dune-localfunctions  2.9.0
refinedp1.hh
Go to the documentation of this file.
1 // -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2 // vi: set et ts=4 sw=2 sts=2:
3 // SPDX-FileCopyrightInfo: Copyright (C) DUNE Project contributors, see file LICENSE.md in module root
4 // SPDX-License-Identifier: LicenseRef-GPL-2.0-only-with-DUNE-exception
5 #ifndef DUNE_LOCALFUNCTIONS_REFINED_REFINEDP1_HH
6 #define DUNE_LOCALFUNCTIONS_REFINED_REFINEDP1_HH
7 
8 #include <dune/geometry/type.hh>
9 
12 
15 
16 namespace Dune
17 {
18 
25  template<class D, class R, int dim>
27  {
28  public:
32  Impl::LagrangeSimplexLocalCoefficients<dim,2>,
33  Impl::LagrangeSimplexLocalInterpolation<Impl::LagrangeSimplexLocalBasis<D,R,dim,2> > > Traits;
34 
38  {}
39 
42  const typename Traits::LocalBasisType& localBasis () const
43  {
44  return basis_;
45  }
46 
50  {
51  return coefficients_;
52  }
53 
57  {
58  return interpolation_;
59  }
60 
62  unsigned int size () const
63  {
64  return basis_.size();
65  }
66 
69  static constexpr GeometryType type ()
70  {
71  return GeometryTypes::simplex(dim);
72  }
73 
74  private:
76  Impl::LagrangeSimplexLocalCoefficients<dim,2> coefficients_;
77  // Yes, the template argument here really is LagrangeSimplexLocalBasis, even though this is not
78  // the local basis of the refined locale finite element: The reason is that LagrangeSimplexLocalInterpolation
79  // uses this argument to determine the polynomial order, and RefinedP1LocalBasis returns order 1
80  // whereas order 2 is needed here.
81  Impl::LagrangeSimplexLocalInterpolation<Impl::LagrangeSimplexLocalBasis<D,R,dim,2> > interpolation_;
82  };
83 
84 }
85 
86 #endif // DUNE_LOCALFUNCTIONS_REFINED_REFINEDP1_HH
Linear Lagrange shape functions on a uniformly refined reference element.
Definition: bdfmcube.hh:18
traits helper struct
Definition: localfiniteelementtraits.hh:13
LB LocalBasisType
Definition: localfiniteelementtraits.hh:16
LC LocalCoefficientsType
Definition: localfiniteelementtraits.hh:20
LI LocalInterpolationType
Definition: localfiniteelementtraits.hh:24
Definition: refinedp1localbasis.hh:23
Piecewise linear continuous Lagrange functions on a uniformly refined simplex element.
Definition: refinedp1.hh:27
const Traits::LocalBasisType & localBasis() const
The set of shape functions.
Definition: refinedp1.hh:42
static constexpr GeometryType type()
The element type that this finite element is defined on.
Definition: refinedp1.hh:69
unsigned int size() const
Number of shape functions of this finite element.
Definition: refinedp1.hh:62
RefinedP1LocalFiniteElement()
Default constructor.
Definition: refinedp1.hh:37
LocalFiniteElementTraits< RefinedP1LocalBasis< D, R, dim >, Impl::LagrangeSimplexLocalCoefficients< dim, 2 >, Impl::LagrangeSimplexLocalInterpolation< Impl::LagrangeSimplexLocalBasis< D, R, dim, 2 > > > Traits
Export all types used by this implementation.
Definition: refinedp1.hh:33
const Traits::LocalInterpolationType & localInterpolation() const
Evaluates all degrees of freedom for a given function.
Definition: refinedp1.hh:56
const Traits::LocalCoefficientsType & localCoefficients() const
Produces the assignments of the degrees of freedom to the element subentities.
Definition: refinedp1.hh:49