n Happy_GHC_Exts.-# (1#::Happy_GHC_Exts.Int#)) xs

-----------------------------------------------------------------------------
-- Moving to a new state after a reduction


happyGoto nt j tk st = 
   {- nothing -}
   happyDoAction j tk new_state
   where off = happyAdjustOffset (indexShortOffAddr happyGotoOffsets st)
         off_i = (off Happy_GHC_Exts.+# nt)
         new_state = indexShortOffAddr happyTable off_i




-----------------------------------------------------------------------------
-- Error recovery (ERROR_TOK is the error token)

-- parse error if we are in recovery and we fail again
happyFail explist 0# tk old_st _ stk@(x `HappyStk` _) =
     let i = (case Happy_GHC_Exts.unsafeCoerce# x of { (Happy_GHC_Exts.I# (i)) -> i }) in
--      trace "failing" $ 
        happyError_ explist i tk

{-  We don't need state discarding for our restricted implementation of
    "error".  In fact, it can cause some bogus parses, so I've disabled it
    for now --SDM

-- discard a state
happyFail  ERROR_TOK tk old_st CONS(HAPPYSTATE(action),sts) 
                                                (saved_tok `HappyStk` _ `HappyStk` stk) =
--      trace ("discarding state, depth " ++ show (length stk))  $
        DO_ACTION(action,ERROR_TOK,tk,sts,(saved_tok`HappyStk`stk))
-}

-- Enter error recovery: generate an error token,
--                       save the old token and carry on.
happyFail explist i tk (action) sts stk =
--      trace "entering error recovery" $
        happyDoAction 0# tk action sts ((Happy_GHC_Exts.unsafeCoerce# (Happy_GHC_Exts.I# (i))) `HappyStk` stk)

-- Internal happy errors:

notHappyAtAll :: a
notHappyAtAll = error "Internal Happy error\n"

-----------------------------------------------------------------------------
-- Hack to get the typechecker to accept our action functions


happyTcHack :: Happy_GHC_Exts.Int# -> a -> a
happyTcHack x y = y
{-# INLINE happyTcHack #-}


-----------------------------------------------------------------------------
-- Seq-ing.  If the --strict flag is given, then Happy emits 
--      happySeq = happyDoSeq
-- otherwise it emits
--      happySeq = happyDontSeq

happyDoSeq, happyDontSeq :: a -> b -> b
happyDoSeq   a b = a `seq` b
happyDontSeq a b = b

-----------------------------------------------------------------------------
-- Don't inline any functions from the template.  GHC has a nasty habit
-- of deciding to inline happyGoto everywhere, which increases the size of
-- the generated parser quite a bit.


{-# NOINLINE happyDoAction #-}
{-# NOINLINE happyTable #-}
{-# NOINLINE happyCheck #-}
{-# NOINLINE happyActOffsets #-}
{-# NOINLINE happyGotoOffsets #-}
{-# NOINLINE happyDefActions #-}

{-# NOINLINE happyShift #-}
{-# NOINLINE happySpecReduce_0 #-}
{-# NOINLINE happySpecReduce_1 #-}
{-# NOINLINE happySpecReduce_2 #-}
{-# NOINLINE happySpecReduce_3 #-}
{-# NOINLINE happyReduce #-}
{-# NOINLINE happyMonadReduce #-}
{-# NOINLINE happyGoto #-}
{-# NOINLINE happyFail #-}

-- end of Happy Template.