{
“cells”: [
{

“cell_type”: “markdown”, “metadata”: {}, “source”: [

“# Tutorial 2: Single cell simulation with external feedfoward input (with BioNet)n”, “n”, “In the previous tutorial we built a single cell and stimulated it with a current injection. In this example we will keep our single-cell network, but instead of stimulation by a step current, we’ll set-up an external network that synapses onto our cell.n”, “n”, “Note - scripts and files for running this tutorial can be found in the directory [sources/chapter02/](https://github.com/AllenInstitute/bmtk/tree/develop/docs/tutorial/sources/chapter02)n”, “n”, “Requirements:n”, “* Python 2.7 or 3.6+n”, “* bmtkn”, “* NEURON 7.4+”

]

}, {

“cell_type”: “markdown”, “metadata”: {}, “source”: [

“## Step 1: Building the network.n”, “n”, “Similar to the previous tutorial, we want to build and save a network consisting of a single biophysically detailed cell. “

]

}, {

“cell_type”: “code”, “execution_count”: 1, “metadata”: {}, “outputs”: [], “source”: [

“from bmtk.builder.networks import NetworkBuildern”, “n”, “n”, “cortex = NetworkBuilder(‘mcortex’)n”, “cortex.add_nodes(cell_name=’Scnn1a_473845048’,n”, ” potental=’exc’,n”, ” model_type=’biophysical’,n”, ” model_template=’ctdb:Biophys1.hoc’,n”, ” model_processing=’aibs_perisomatic’,n”, ” dynamics_params=’472363762_fit.json’,n”, ” morphology=’Scnn1a_473845048_m.swc’)n”

]

}, {

“cell_type”: “code”, “execution_count”: 2, “metadata”: {}, “outputs”: [], “source”: [

“cortex.build()n”, “cortex.save_nodes(output_dir=’sim_ch02/network’)”

]

}, {

“cell_type”: “markdown”, “metadata”: {

“collapsed”: true

}, “source”: [

“But we will also want a collection of external spike-generating cells that will synapse onto our cell. To do this we create a second network which can represent thalamic input. We will call our network "mthalamus", and it will consist of 10 cells. These cells are not biophysical but instead "virtual" cells. Virtual cells don’t have a morphology or the normal properties of a neuron, but rather act as spike generators.”

]

}, {

“cell_type”: “code”, “execution_count”: 3, “metadata”: {}, “outputs”: [], “source”: [

“thalamus = NetworkBuilder(‘mthalamus’)n”, “thalamus.add_nodes(N=10,n”, ” pop_name=’tON’,n”, ” potential=’exc’,n”, ” model_type=’virtual’)”

]

}, {

“cell_type”: “markdown”, “metadata”: {}, “source”: [

“Now that we built our nodes, we want to create a connection between our 10 thalamic cells onto our cortex cell. To do so we use the add_edges function like so:”

]

}, {

“cell_type”: “code”, “execution_count”: 4, “metadata”: {}, “outputs”: [

{
“data”: {
“text/plain”: [

“<bmtk.builder.connection_map.ConnectionMap at 0x7ffc95627e90>”

]

}, “execution_count”: 4, “metadata”: {}, “output_type”: “execute_result”

}

], “source”: [

“thalamus.add_edges(source={‘pop_name’: ‘tON’}, target=cortex.nodes(),n”, ” connection_rule=5,n”, ” syn_weight=0.001,n”, ” delay=2.0,n”, ” weight_function=None,n”, ” target_sections=[‘basal’, ‘apical’],n”, ” distance_range=[0.0, 150.0],n”, ” dynamics_params=’AMPA_ExcToExc.json’,n”, ” model_template=’exp2syn’)”

]

}, {

“cell_type”: “markdown”, “metadata”: {}, “source”: [

“Let us break down how this method call works:n”, “`python\n", "thalamus.add_edges(source={'pop_name': 'tON'}, target=cortex.nodes(),\n", "`n”, “* Here we specify which set of nodes to use as sources and targets. Our source/pre-synaptic cells are all thamalus cells with the property "pop_name=tON", which in this case is every thalmus cell (We could also use source=thalamus.nodes(), or source={‘level_of_detail’: ‘filter’}). The target/post-synaptic is all cell(s) of the "cortex" network.n”, “n”, “`python\n", "connection_rule=5,\n", "`n”, “* The connection_rule parameter determines how many synapses exists between every source/target pair. In this very trivial case we are indicating that between every thamalic –> cortical cell connection, there are 5 synapatic connections. In future tutorials we will show how we can create more complex customized rules.n”, “n”, “`python\n", "syn_weight=0.001,\n", "delay=2.0,\n", "weight_function=None,\n", "`n”, “* Here we are specifying the connection weight. For every connection in this edge-type, there is a connection strength of 5e-05 (units) and a connection delay of 2 ms. The weight function is used to adjust the weights before runtime. Later we will show how to create customized weight functions.n”, “n”, “`python\n", "   target_sections=['basal', 'apical'],\n", "   distance_range=[0.0, 150.0],\n", "`n”, “* This is used by BioNet to determine where on the post-synaptic cell to place the synapse. By default placement is random within the given section and range.n”, “`python\n", "dynamics_params='AMPA_ExcToExc.json',  \n", "model_template='exp2syn')\n", "`n”, “* The params_file give the parameters of the synpase, including the time constant and potential. Here we are using an AMPA type synaptic model with an Excitatory connection. The set_params_function is used by BioNet to convert the model into a valid NEURON synaptic object.n”, “n”, “Finally we are ready to build the model and save the thalamic nodes and edges.”

]

}, {

“cell_type”: “code”, “execution_count”: 5, “metadata”: {}, “outputs”: [], “source”: [

“thalamus.build()n”, “thalamus.save_nodes(output_dir=’sim_ch02/network’)n”, “thalamus.save_edges(output_dir=’sim_ch02/network’)”

]

}, {

“cell_type”: “markdown”, “metadata”: {}, “source”: [

“The network/ directory will contain multiple nodes and edges files. It should have nodes (and node-types) files for both the thalamus and cortex network. And edges (and edge-types) files for the thalamus –> cortex connections. Nodes and edges for different networks and their connections are spread out across different files which allows us in the future to rebuild, edit or replace part of setup in a piecemeal and efficent manner.”

]

}, {

“cell_type”: “markdown”, “metadata”: {}, “source”: [

“#### Spike Trainsn”, “n”, “We need to give our 10 thalamic cells spike trains. There are multiple ways to do this, but an easy way to use a sonata hdf5 file. The following function will create a file to provide the spikes for our 10 cells.n”

]

}, {

“cell_type”: “code”, “execution_count”: 6, “metadata”: {}, “outputs”: [], “source”: [

“from bmtk.utils.reports.spike_trains import PoissonSpikeGeneratorn”, “n”, “psg = PoissonSpikeGenerator(population=’mthalamus’)n”, “psg.add(node_ids=range(10), # Have 10 nodes to match mthalamusn”, ” firing_rate=10.0, # 10 Hz, we can also pass in a nonhomoegenous function/arrayn”, ” times=(0.0, 3.0)) # Firing starts at 0 s up to 3 sn”, “psg.to_sonata(‘sim_ch02/inputs/mthalamus_spikes.h5’)n”

]

}, {

“cell_type”: “markdown”, “metadata”: {}, “source”: [

“The spikes files are save as a [Sonata formated spikes train](https://github.com/AllenInstitute/sonata/blob/master/docs/SONATA_DEVELOPER_GUIDE.md#spike-file). BMTK also allow us to use csv files and NWB files to set the spike train - we just have to tell the configuration file the appropiate format to read.”

]

}, {

“cell_type”: “code”, “execution_count”: 7, “metadata”: {

“scrolled”: true

}, “outputs”: [

{

“name”: “stdout”, “output_type”: “stream”, “text”: [

“Number of spikes: 287n”, “Units: msn”

]

}, {

“data”: {
“text/html”: [

“<div>n”, “<style scoped>n”, ” .dataframe tbody tr th:only-of-type {n”, ” vertical-align: middle;n”, ” }n”, “n”, ” .dataframe tbody tr th {n”, ” vertical-align: top;n”, ” }n”, “n”, ” .dataframe thead th {n”, ” text-align: right;n”, ” }n”, “</style>n”, “<table border="1" class="dataframe">n”, ” <thead>n”, ” <tr style="text-align: right;">n”, ” <th></th>n”, ” <th>node_ids</th>n”, ” <th>timestamps</th>n”, ” <th>population</th>n”, ” </tr>n”, ” </thead>n”, ” <tbody>n”, ” <tr>n”, ” <td>0</td>n”, ” <td>0</td>n”, ” <td>106.575531</td>n”, ” <td>mthalamus</td>n”, ” </tr>n”, ” <tr>n”, ” <td>1</td>n”, ” <td>0</td>n”, ” <td>118.835526</td>n”, ” <td>mthalamus</td>n”, ” </tr>n”, ” <tr>n”, ” <td>2</td>n”, ” <td>0</td>n”, ” <td>159.955649</td>n”, ” <td>mthalamus</td>n”, ” </tr>n”, ” <tr>n”, ” <td>3</td>n”, ” <td>0</td>n”, ” <td>309.950182</td>n”, ” <td>mthalamus</td>n”, ” </tr>n”, ” <tr>n”, ” <td>4</td>n”, ” <td>0</td>n”, ” <td>382.823281</td>n”, ” <td>mthalamus</td>n”, ” </tr>n”, ” </tbody>n”, “</table>n”, “</div>”

], “text/plain”: [

” node_ids timestamps populationn”, “0 0 106.575531 mthalamusn”, “1 0 118.835526 mthalamusn”, “2 0 159.955649 mthalamusn”, “3 0 309.950182 mthalamusn”, “4 0 382.823281 mthalamus”

]

}, “execution_count”: 7, “metadata”: {}, “output_type”: “execute_result”

}

], “source”: [

“print(‘Number of spikes: {}’.format(psg.n_spikes()))n”, “print(‘Units: {}’.format(psg.units()))n”, “n”, “psg.to_dataframe().head()”

]

}, {

“cell_type”: “markdown”, “metadata”: {}, “source”: [

“## Step 2: Setting up BioNet environment.n”, “#### file structure.n”, “n”, “Before running a simulation, we will need to create the runtime environment, including parameter files, run-script and configuration files. If using the tutorial these files will already be in place, however you should run the following anyway in a command-line:n”, “n”, “`bash\n", "$ python -m bmtk.utils.sim_setup  \\\n", "   --report-vars v,cai            \\                             \n", "   --network sim_ch02/network     \\                              \n", "   --spikes-inputs mthalamus:sim_ch02/inputs/mthalamus_spikes.h5 \\\n", "   --dt 0.1             \\\n", "   --tstop 3000.0       \\  \n", "   --include-examples   \\\n", "   --compile-mechanisms \\ \n", "   bionet sim_ch02\n", "`n”, “n”, “Or call the function directly in pythonn”

]

}, {

“cell_type”: “code”, “execution_count”: 8, “metadata”: {}, “outputs”: [], “source”: [

“from bmtk.utils.sim_setup import build_env_bionetn”, “n”, “build_env_bionet(base_dir=’sim_ch02’, n”, ” network_dir=’sim_ch02/network’,n”, ” tstop=3000.0, dt=0.1,n”, ” report_vars=[‘v’, ‘cai’], # Record membrane potential and calcium (default soma)n”, ” spikes_inputs=[(‘mthalamus’, # Name of population which spikes will be generated forn”, ” ‘sim_ch02/inputs/mthalamus_spikes.h5’)],n”, ” include_examples=True, # Copies components filesn”, ” compile_mechanisms=True # Will try to compile NEURON mechanismsn”, ” )”

]

}, {

“cell_type”: “markdown”, “metadata”: {}, “source”: [

“The last thing that we need to do is to update the configuration file to read "thalamus_spikes.csv". To do so we open simulation_config.json in a text editor and add the following to the input section.n”, “n”, “`json\n", "{\n", "  \"inputs\": {\n", "    \"mthalamus_spikes\": {\n", "      \"input_type\": \"spikes\",\n", "      \"module\": \"sonata\",\n", "      \"input_file\": \"${BASE_DIR}/input/mthalamus_spikes.csv\",\n", "      \"node_set\": \"mthalamus\"\n", "    }\n", "  }\n", "}\n", "`

]

}, {

“cell_type”: “markdown”, “metadata”: {}, “source”: [

“## 3. Running the simulationn”, “n”, “Once our config file is setup we can run a simulation either through the command line:n”, “`bash\n", "$ python run_bionet.py simulation_config.json\n", "`n”, “n”, “or through the script”

]

}, {

“cell_type”: “code”, “execution_count”: 9, “metadata”: {

“scrolled”: true

}, “outputs”: [

{

“name”: “stdout”, “output_type”: “stream”, “text”: [

“2021-03-24 21:59:40,872 [INFO] Created log filen”

]

}, {

“name”: “stderr”, “output_type”: “stream”, “text”: [

]

}, {

“name”: “stdout”, “output_type”: “stream”, “text”: [

“2021-03-24 21:59:41,059 [INFO] Building cells.n”

]

}, {

“name”: “stderr”, “output_type”: “stream”, “text”: [

]

}, {

“name”: “stdout”, “output_type”: “stream”, “text”: [

“2021-03-24 21:59:41,204 [INFO] Building recurrent connectionsn”

]

}, {

“name”: “stderr”, “output_type”: “stream”, “text”: [

INFO:NEURONIOUtils:Building recurrent connectionsn”

]

}, {

“name”: “stdout”, “output_type”: “stream”, “text”: [

“2021-03-24 21:59:41,208 [INFO] Building virtual cell stimulations for mthalamus_spikesn”

]

}, {

“name”: “stderr”, “output_type”: “stream”, “text”: [

INFO:NEURONIOUtils:Building virtual cell stimulations for mthalamus_spikesn”

]

}, {

“name”: “stdout”, “output_type”: “stream”, “text”: [

“2021-03-24 21:59:41,304 [INFO] Running simulation for 3000.000 ms with the time step 0.100 msn”

]

}, {

“name”: “stderr”, “output_type”: “stream”, “text”: [

INFO:NEURONIOUtils:Running simulation for 3000.000 ms with the time step 0.100 msn”

]

}, {

“name”: “stdout”, “output_type”: “stream”, “text”: [

“2021-03-24 21:59:41,305 [INFO] Starting timestep: 0 at t_sim: 0.000 msn”

]

}, {

“name”: “stderr”, “output_type”: “stream”, “text”: [

INFO:NEURONIOUtils:Starting timestep: 0 at t_sim: 0.000 msn”

]

}, {

“name”: “stdout”, “output_type”: “stream”, “text”: [

“2021-03-24 21:59:41,308 [INFO] Block save every 5000 stepsn”

]

}, {

“name”: “stderr”, “output_type”: “stream”, “text”: [

INFO:NEURONIOUtils:Block save every 5000 stepsn”

]

}, {

“name”: “stdout”, “output_type”: “stream”, “text”: [

“2021-03-24 21:59:41,721 [INFO] step:5000 t_sim:500.00 msn”

]

}, {

“name”: “stderr”, “output_type”: “stream”, “text”: [

INFO:NEURONIOUtils: step:5000 t_sim:500.00 msn”

]

}, {

“name”: “stdout”, “output_type”: “stream”, “text”: [

“2021-03-24 21:59:42,041 [INFO] step:10000 t_sim:1000.00 msn”

]

}, {

“name”: “stderr”, “output_type”: “stream”, “text”: [

INFO:NEURONIOUtils: step:10000 t_sim:1000.00 msn”

]

}, {

“name”: “stdout”, “output_type”: “stream”, “text”: [

“2021-03-24 21:59:42,347 [INFO] step:15000 t_sim:1500.00 msn”

]

}, {

“name”: “stderr”, “output_type”: “stream”, “text”: [

INFO:NEURONIOUtils: step:15000 t_sim:1500.00 msn”

]

}, {

“name”: “stdout”, “output_type”: “stream”, “text”: [

“2021-03-24 21:59:42,654 [INFO] step:20000 t_sim:2000.00 msn”

]

}, {

“name”: “stderr”, “output_type”: “stream”, “text”: [

INFO:NEURONIOUtils: step:20000 t_sim:2000.00 msn”

]

}, {

“name”: “stdout”, “output_type”: “stream”, “text”: [

“2021-03-24 21:59:42,993 [INFO] step:25000 t_sim:2500.00 msn”

]

}, {

“name”: “stderr”, “output_type”: “stream”, “text”: [

INFO:NEURONIOUtils: step:25000 t_sim:2500.00 msn”

]

}, {

“name”: “stdout”, “output_type”: “stream”, “text”: [

“2021-03-24 21:59:43,351 [INFO] step:30000 t_sim:3000.00 msn”

]

}, {

“name”: “stderr”, “output_type”: “stream”, “text”: [

INFO:NEURONIOUtils: step:30000 t_sim:3000.00 msn”

]

}, {

“name”: “stdout”, “output_type”: “stream”, “text”: [

“2021-03-24 21:59:43,366 [INFO] Simulation completed in 2.062 seconds n”

]

}, {

“name”: “stderr”, “output_type”: “stream”, “text”: [

INFO:NEURONIOUtils:Simulation completed in 2.062 seconds n”

]

}

], “source”: [

“from bmtk.simulator import bionetn”, “n”, “n”, “conf = bionet.Config.from_json(‘sim_ch02/simulation_config.json’)n”, “conf.build_env()n”, “net = bionet.BioNetwork.from_config(conf)n”, “sim = bionet.BioSimulator.from_config(conf, network=net)n”, “sim.run()”

]

}, {

“cell_type”: “markdown”, “metadata”: {}, “source”: [

“## 4. Analyzing the run”

]

}, {

“cell_type”: “code”, “execution_count”: 10, “metadata”: {}, “outputs”: [

{

“name”: “stdout”, “output_type”: “stream”, “text”: [

“Number of Spikes: 43n”

]

}, {

“name”: “stderr”, “output_type”: “stream”, “text”: [

“/opt/anaconda3/lib/python3.7/site-packages/bmtk-0.0.8-py3.7.egg/bmtk/simulator/utils/config.py:4: UserWarning: Please use bmtk.simulator.core.simulation_config instead.n”, ” warnings.warn(‘Please use bmtk.simulator.core.simulation_config instead.’)n”

]

}, {

“data”: {
“text/html”: [

“<div>n”, “<style scoped>n”, ” .dataframe tbody tr th:only-of-type {n”, ” vertical-align: middle;n”, ” }n”, “n”, ” .dataframe tbody tr th {n”, ” vertical-align: top;n”, ” }n”, “n”, ” .dataframe thead th {n”, ” text-align: right;n”, ” }n”, “</style>n”, “<table border="1" class="dataframe">n”, ” <thead>n”, ” <tr style="text-align: right;">n”, ” <th></th>n”, ” <th>timestamps</th>n”, ” <th>node_ids</th>n”, ” <th>population</th>n”, ” </tr>n”, ” </thead>n”, ” <tbody>n”, ” <tr>n”, ” <td>0</td>n”, ” <td>39.1</td>n”, ” <td>0</td>n”, ” <td>mcortex</td>n”, ” </tr>n”, ” <tr>n”, ” <td>1</td>n”, ” <td>1571.4</td>n”, ” <td>0</td>n”, ” <td>mcortex</td>n”, ” </tr>n”, ” <tr>n”, ” <td>2</td>n”, ” <td>1593.0</td>n”, ” <td>0</td>n”, ” <td>mcortex</td>n”, ” </tr>n”, ” <tr>n”, ” <td>3</td>n”, ” <td>1681.8</td>n”, ” <td>0</td>n”, ” <td>mcortex</td>n”, ” </tr>n”, ” <tr>n”, ” <td>4</td>n”, ” <td>1694.5</td>n”, ” <td>0</td>n”, ” <td>mcortex</td>n”, ” </tr>n”, ” </tbody>n”, “</table>n”, “</div>”

], “text/plain”: [

” timestamps node_ids populationn”, “0 39.1 0 mcortexn”, “1 1571.4 0 mcortexn”, “2 1593.0 0 mcortexn”, “3 1681.8 0 mcortexn”, “4 1694.5 0 mcortex”

]

}, “execution_count”: 10, “metadata”: {}, “output_type”: “execute_result”

}

], “source”: [

“from bmtk.analyzer.spike_trains import to_dataframen”, “n”, “results_df = to_dataframe(config_file=’sim_ch02/simulation_config.json’)n”, “print(‘Number of Spikes: {}’.format(len(results_df)))n”, “results_df.head()”

]

}, {

“cell_type”: “code”, “execution_count”: 12, “metadata”: {}, “outputs”: [

{
“data”: {

“image/png”: “iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOx9eZgeRZ3/p9577syZTDKTO4GEGwNyCCKgnIquF+qKriI/WdZ7RQXva1FXDkVdUVFcFESUBRFQ7vtKAgEScmeSmUySmcwkc7/vvEf9/uiufqv7re63z7f7nfTnefJk3j6qquv43vUtQilFiBAhQoQIAQARvxsQIkSIECGCg5AphAgRIkQIBSFTCBEiRIgQCkKmECJEiBAhFIRMIUSIECFCKAiZQogQIUKEUBAyhRAhTIAQ8l+EkM/63Q43QQj5NCHkGr/bESJYIOE+hRCHMggh3wSwlFL6rwbPtAN4WX5uqlJt02nLYwBupZT+2oWyUgC2AjieUjrgtLwQMwOhphAiMCASKjYnCSExk49+FMB9fjIEL/qGUpoGcD+AS9wsN0R1I2QKIVwBIeTLhJA7NdduIIT8pMx7jxFCvkcIeRrAJIDFhJAmQshvCCF7CCG7CSHfJYRE5ec/Sgh5mhDyU0LICCFkIyHkLK68uYSQewghw4SQrYSQT3D3vkkIuZMQcishZBTAJwFcBeD9hJBxQsg6nWaeB+BxrpwzCCF9hJArCSEDcjvfSQg5nxCyWa77Ku75KCHkKkLINkLIGCFkDSGkW753CiHkRflbXiSEnGLQN/8L4DQAN8rtvVF+7nBCyINyvZsIIe+TrycIIS8TQj7FteNpQsjXuW97DMAFRmMU4hADpTT8F/5z/A/AAkiEq1H+HQWwB8BJZd57DMAuAEcAiAGIA/g/AL8EUAegA8ALAP6f/PxHAeQAfE5+9v0ARgC0yPcfB/BzACkAxwIYBHCWfO+bALIA3glJIKqRr91apo2DAE7gfp8ht+Hrchs+IT/zRwAN8rekASyWn/8igFcBHAaAADgGQCuAFgAHAHxY/vYPyL9bDfrmMQCXcm2pA9AL4N/kZ44HsB/AEfL9I+UyVwC4GsBzAKLc+8cDGPZ7/oT/gvMv1BRCuAJK6U4AayERXAA4E8AkpfQ5E6//jlK6nlKag0QozwPwWUrpBJVs3dcBuJh7fgDA9ZTSLKX0TwA2AbhAlr7fBOBLlNI0pfRlAL+GRHQZnqWU/h+ltEDNm4NmARjTXMsC+B6lNAvgdgBtAG6glI5RStcDWA/gaPnZSwF8lVK6iUpYRykdgiShb6GU/i+lNEcpvQ3ARgBvF/WNXJcWFwLooZT+Vn5mLYC/AHgPAFBKXwPwXQB3AfhPAB+mlOa598cANJnshxCHAEKmEMJN/BGStAsAH5R/m0Ev9/cCSBLxHkLIQULIQUhaQwf3zG5KKR8hsRPAXPnfMKV0THNvnk5dZnEAkgbAY4gjroy57OPuTwGol//uBrBNUO5cuX08rLZ3AYA3sr6S++tDAOZwz9wCYCEkv8gWzfsNkDStECEAhEwhhLv4M4AzCCFdAN4F80yBJ/C9ADIA2iils+R/jZTSI7hn5hFCCPd7PoB++V8LIaRBc2+3Tl2i3yK8AmC5ief00AtgieB6PySizsNqe3sBPM711SxKaT2l9HLumZ8DuBfAOYSQN2neXwFAz5cS4hBEyBRCuAZK6SAkm/dvAeyglL5uo4w9AP4J4MeEkEZCSIQQsoQQ8mbusQ4AnyaExAkh74VE2O6jlPYCeAbAfxFCUoSQowF8HMAfDKrcB2Bhmcie+wC82eB+OfwawHcIIcvkKKKjCSGtcrnLCSEfJITECCHvB7ASEgE3au9i7ve9chkflvsjTgg5gRCyAgAIIR8G8AZIvphPA7iFEFLPvf9mSBFIIUIACJlCCPfxRwBnw7yWIMIlABIANkAy3dwJoJO7/zyAZZAcqt8D8B7ZRg9I5quFkKTwuwB8g1L6oEFdf5b/HyKErNV55vcAzieE1Fj/FADAtQDugMTsRgH8BkCN3OYLAXwBwBCAKwFcSCndb1DWDQDeQwg5QAj5iWwqexskn0s/gL0AfgAgSQiZD+B6AJdQSscppX8EsBqSj4btUzgfknkpRAgA4ea1EFUGQshHIUXfaM0gXtf7fQADlNLrK1mvl5BDVbsppVf63ZYQwYHZzTshQhzSoJReVf6p6gKl9Kd+tyFE8BAyhRCegxAyrnPrPErpkxVtTIgQIQwRmo9ChAgRIoSC0NEcIkSIECEUBMp81NbWRhcuXOh3M0KECBGiqrBmzZr9lNJ2N8oKFFNYuHAhVq9e7XczQoQIEaKqQAjR7oy3jdB8FCJEiBAhFIRMIUSIECFCKAiZQogQIUKEUBAon0KIECFC+IVsNou+vj6k02m/m6KLVCqFrq4uxONxz+oImUKIECFCAOjr60NDQwMWLlwIdRLeYIBSiqGhIfT19WHRokWe1ROaj0KECBECQDqdRmtrayAZAgAQQtDa2uq5JhMyhRAhQoSQEVSGwFCJ9oVMIYQp5AsUr/aFB3SFEOP1PaNYs3PY72aEcAEhUwhhCj9/dCvefuNTeGnXAb+bEiKAOO+GJ/HuXzzrdzOqHg888AAOO+wwLF26FNdcc40vbXCNKRBCooSQlwgh98q/FxFCnieEbCGE/IkQknCrrhCVx/r+UQDA3pHgRmaECFHNyOfzuOKKK3D//fdjw4YNuO2227Bhw4aKt8NNTeEzAPjjF38A4DpK6TJIp2d93MW6Dnk8tmkAu4Ym/W5GiBAhXMILL7yApUuXYvHixUgkErj44otx9913V7wdroSkyge1XwDpaMTPy4eqnwngg/IjtwD4JoBfuFGfXRQKFJFI5RxJz2zbjxMXtiAWdd9K99HfvggA6LnmAtfLNkKYaD3EoYBv/W09NsjasVtYObcR33j7Ebr3d+/eje7ubuV3V1cXnn/+eVfbYAZuUavrIZ0vW5B/twI4SCnNyb/7AMwTvUgIuYwQspoQsnpwcNCl5pTiL2v6sPiq+9A7XBnp+sWeYXzwV8/jhoe3VKS+ECFCVDdEZ9v4EQ3lWFMghFwI6ezaNYSQM9hlwaNCIZNSehOAmwBg1apVZQXRofEMLv39avz8Q8ejs8n8Oer3rOsHAGwdHEd3S63p9+xiYDQDANg2qHfoWHUh4JF6IQ4xpLN5XHrLalx9wQqs6Gx0vXwjid4rdHV1obe3V/nd19eHuXPnVrwdbmgKpwJ4ByGkB8DtkMxG1wOYRQhhTKcLQL8LdeHONX14addB/PbpHjeKCxEw5AsUmVze72bYRjZfQDZfKP9gQPHTh7fgnOue8LsZZfFy70E8tXU/vnHPer+b4hpOOOEEbNmyBTt27MD09DRuv/12vOMd76h4OxwzBUrpVyilXZTShQAuBvAIpfRDAB4F8B75sY8AqJjHZM3OYWzc6649MIQEr09v/Y8/rsVhX31AeO+57UP469o+bxvgEEd98x846fsP+90M2/jxg5uxad+Y3804JBGLxXDjjTfinHPOwYoVK/C+970PRxxReY3Fy30KX4LkdN4KycfwGw/rUuHdv3gW516vcx58hT2lM+UI7EqZj+5/ba/uvYtveg6fv2NdZRpiE+lsAUMT066UNTKVxX/d/3pVax5Bww8e2IiFX/67383Qxfnnn4/Nmzdj27ZtuPrqq31pg6tMgVL6GKX0Qvnv7ZTSEymlSyml76WUZlyuy9LzlbaJhzb4UrzaN4KfhI53AMDUdL6smeya+1/HLx/fjntfccXyOjNhUej6xWPbvGmHC8jmCzgw6Y5A4QRVt6M5JLbVi7ff+BSufXCz380IBFZ8/QGcd4OONisjk5M0hFBRKIUXZCBfoJjKVt6ftX88g+lcHj37J9A7PImczwNedUzBKWiF7UczxXzEUOn+m8nYPjjhdxNCcNgzksbmCvsic/kC+g9OYcf+SWTz0toyWmFWLSR2ULVMwWrflJMsPvH71fjBAxttt8dqfSFCmEUlCEEIoOfgNHKToxXtb1ZTvlC+TnaeQiqV8rRNVXfIDhGQ23Q2j8npPFrq7KdXenDDPjy4YR++dO7hTpo34yHq/xDeIOzr8nCiuWZyeSRjUeX3T58/gE8BqC1ULn1MvkCxbyQNlvQgXwAiIylEdTIvsJPXvETVMQUR3v2LZ7C+f7TiKR8ORYTmI3dx/UOb8ZmzlgU+j3/Q4LS/Nu4dxbnXP4mfffB4XHB0JwBgNFPA954YQs/5J7nRRFMYHMvgwu89hNa6BAgh2D+ewQtXn4WOBm+1ASNUrfmIx3oLOUoqrYmLiOjgWAa/e3pHZRviEDNZap3I5DCsE0Z6/g1P4sO/8S7/zPUPbcHOMLFhCSilGBxzNWBRhdd2SzTj4Y37PKvDDIIoCwSaKby2e0TXvmeVtluRLO56qQ8Lv/x37BmZslgLX5/+vSv+uBbf/NsGbB3wd5PQ6p5hrO+v/oNzFn/l77j81jW233/rtY/j+O88KLy3Yc8ontyy33bZZkABjExm0X9QPN8ORd3slmd6cML3Hiq7RkJ3i/sILFN4bvsQLvzpU7hZk86iEpz1L2t2AwC2DniTt2hkMgsAyJlwLtlBNl/Arc/tLOu8es//PIsLfvKUJ22oJArUeNNbOfQH4IyIN/3wEZxyzSOqa0GUIisFxoh79ou1qGrqm579E/jZo1vNv+AzowusT2GXnM309T3uhohVSrLwU4K5+akd+K/7N4IC+PBJC1wtO5TM3AelFGPpXPkHQ7iPCsznf/3N8+g7MIX3repGe0NStxkVzOpviMBqCuXAiNN37jV3MlFA+lsFrwjswSlJExmV/3cFQezAgGA6V8BX/+9VDI17ZwM/VOEVza7kdE4bbIgL4rIKrKbAUI5w/uYp7xy2Toi2kXrrleqbzuaRjFUtn9fFyGQW3/175Y8lNIv7X9uDW5/bhfFQ2ncN1WQemmkILAXxc05U44QcGEvj8K894CmTBPwxd/70kS348xr72VH3jabx2m7vHOpMeAiiZW3hl/+OK+8MdhLBQwVmw7n9nkeBZQpewe8O9wq7D0iRK397ZY8nDLUK+aSCU695BBf+NLgOda/n5B2rg51u3E9Uhh6YWz1BWWOHDFOwI/27MWGMTFCh07Yy8CrKS4twPN1HuZQTdrs8iNYAo295x41P4Uf/cC8NjxECzxSqdwetT7MupEwVh+cE5pAcUuNODSBNx+R0Dsuvvh8PbnB/Q9wrfSP42aOVSfsdWKYQbvu3BlF/zZREaofqVDhEP7sET24ZxMIv/x0Do/7vJzFCz/5JTOcL+PE/N4kfKLMcgzLegWUK5VC9GkQRXhG7oBPRmcKstJiZX+UvKIBbntkJQDqXuRphZj0GaU1UHVOopAbhxkAZ50Z3XHyIEDMSZpd5kIipHoyaGESLSNUxhUrAjYHya6z5+VcF68UUgrhwKomZoBW7Ab4XZvKU8HvdVi1TsNtx1SBZ2AFR/e3dipmp/ecG7PaN3mszmfBZgZf94OZ81munKfORyecqgeAzBc2Y2e836296HpLqkQToRbluSuszja8c6ppMNSIoQxaQZqgQWKYQxM6yAqP2e0lEeIIblIkfwh5mGvP0AkHsIqfj5re50DFTIIR0E0IeJYS8TghZTwj5jHy9hRDyICFki/x/s/PmOoeV7q4mmipiACFRqSzsd3c4UGagns/BW53lhLByoxyUg6zc0BRyAL5AKV0B4CQAVxBCVgL4MoCHKaXLADws//YNlZaaK73MVRqCB5PLzRJnGgn0amqFmp40r73shkrMRTPtD5IA55gpUEr3UErXyn+PAXgdwDwAFwG4RX7sFgDvtFW+5nclF0qAxumQRtBpYzhP3IfZMbdLTD0NxqjyGeGqT4EQshDAcQCeBzCbUroHkBgHgA6ddy4jhKwmhKweHBzkrrvZMmtwo+pKNz+UKqsZxoMXJCnSX1R3RxjvVzD3XCXgGlMghNQD+AuAz1JKTR+XRim9iVK6ilK6qr293XR9bof/zUR48alu9N9MC2t1zo/F/REUG7O/oL6cTeIE1T5urjAFQkgcEkP4A6X0r/LlfYSQTvl+J4ABO2VrCYjd7rb1XpXSriAuFEeYad8ToiyCJDlbhZ75yGhdBilq0I3oIwLgNwBep5Rey926B8BH5L8/AuBup3UBFXIMuToo+i32YrJ7bc/0e8IGGlVGvGYCgsQw7GgIQVxPbhzHeSqADwN4lRDysnztKgDXALiDEPJxALsAvNdO4e7H9FfoWA2DdntzCI4oS6r79fiyCAO08EVwOkXL9WnAP99TUCru3yAS03Iwu3b8ZnSOmQKl9Cno07mzXChf9du2+agKJ5FdeMJ0XCz0UCZyVnAozVktKmWXr4TgZDZLalDGO7g7mgPQQdUYWua3lOEJAjAXzKAa50s1QTS3g3Tymp0yg+iUDixT8BOubtQSzFqvJ2RImioLrxb2jGTwNiDq3+CR0vIwKzT4PexVyxTsdlylFprRpK3mxe6GNFzN3x8ihFWYFRqCwugCzxRKdzTb67ogqmlewKu0AH72XrWMndvMLggm1CDBk303ASkzSHJSYJmC24QgtPeG8Aoh8fYWhv1bBWqnIe0J4NwJLFMohyqYCwDEEoCXRETtW3C/k6ql36sJYZfqQ69vgnyGhaWWiZznPi+ywDMFO+FdIlTaBOHrnPWgclcP2bFIBgO8/lXwai0fioy4mlPBl5i8TdAeguAwusAzBT/hZBL6NYGrZeFYwUz8JjMICI3wHYbpISrXjLJwMlxB+o7AMwW9CeGlj8BNjl3l5lAFfqu01YCQiLsPSnXCuivfFG8QwA8JPFMoMR85Lc/h+27UVyniEVQ6brVd1UJs7fZ3UMfJTzg9xcxP6AlQ1TLOgWUKbhOCShMWvwgZhVdpLqqEMvsAr3vmUI+cM0yd7bBsNzVgvXZW29IJLFMIArzm7G4u9mqbeCHMIBzUcpgx7DJAH1K1TMFLVd3dNBf+jXaA5pkjHLqkcaaMoH3onk1Q4XZYgd6omTUl+21mCjxTKOkfuzuaA2g+8iJM1utsi35P2CDDKzNPtezodhPCVPCBZ5Licaq20Qs8UyhBBalS0KcgD34RedFF1TaxKwmvBY7gE0Nv4SVTdLdndRzMFW+HM1QfU6gAKhYd5PUpaZ6WHsJ7hCNYDkHUXPVGrVpGM/BMocQm75BiV1rqEtoRvTAbCWoKSrKvkjICuJDdgG0/V6DkxOAiSOcYG8GKTyGIayHwTMEtVDzNhY9ygScLxoUyg7yQncHbDwsi4agoqmbe2PcpSGkuXG2MbQSeKYTx8eZwKDojZzrCqW/m/OqZwTGD9BWBZwp6CPohO2YQpLZUEmYWMm82rBbieIgOpzcQhWqqbgd4UuhMBLPh6X7ThcAzBW1H2p4Kfu0wrtBxnKYr9xEBXsaO4HQ8AzZMhwQ8idDT3dFcXTPfc6ZACDmXELKJELKVEPJlC+952SxT8GrjmdcTMqhS1Eylfd7vfA8BzFyhQgu/SZ+nTIEQEgXwMwDnAVgJ4AOEkJVulO3tQnQxS+qhMpMtwHJCvEOGHKhxaH61GlTnb+WaUzrgAR2xdRxngNRFrzWFEwFspZRup5ROA7gdwEVWCig9o9lZg4LQ9ZXacexJSKqDyWvlswO0RsrCq/Gsoi5wHUTnb+Wawz73YszcKtLvue81U5gHoJf73SdfU0AIuYwQspoQsnpwcLB4XadAvzvMKirVXpX5yJMJH8qtfiHs+VI4XVderEunRQbFquA1UxB9pqrvKKU3UUpXUUpXtbe3e9wci9JqpSoKYYigLJZy8Ow4Tm+KrQrwmqkXJpaZEtLqJrxmCn0AurnfXQD6LZXg7oZmU1OgcmkuPCo34PPcai6YoH+PV9OlSnihJ+ADTURBJ9VoPjKax0Ga4l4zhRcBLCOELCKEJABcDOAeMy+6fsiOu8U5gpdt8VrycVJ6ECLKgoigM70QlYXf2kvMy8IppTlCyH8A+AeAKICbKaXrzb3rZcvMwY02+PEZnkhBPtLz6uElAZi0IUwhCPQFgGrKBMVv5ylTAABK6X0A7rNdgG4/eTeqbgyNX8MblIllhCCF37kBzzWgGdZfVmHUu0Hsmmqf34Hf0VziU3BI9Kp9wMqBVz2D9qnWQlID1ngPoXu6WPD5ewgObgkHfk/9wDIF130KPq2wShE3nll6+qU+TNhqoY1+L+aZimrvVrOkJyhCQGCZQjlUZgE62KgVlBF2Ca6eW+1iWUGA076pBpPfTIOXzlxtydUmLASeKWgHbybRWk/irgMcK29l7KpsHXmKQ7Evyu1oZnCc5cLFznVCmigNDvMILFPQk57sdpy9AfOIA3nA2URF+h3adqjBdjr3cJwsw/E+BU9OP9Spq8oE2cAyhXKoto6uJIKa1yUokpDb8HouHspTXZXLa4bOH4ag0LTAMwW9iRB0n0IIfcy0xT3TvicIMJvLy64J1gvtLCA03TECyxT0D6xwVq6ZOVTNaS6CnB7Ckk8hYG33EuWPnAyhhVvmn0rOM+M0F1woeQXaYoTAMgW3BysoqhngjURRscPcfIlJDdDgCeBV88KoJC2xdG/uedm3WtplOiTV/abYQmCZAoNeh1aCw1eTtCpqqpvEylXCV0X9GsIflIs+csogPDEfBYWqO0TgmUIJ13VanonJ4IYUwUoQMZZDlSbOdMn3UNqFHcIdBDHyLLBModqzpFZaahBKU14cJFKhOcwvlqCzkjD1kfsod/RmkAUMx1qMzwMeWKZQDkHksCKI2un1dPZiN7Wbi7Baxs5vzBRzhFNUS3YAp2skKN8ZeKZg12njSt0O3mUTpNJM328pwxDBmPMhqgD8VKmmnf8zAYFlCk5OMXL6nhuMx0wZrm6xn2EEtxoXrXcn6VVhZ3gMt+Z7JbVWo7qCNMSBZQp6sKui+ZcltfRaNe+DCFEKr+3bQTEr+AFKq//7rc4Pv9dt4JmC25zcCkd2wr2V6KMKD7HfE8oMgiQVVQMORU3Ba0YQtC4NUnMCyxTKzQmrnWhlirG6HRH0igs3wZemiozS4nvB/zQAHmy4ZOW6W2zVQhjebdeM7Kwp7kMVWeUvAssUdAeblLlfrlwLz7phFjBupxcxo2brdlx8CAaPUq/4aTYJinZCqZg5uiK4obJh22GaC5egJcy2l4nCTMx3uZMJp0Qf6TfFVRQXiXsLRlS+GzAzBgGhSYGAH33hd/8T3R/sksPwT/l/Nz+T6AisYZoLl6FH2KwSPCuTyI1wUr82rwVFwhOBZ1zloN68FpTlYgzPoo88KrfaIJrbTqd7UNLlBClFuCOmQAj5ESFkIyHkFULIXYSQWdy9rxBCthJCNhFCzrFetm6d0h9emo+cVWEa7oak6msmQYEVZuv3wggCiA3t1i0EqftFWrdDMuDJ99kZL9WjCs2r7h3NDwI4klJ6NIDNAL4CAISQlQAuBnAEgHMB/JwQEnVYF4AyR/MZDAaxoC+6KnULQ1K9JeDEQ65WTdpTpeCVluanhhQUjZM3h4qcsUFpJ6C/rk3tWYJxvrRKwhFToJT+k1Kak38+B6BL/vsiALdTSjOU0h0AtgI40V4dOtctllPpEFGjeeDF4KuySnrAE9z0U5gpIzhLvTyqPY5eBN/7n5O6RWvXvS73/UsVBGUeuelT+BiA++W/5wHo5e71yddKQAi5jBCymhCyenBwkL8DQJ/rWrUvVtzGr0gNgtxHHpoF+GgNd+Fe5lgz6zBIEmA5eCXh6TkuDwXwJiMv+yEoZfLz3e/hjpV7gBDyEIA5gltXU0rvlp+5GkAOwB/Ya4Lnhd9KKb0JwE0AsGrVKuUZOxPBlAPTjPnIRQ4i3NHsAdkWSfJByxljxWzm98KwAqdaVBATBPrNiMwuwSD1XLn1ZnQ3SOajskyBUnq20X1CyEcAXAjgLFrslT4A3dxjXQD6rTTMDtmUqhe/aRQiqle31/ZzV807nBPXC8nKDZOUlTH1e2FYgVMmH8RvDQyj0m2GO4KVF1+p7Tsz/g/Vuq1mRzMh5FwAXwLwDkrpJHfrHgAXE0KShJBFAJYBeMFeLZoOtkmcrBBKNwbH0K/tAdEWhXC6y3Tcg9XvDoiptSzc3lDpV6oUwH9GpfKRGc1nh3NJbIZ29vGl+xTMrceghF6X1RTK4EYASQAPyh/+HKX0k5TS9YSQOwBsgGRWuoJSmrdSsNKR2g426DijTveLsIgmmNdNCawt2gqzDVrbDeC0v/WIUGDHsYKgoMJ+sC0cyu946bMq8YOy6yar9Hu8HTEFSulSg3vfA/A9u2WXI5x286BULPrIlPkoWDZ/ryuwZD6qIq7glUQflGgUP8AzApHmbjcklRCimsOit/k67aCkSSYjLIIy3FWwo1kNIwnBeFGa3zjljsNHX2W0smfCCbxIc+FGiVY3r7m1VjyTDj2W6P1gj35Lq2qTkReBGfr0wI2ga1VdVt/2ue8DyxTKhW1alxCsPOs8zQWDHyevudl+BndSf9jzdbh2oIpnPMGZD6esT8EHIuG3pmbWdGbHfFTufbd9Cpbfr2ZHs5ewI5maMx+ZqNtCnbplGBTihSPYC8mah5t7K0wlxFPVHRC9WgdONb9yGYEPRYhDrEufq6ZMwOXaGpR5HlymoBdaalfaZH9USOwyohOebsaBe5I1D68ZpRae7LFwvUQJzn0Kxu8ditFH/IyzbzLWR0UdzQY0S8+n4ScCyxQYSqOP2I3yz6res6N5WHhWvxBB9FFA4pHtoGI+BRfqKa03mP2t1yw3THZ2EZSeUu3Qd6EjzIWkOqtDW6ZZM2Aw9IQgMwUXHZu263YSaWMgFnu52NUpeN10NLvgU7DwrCj80CmCQuiMwI+Zn9YEvxmo6HwQESzveTExC+1rHzp1mhQCgxKCHFimYCfkzC3J2wubv6p8Dxc7BTU0XTkv3z7sMha3NvV45mh2yDD51/wmCEGBSDtwxdRiJlTcsaNYW6W5+REQl0KAmYJODxlxXUPzkZWQVBcGp0JRpwpEjlkv0lw4KsPCs15kxPTKXOc4tz+v3TlujTvwux0qTcFDw0olEuJZ1QD8NisHlynI//u6o9njkFRv7OYeayJuRB9Z3E17jHQAACAASURBVNEcEAFKF07bp7ujucx9L+G3xiJa5260qTQk1YOABr0w+nLmIx99SDyCyxTKrDQvO65SkTZeR9i4unnNjdTZJiQmkdRdqX0KzuPTbdqidcrw1Zzgt6ogQ53g0diUZAaljmZxnU6gF31UDl6cg2IHgWUKejAiLOYOhK+Mj6LolxBFH3nss5D/D5r5yGiXt/oJjaNZw5C8kpztFuvqbm/RNb+phA/g55vR1PNGsHKZK7DLYfSRO9BLQyt+Vh9WbPxuRgGIyvBy8CkXruGVecouzDAWLzfwuL07tgj32ixihn7wBL/t2gxuHz5TKmCI6nRWR6mj2eL7PksBgWUK5exrlh3NFoiNm6YSQ3gy9tQbTcG9okzuaNY3o9iP8jF+0a/FWDaU0Ydm+a2d8EKcm3mKSuaSiI5YLNM1BCT8KLhMQWdBVHKhuGIOEGkKHmxeq5Qt2rMzJrT1eOCg905TMFe+fr1U+Peh7FIwG0FnPbzZ2ftmULJ5zXL0kb8ILlOQ/y8lQkY7WcqXW6mQVKU+UfkW2mK5PlWZLjqaK8SMKx3Ky8M3nwL3olga9ptM+IdyX17J6CHT72t+m9685qhW9xBYplAuHbHQIWdiglgZ7qBudjIChTehbW46x81EH4nqLr7vPMpHfN9euU7TMOi+5eE8KQe/7dpuRhypyy0/j93WGI3WoxdpNpwisExBz8lmd8u7tdTZcnkuTEM/Tl7zAu6G6VqLEiuNLbeHsger+7QY9XMf+Qe/dRPer2eUoddtp7AbZWphVpO0sj68RHCZgq+UsxrJtgSvJTxnuY/KS76iZ6ol95HXWlQlEZR2APY3rNqGY0aj8Smw6yKmJnzOWf1OEVimoEDPfGQzEsHSPgWPB8fN4j2fRy5oT3aJu1vOQc/H02VHc/HaoQfhcZxC84vNCjz353EwvXktGMJoYJmCXvcUr4tUSf2RthJm6qqj2Sj6yKMdzd6cp+CefduwCAEBKPEp2F3RLkeyuAVV7iORhuRHmgufWZF+oIk75SrwwLFvxQ/q5DmvEFimwFCiihlQPLc700l5bGKIJ1hlNpcFbUezGRonqqZSApTtlMkutyMQ8PmjzEe7eRF9ZPM9nbYYzXv1ZkVn9bsFV5gCIeQ/CSGUENIm/yaEkJ8QQrYSQl4hhBxvo0wABlzXYsdZcjTbrURYVmnFXies86J4dxzN+qk/tDCK1/du85q9cs2Wr/+e+G9/dzT7Cz5KyEhr8GIuuP3tZte7lxYEK3DMFAgh3QDeCmAXd/k8AMvkf5cB+IX1cqX/S6KPIL4OmJsgldqnYIrw+b3yAghPjyotZz7yuHz996jw76AcuuInCFzuBzM7ml3ep2B0Ry38zByfwnUAroT6iy8C8Hsq4TkAswghnVYK1fPYG4akGgyHne52JZpEUIqRX8R2PRUiHK6kzjbDvPkfLqlW5ap1niXV0esl8DUkNUCMyOoZx4ZlsfcqKHRYrdPvrnfEFAgh7wCwm1K6TnNrHoBe7neffE1UxmWEkNWEkNWDg4Ml9/U6SLiAXepNNzi2mT0TXm1eK/7tXgVutNlU6mzFoe2B+ajcPgV7xboaKy8mfNXjaHbb9MGbj9T1uFOfJ2REU4Dhhjm1vVC3TZVErNwDhJCHAMwR3LoawFUA3iZ6TXBN3CeU3gTgJgBYtWpV2e5wfMqVhTc929Hspa2Yeht95KgME2Gt4h3N6t9eOYS92Ahl9UVR9FE1JcSjLs0/I0bgNdz2LZnVFLyKuLKKskyBUnq26Doh5CgAiwCskzlhF4C1hJATIWkG3dzjXQD67TTQygAZPWprR7OD2eHXsKqkTo81ES8hcrhWtFI7r9tOc8FzheKfQYlb9xNUT1WwOVjm0ly4K3RYpSd++xZsm48opa9SSjsopQsppQshMYLjKaV7AdwD4BI5CukkACOU0j226rHUJneeqdSQeFGPV5ELrpiPTO1oLq3HtdTZZR3N/rByrx3gdmBfE3cJgsXhblZhVqb70M19JHrWg/qdoqymYBP3ATgfwFYAkwD+zXZJWkezUXIpQ7OEdRLsZMD8DitzG5VXbQ18CrZLLONTcMP+Y+dtlaIgioZxVLwt2NZ69EV7e+WBCte8WyYeN32TQc2tZRWuMQVZW2B/UwBXuFKu9oJjn0J5uJnF1KgM911yEjxRPyuUsVPU965ZUQK6KL02+dmB/fh/92EccWgPXq5LfZpljuH77VMI7I5m1i2lqpjBOybMEpWCW/4NJ/W6ObXcbLLlHc0lRyh65Gi2VSr3vs0C+K8LCE8IPOz2kxn7vuuM2Wp5Pk+C4DIFuWP0CGi5jIPlyjXVBvOPWoKX0qDnSd9cKaN8KcaOQJv1lrPdO960ZNf56ex+kODW/FOlzlbKdn9yi+383ggdogf81gpECDBTEHeWYe4jl1QFV3Y0++TQ9mqSuZmczbAIgUNb+01eMT6vmI21soJBJLxKJWKnHaL16Fv4sJmydRpntk6/Z0BwmYL8v3Y+OCWk1vYpuEAAHZdgA15mSXVQhpm+99Kh7XnuIzd8UM6LcAV+S7BmGYHlHGjy/4WC++aj8pqo8f2gpDUJLlOw0cFmdsqagTuO2sqObHGHZ+m1oMFxs7xatE6jiGy+xxPAoI6ZWVRsg5lLY+XFjma990NHs0Pom4/k+3btfmbMOgHh2FagaFbEW6e6k7JFKSz0YMTcKmnzrQSCOM+C1CbWlkjExVBXo+gjt1NnVBk9CS5TYH+UHNpu8I6RpmBhPpVzclspo1IoyBV6tRvS1Y1DBvdEIalu1exZ7iOT5Zsry8V+9mFHvhfzXmTpsR3ppdnRLHQ02/4G6/PL3frdQXCZgk7HMOIX8TAkgy3MakozUChI/3veZAcVmPIpCDTBEk3BJ5uvHph92u6cVNXrqtPaybvBEWuL65G7ZpcpKO+7/32MeekpNGbr9Lvng8sUdLomb7AA3ZKyFE3BSRmutMQ8ipoC3wY3pU7XinKcjsSrvrXbX4wY2OWX5XiC3XnoB3Fxa86piLdCbIMtpDHapCdMirUCkZ8h9CkIodcvObnjYwJ2bC6njhl7dqlkYhWmCJ/94nXrixBSnJSuEnLGjF0pTfdOXmArqJTjzb4G4sx05xURKDgo12/zUZHREk8EnqJwWXrP7jcYlSkVbK/cSiO4TEH+X9u/SseLmILLbfBaLnFKhHgUOPVGMbG56Jhj8DqDo4gpaGE/L4+t18rCVU0hMOYjm+/Zr1JTv1RSNEIMfXx250LOA4sDL5g5gd+8I7hMQe5hbQexwYxa7HjF3meCULoxKIbb6J2G0wle56Wpgs0+MqzTtZKMCQ4bXy/MR2X3KdgsN+9itIqbWpETTcFv0sRL3UUBsTifbft/5Bc90RR0LAxsPZpOdhg6msXI65iJFIInNB8ZEGILKr6bIXBeMAfRYleYAiFFKcgLTcGN3d4G90QLyC3pubyj2dl4uGHzDoqmYL9OdyotOm3FmoJCH6LWSBgrt5z93w705sF0XooCEXVNJlcouaalC0Yb7bxAYJlCNi8m/kYEz6jrFGnDxBwQ2TCtwqgteRPSsBFEc4Q3YRRVb3vli+CG811blghM2uKfmdYsHP6elQVT7kmn5ryI/dNJHNzVh7bfrMBv8xFPYHmBhyErE1qRb9FMucXyS59x2t/aNrHroj5l3wHom06n8/bH0Q4CyxRyBXEH5+XrUR21T49IUAuEXinBgRRhJD0yhmd38ok0BT4qyyhCyy5EYYGWyzDxwaJnprJ5YVsA56YbN6CEA9t2NHN/c9f1tGWzyOTy5R/Sa5Pd91zT6opEm30H3w+MUMYtSj6sfYY+BZsfMZbOAQAaUnHVdUVTELzDM24902k6a38c7SC4TKGMphDVEcuyBTFX5dVRs3BCUlkzxEyBSQ7umY9YmYloBHLXCU1sduHGYmdjaioCjPs7Y7AozDimlTLLbV5z2ZZsFny1fBuNCJcZiEwT1YI8px1ksqXfwQSrmEg6NICiKRg6mu1hLJ0FANQlo6rrRU2htOQicyNF02kJUwg1BQD66mFeYQqit6gukTCKYNB71gmMCEXWoToo+kS2cBKxCKdNue9odmKDzRpITCX1cYOQ1hI3rgBLTKHsfXsDn7UotWqJg0pTEJjG7DJ3R5qCbVXBdpUqZHPFgjICoprVMdWUg9bR7GYG1vGMpCnUJNRnlylMQfAOu5eIRoqaguaZUFOQkdNxJPEaxCMb96nuUVqUILSwsuBz8iIvR/+mcwUMjWeE94wW9LROG81CpCmwhROPEmWiJePuDa8bjNLI4VZSH/e3dlHw93KWNAVn9/UwzfW9GWgZmd7czDlkCk4kTPv5pdzhCmmZoVFKFeamHnd75iPW9TmFKbgnODHzUW1crSlkDea9oinEIroCTqU1vuAyhbKaAsEX7linuke597QwiiHWDobRIPK46q5XceaPHxdK/kZ2/ayB48kMqOATf/SPjQCARCyqTKKYgefTqunKDZ+CFccn37ypafvmI7WPyVuHrlkCZZaR5XX8ambhhJjYd7rbrlIFfswfen2gpOxpm+YjNu8VYizsW3sfwTQFLRMvznuB+Yhbq0Wfgvq5yemcrfbYRWCZQrnooyghODCZLXlPb8EZRRtoibqRY4jHnWv6MDKVRf/BqZJ7eRP12ZWqtM7VQoGiZ2gSAJCIEkWyNirdrhTpZPOa3e8ucTRzr+d0fEgMfOSG1ZBUs4xzmvPnmHlXq+npmY9Y0+1qCk6ij/wGG3N+OfO9ljUh+IjAyuPNrVrYZWxs3eULFM9vH8JNT2wDYKwhF81HxQAR7WOM2VQKgWUKTMpJxtSqGJOeRGqfZD4y1hRE7/GMZM/IFO57da/6JQF4CbT/YFr3vih01swGLSNoiQpPNBOxiCmCb1n6cEECVLrMVFmcT8Eg+kjkhORR7j4/juOZHF7bPaL8Nuuv2C0LBWbNdVrBRa8WNs5254kfPgX22taBcby064Dt+tmYP7Z5UHg/yzlorYD1KesbIVPg/7bQEWzd5QsUl96yGt+/byMmp3O6Jm2AYwqxiCLgaKscT1cZUyCEfIoQsokQsp4Q8kPu+lcIIVvle+dYLZcRukRMaz6S/o9FCFrqEqp7FFTxOWihp5oBapPT5n3jXHn6uO6hzcrfA2OlTKGoKQh8Cg7NR0ZMIRWPFomoQQX8d1qB15vXlGd485GBo60c4ePvi+pNc/evvPMVXPjTp5QoErPx4QcnpOdrOQej0dhqw6b5OakKt3W4acmJg9J+qgfpvc/c/hLe9fNnbEfYMQL7BMcUVI5mJVzXXkgqKz9hYPLbPjiOU655BD97dCsGRkvX+MBYGntGilYCFiWXKxQwJkv3+0aLPkdRT/BBCnkd2jVWTZoCIeQtAC4CcDSl9AgA/y1fXwngYgBHADgXwM8JIVHdgjSglOLBDfuE94qaAnBwclrznr75yCjih+fkEyYH4KePbFX+HhgtdTbnOTOXFk43o2jXGW9/TXI+BaPl+IFfPWetTvn/SuWp5Nuu9Snw32+kFeXyBZVdXbgHgit7494xAEDvsLTQd8omOeld/d4cluchL1wY9X2Jo1nHfFSMRrFHWCcNfDHloP3ckamsKTMGBfCrJ7Zjff8oAAhNvGYgEgR4YYiZj+ICSd8MDDUF2eLwp9W92DOSxo/+sQkX/PSpkucuv3Ut3vOLZ5XfTMDgx3cPZ1o2cjTHuOgj7ez553qJFlrViuzCqaZwOYBrKKUZAKCUDsjXLwJwO6U0QyndAWArgBPNFrqubwSv7xkV3mMdl83TktBMiSmIiYRROOSruw8qfzMpkZVnBoOCCKRiUrrS541C1MzASFPIFQpFn4JOBXakNybduqIpmKieJ9ZTGsLPv66nKdz7Sj8O+9oDasIu6HER4WTjed2DRW3QqM0jMuHjGZRRH2sFl2kdZqIXt24W7NtqE6blMV1ccvMLeNfPnjb17Pfue135W+RvMwORlnPLMzuxfVDScLOGjuLyYGZFkSafyeXx17V9+OXj25Vrg2Ola3zNzgPYfXBKEQbY+PPj+8FfP6/8LZp/Qp+C5rGHXpeYQk3c+TiagVOmsBzAaYSQ5wkhjxNCTpCvzwPQyz3XJ18zhV3DvISmvsc6jk0arfqnZz7SiyjqPziFj/1utfJ7jLPfGS3sRDSCT755Cbqaa4QThq1zLzavaSVNnrDl8lSJ69eTMCc0hLDSuVXMSL4Hp4rMecrA/yHS0gDg98/sRL5AVXZtUXeLiA8zFdQnOXOQYVslTcHIzMVD6wDWixJyulv7pV2SsJNygZis6z2ILQPjljcA7hOYXcxANC67D07hs396GUBxDZlxwh+YmMZ//nkd/ufxbcXylTDX0u95x41PK32nB74fmBDB2qxnthN1XYbzKSgpXgD8c/1efOCm5/DYpoHSlzxGWaZACHmIEPKa4N9FAGIAmgGcBOCLAO4gkifXdJwXIeQyQshqQsjqwUHJfsjH/ms7knFh1pn1KX7hUl0zkV4kRi/HgABglGMKBSoOcc3lC5jOF1CbiKKjISlkCkY7Jq1s4hJB2ye803gsk8N42lhl1+6tMGPOUhTbCvGPh18vmg9Lo4+KjdjPfcv1nJ+HmQW2DXI+IpH5SLCA949LRD7JEVMjYnhQ0RSM/RcM2v6+c02fsB69aBSz+MtaqVwju7ke+M/l19TQxLTgae49UDTXxnH4nAYA6vExwh+e34kv3fmK8lsvDHmDbJaysqP50U0DuHNNH665f6NyjWkw7Du14yvSiEUpKYCi34CNv14fbdo7hr+u7VNdK27SjSgmsV3Dk7jsf9fg2e1D+OhvXxTW6SXKzhZK6dmU0iMF/+6GpAH8lUp4AUABQJt8vZsrpgtAv075N1FKV1FKV7W3twMAhsaLnaqVlthCYQPEbyk38ilM6+Qb0pp+ePPRt+/dgHNveLJkwjBCUhOPor0haexoNjgMSI+BPbttCK/2FaNgHnhtL57dNlQsW/ONbDI2JGNY13sQa2UpR4+OKTsvZaJnZoe1m8zAqCwWPLBnpNinWgJx6S2rFaY7yM2V6x/aosyLlBwJtJNj+qJNfyLiw5gmb0PXm1eUUkWrSZfxXzBo+3tdb1Eq5atxmjiRMUY7KbR5Cfog5xfYO1JG8qeSYHXKkjYAEoPN5Qs4UIaZXH3Xa/jT6l6lz/W0rqL5WPYtmvByifyE+8fV7dGuqe2DEyXv8LSCFwBYnzDz0UEdP8qNj27F5+9YhxFOC2bzlZDi/OGZF0NrXULXCuI2nJqP/g/AmQBACFkOIAFgP4B7AFxMCEkSQhYBWAbgBbOFjmdyaEjFML+ltkRSZz4DZkuu02wp1yNwxQ1j6o7VTtbxdA5t9cWopq0D4xjQaAKMkNQkJKYgNh8xTUHYHAD62ssHfvUc3v2LZ5Tfn7x1jcoxrGWUzHzUWKNOxKU3hVj7T13aCkB/F7i6LGdSq5l2SW2R+oSP9tA6kzfuHVPCQLWSKFugrE94TVA0NyaFmoJUJk9M9Ew86WxBGcdJ7nkjE5nR/gH+Xt6Bo/nvr+xRynIqYfIBHeWYwsR0HvkCRUdjEvXJGAbHMvjJw1tw3HceNBUNxSR4vsmXvmlRyXNW9rxoGQAP9ra2j1jQAQ9+nfPzYVAWCtMmQ4C3c9orH4loFG02pymF6XzBtsnZCpwyhZsBLCaEvAbgdgAfkbWG9QDuALABwAMArqCUmg6FyOQKSMYiSMQiJQQrrzEf1SS0+xiMfQqiunj8eU1fySTinZVAUYqRzEcpHJjMlix0oyyp7JKI0DBT0HReIjb8QmJ1aL+REXltIi69+aNlIlY0BTfmpNHEZt/GFiAz1WmxV2Ya+zUMmTELJnHyYylifmmBpsDe4ePD9Qj5AY5g8pE2Rv1kFHfOO86dhKRe8ce1yt92cm3x7edDIveW8RGMylJwQyqGtvoEeocn8RM5Um+LiTDo3QemStp72vJ21e9MLl/MNGyii7RCHQ/2vpYpjExl0ZCM4deXrMKV5x4mlaMSVIrjxMovtyeGgWesbG6X0+aYBu00TNkMHDEFSuk0pfRfZXPS8ZTSR7h736OULqGUHkYpvd9KudO5ApKxKOLRSAlBUJhCtjQFAKX6jmZ2VVuemVQAWr8DI6rMfASUSqyMKInsuWz8RYSGN5vsGp5UFpl0TyJ4JUyBxUeXMFDxt7HnG+UUv5bST9jUFfTSj5Q8J3/bxHQeE5lcaTI8GcyBqe13ZsoThU+KiONtL/aqfp+9YrZSJl+GHmFVMwVjEwnDzU/36N4zk0q5HLYOFImvJFjZYArc3y9zTlfW7wcmpsWaFxfx1FafxMMbi47SniHJJDOazmLjXnV0ITNl7hlJl2gUKU3Y6OBYxnQqmr4Dk7jthV0GT0gFiObnuUfOwdkrZ+NfjuuS6lWZj4rPD2h8CuXAM1Y23uXGiPloKuFXCOSO5ul8AYlYBIkoKemsoqNZGgB+h7KRo5k9peXmbFA+9Mb5yrXvvvNI1TNa6UjxKSSiaK+XmILWhDSmIw1SSku+QVU2J7n2H5xS2R8Zw9DTFLbvV9tB9Yg9e75J1hTKOZof3zyI53cMy+2Xrm3ZN4Y/r+41eAvYNTSJnzy8BYUCVdVhJO3k8gXMbUoBkPpUz+HInHv7NNFHd67pwxObB4VSm+g7n9DsmG1vSBQ1hUx5TYFJfS11CdV3GX3jQ6+X7sH59FnLAKiFFDs7kimlOPvax1W/zdqi+Sg0Xpv79r0blL/3jaYxls7i9B8+iv+6r9T2zdqcjElMgQcTaq6+6zWce/2Tqv5lc3HvaLqkr7XRU/tGM6YZ3VqDKKIGLrpMNDdaZDNya30ChKgj3fixYYJIOpvHO46Zq1x/13HigEt+zrJ6jdbgnZ88GR0N0ppwmmHZDILJFHJ5JKIRSVPQTBCt+Yjf0GFm85rW7jedLyAeJVjUVqdcezs3sECpHXVKoCmUMgWJmD+wfi+2DozjnnX9KBSoyoQhIjRaBxbPFFg7tKomk85OXiz5CB7+wpvRVp8sycY6nSvgjhd7FUl4Vq05TeEjN79Qsm/k2/duwBfvfEW405Phh//YiGsf3IxXd4+o6tCrr1CQ9p7MnVUDQFLL9aQvthCHJtT9/uSW/bjk5heEGiAjjmPpLF6QmZwWbfVJDE9kkC9Q7BqeRLPcRzuGSh2PQHHcF7bWqq5r9z+MTGbRs19cBgDMkoki3242Z81qclPTeazjAhQA4Kh5TcgVqClbNL92+DqZNn74nAbsHc2gd3gKY5kcbn56R0kZSohlNILWenXGgb0jUl/9bZ0Uc7JlX9Fuz/xk+0bSJWY+LVMYGC0+kytQ7ByawJt/9KgwrYbR/KxLxhR6IjItttVJazsejaClNqEyQ6WVfQ6c+ShXQHdLjfLMte87Bj3XXIC/XH6yqtx9Ak1B6zdjJitA2inPoqwq4WyOlX+k8sjkCkjGJaagpykwab2Jc67mCoWS4+1YHDObrL98fDsS0Qi+8Dap0zPZAhLRiGpnY2NK3S17dJhCbSKGtgZp4mvtlqNTRSmISW7r+0ewg4tqEIWu8VEX/SNTqlQeeppCOptHMhbBDR84FsMT01jSXo9krJShPvT6Plz5l1cUZjC7UZI+eMajxZgmvJX175Nb9gOQTBUdcjlabJAZyfb945jTVHzmN0/tQFtDEss7GtBUy4+f9F2ds2qAnQcwMJZW2qrF4GgGk9M5pOXx00pao4KwXNb2Xz6+HTc+uhVvXTkbAHDGYe14bNMgmmriaK1LoECBm5+SCB7zE/zbb1/Ebz96At5yeIe6HfK4L+toUEmlkm+oKCl/6vaX8MTmQXQ110AENs7Mp5TJ5fHc9mH5b3NM4Yf/2IjfcqapL7x1OQBJWs4VaNkdsfy84s12rfUJvOWwDgxPTGPn0KSyL0MEPpcP0xSOmteEiUwO+2RG3pCMYSyTw479EzhufrP0jfK83zuaLlnzKU1OqYGxjDLemVwez24bws6hSdzyTI9SHgNjzhu/cy427BnFv/y8GMCRjBfXSFbQx/za0waUME2hu6UWA2MZ9OyfQK5AkYpF0dVcg74DU4oV43iuTW31SbVPQa5Xu84aU3Ek5DVcl4wqRwjoHSLmJgKqKUgLPR6LlEi7LD8Ic9ZdcvJCLJal/HS2oOKkKumUm2h8iorpfB7JeFSV9pg3SaXiEewdncI96/oVJybTNlLxCFrrjDUFHr98fDv+yaXv2KVxYLNvYCjVFMQ+hcnpvOL0PnxOIwBJg9IuLhbZwULmGIEaNggX1JrBikcOSoyTZWfdOjBW4nthPotdQ1OqsVi98wDe+z/P4qt3v6Z6no1Rt9yugdGi+UhLTAfGMkrocpOAcUznCpg3S/3Oln3S5itmvmGpVNhzcxpTaJM1v6e2SkzvmK4m5f0ntpQmZxvL5JCMRTC7UW0qmcioNQVmpuo7II3Bx9+0SNEyAYm4AEUpck1PUeo1a6v+69rdqt9dLTVFYmLC7MATnIOT04p2MTWdRyoexZymFPaOplV+Lm1iRX4zFuvLTC6PjsakIrWzAAd+tzN7b99ouoTB85pCLEKwbzStEPGp6bwiAIgyC0znCogQIBmL4Pj5zbjxg8cp95KxiFIv+//fz1ii+Dda6rVMoUjM2fPdzbUYHMvgjP9+TGnr3z91Gp758pnKszw9Oba7Sa0pyN/KC5Gsj9hO9FQ8iqQstJp1ZjtBcJlCLCJJgBoOzqRJNhFa6hK49v3HApAWD08webuftpy/revH+3/5LEanckhEIzhLlgCbNQRmWUcDXts9ik/f9hIuvUXa+cwGJhmLIhGLoLk2jsFxtTah51Pg0SNkCkXT1B6OKXQ0JNGvoylITEGt3SRiEazZeQCb943h7pd3408v7lJJKLEIUTQFI6agjfFmBKG5Vlow977Sj8/c/hL+7Xcv4swfP6Z6lrWy98Akeg+UfiszIwASA/z4RF0uvgAAIABJREFU76SNOrMbU0hEI9g3llY0J+ZoYxgYSyvMralGrE20NagJ9XUPbcbX715fEm64fHYDIgT43FuXKUy+78AkohGCH733GN2+AIpztalWbSoRESgeR8xtxD8/e3qxrfUJNCRjSsZdXtMRaQrjmRxue2GXykHaqkkQGY9GlIg0LZPSolCg+N9ndyq/P3P7y/jW3yRfQjpXQCoexezGFEamsiqbuDZDsJJpIBZBu0xU09kCZjemlPcYIWTzWTpIh2MKWp8Clym5oyGJfaMZlcVgWE5IKNofwPyTjDCfc8QcAMB739CFhMwUCgWKR2SH+GnL2hWrQTM3ph0NKZXgx9qoFVZS8QiaauOKCVSL7pZaoflIuy+jMRXDLz70BpxxWDva6pPKHDfS6t1CYM1HDakYGmtieH2PuhNYRA2zASaiERTi0t/pbEEl7fCLSTvRvnjnOqSzklMzEYugozGFtV97a0kCu2Ud9XhVTqfM7OpsUrNUydoJA4jNFzyWz67H5n3jmMjkUMc5vNiiWtRWhz0jRUfzYXMaitFHtNR8pFWx49EIdh8cx9uue0K5xvtKahJRxTRjqCloCCHbDMaI0TPcpjpAIlYsPQQzCTyxeVC1a1eERzcNKM7sVDyC9oYkHtqwT8k/c9LiVuWwFUDSFMYyUt+01iWwtbRIvHlZm2pjGAD873M7S55b2FaHzd89D7FoBFsHJIaxbXACi9vrFMYJiOPds3lJq9US5F1DEwDaS55naEzFVeHU8WgEnbNSijbKEwmRw/mWZ3rwo39sQnNtHOce2QlAvVHynCNm4/wjO3Hvq3sASJJ/u4ZJ8nh+xzB+9I9Nqmu/e6YHX7twJaZzBaTiEaUvNnG+gP6DU4qmDhSFIcmnINWXzuZlppAGpVTRolmyOLaeauJRHJgsTbyXjEeQiksp4TsaU6rNopPTeWUfhdbMC0hzkI8AjEcjWPu1t6KpJo73/fJZPLJxAKu+95CyBtrqE0jFIxiZUpuROxqTGBzPgFIKQopauFYbTeqkFDl8TgPG0jnMaUxhYjqPsXQWDam47ia9xpo4jp/fjJOXSH7CWRVkCoHWFFrrEtgvDwSD1pGciEUUSeKKP67FdQ9uUe7xqpZWJWVmmv6RtCIZtNQlFFMEm0hLZ9er3isUqELsmEon7WoujT5628rZOHvFbOE3Lp8tSb5aCZrZciWmIGkKDakYupprsUeWynizYi5fwOR0TqgpaMFL5oloBMlYFE01ceHmOwatdLyhfxSFAtUNFeV9JowpG8WJs2RyfVw/JGNRdDQmsY0r67Rl7bj8jCXK74OTWdz2ghT9xBaOFhdqAgb0EIsQxczCR8y01CZUhEFrHgMkx188GlExj1Q8otICCwVakjahu6VWmT+ANF7dzbVKHZNchNimvWNY3aN2jLOwU5bRFYDKrHPpaYsRiRBF8y2XrVSkyUntKO5+nyN/4+a9aqbACynDsuM/yfkUprJ5dDQkkckV8PtndyprjxFxNk8WyM76Pk1bkrEIHv/iW/Dof56B2Y1JlTaxY/8EbpfDiocnpkui1abzhRJC3VKXQDRClP7nhaI5TSm85w1SCCqvgbbXJ5HNU6UfGVPoatEwBZ2srXdefgru/o9TFd8a0xYmdTQ4rV+T0aVDlynkC0jEomitlyYSH8mhjbxJxaOqnbx83DrPhUWOJAbRQH7xHMkRrTVb7BtLq+ymQKkTCpCYQndLLS45eYGwTsYUtBvjGMNZ2FaLsXQOuw9OoakmjnmzUhiamEY6m1dlgp2YzmMqmy/JoJiKGSdBY5pMZ1NKKGExaDdajWdy6D0wqbRTix4uSkdkC//AifNVv3sPTOKZrfvxs0eLycpS8Qg6NFJtTTyKExe1qK4xJveBE+fjD5e+EX+49I1Y3F6UWpe2qxk6Q30yhievfAv+74pT8bmzl+OkxUWm0piKK9E2LXUJlT2478BUSRRPNl9APEbQyTnSF7bWYSfXDxPTOVU8/d1XnIrD5jSoyo5HI+huqVXqYMRtYVsd1veP4j3/86yK4DGhhSfmvMmS2aOZCUSbZh4Arn1wM+6QCWqfgOEBQM9+6brkU5DGZNO+MTTVxBEhMlMo8ExBmleSo1mqOxmLKkzzG/esV57dM5LGtsFxbJMZ3HzZr8IzOkCyyc9uTGFRm6S5DYzph6T2j6jfzcj+SRG02WMvP2MJGlJxfO7s5Xj2K2cqmg4gaQpA0XfImNK8WeqoMz3UJ2Noq08q/cBMaXqawiyNOXJWDRvHQ5UpyDuamaQxMJbByFRWIogl4WqREj8AA38AhlEcsEiq/sTpi9FzzQXKRGXo2T+pCrsDoCTFYwRjPJPDeCaH1voE5ulEmyyXNRBe+rz2wc34i+wsXNQm3d+4dxSzOBtl/8EpFWPcOTSBqel8yc5uvRTXHztVShnAzG+S81A/vbFoE1jP0KRuRMzvn+3B9+97HZRSIVP4d07aBySp8JZne1TXEjG15A0AqUREuDv8qHlNmN2YwqlL23Dq0jY88oUzlHuRCMFbV87GVy9YoXrn1KWt6G6pxbHds/CZs5epMm1GIkQJpWTRJyzUdyqbL4kYk0KaI6roqgWttSpNQduHK+c2lnxHMiYxhfFMDgcmswoDWN5RZGxbBooSOgt2+MPzu/Dh3zyP8UxORWBY+hd+DTH07J/Ay70H8ZOHt+DKv0hJ6O56We2k1tZZEy8S9rG0NLfnNKbQp2EKbC4lY1HUJ2P44jmH4Q+XvrFkPOfI/omzfvw43iVHBDFNgWVJ/tqFK3Ht+45RvdfRkMTBySxG0zmhMKdN1c1oiQjaNrGw9Fg0gs4m9bptV/pREqBYAIx2fQ8ZpNTg62T+valsXhXGyjBL4ydrrpN+m00w6ASBZAqZnLTQGEHesX8cZ/34cVx6y+oSJ2syFhUesQkUJxfbH/D/Tl+ML517eIn0b5RFco5mcvQOT2JgLA1CoJgc2mXVmGVYZVFC82bVlNgcGVrrpdwwLBqlUKD4ycNbFL8Fm6C9w5KmwJjCnpE0eP62bXBcqCnoMQWmGjN0NqUM89kw8xGfD2r74DhyBVoScQMAL/YcwE1PbMe2wQmks4USR1x7QxKncOae3uGpEpV4dCpXoimk4lGFkX7itGIuHKZx8Xj2K2fiaTn641eXrMKlpy3G1y9cqcwnbb4sLZizuVlmCrdddhJ+dckqAMXoIQbmU+AjZBa01mHX8KSyGUzr5I0L5ls8GlGirnqHJzGZzSMWIVjI2ev50/Iy3NGPT27Zjx9okqgxIaG9IYlYhGDPyBRe2z2Cm5/agS/euQ7v5M5GeLn3YIl0rq0zGY+gIRVHnVxuYyqOec012H1gSmXS3SSblphz94q3LMVhcxpUmlRLXUIVh88wv5XNeWndnriwBf9yvHq+svDnrQPjKoJ8/PxZAKCYWJV+kk3RImidwSxaTgRWL9MUmOWBT6/e0ZDEOUfO0S0DgGKCYxtip6bzWNxWqtHGNHNE2gyYMNTq3UIgmYK00IiyIejBDfuwfzyDp7buV+XZB4r51LWmhdpEVFF9mZbQWBPH5WcsUSQSBr1JA6gHHZCI8K3P7VKZA7Qb2Ji00FqXRCou2e1Z8jmGtvokupprsGt4Es9tH1KiHxh46aGpJo65MnPafXAKmzlH386hSSUklYdW/WTgN+kBwJzGGuwfn9bdPcuk3CeufAs2fudcJGMRhVBoy+Kxvn8EmVxe9czqr56NVDyKmz96Al762lvRkIyh78AkJjJ5vOWwdtzyMekcppVzG0sksLpEDJ1NNdj2/fPxidMWF68nS81knU2lzPhjb1qk7BqeKHM+dWONNOYtXB+y8dD6FbKyT4FhRWcjuptrMJ0rYHA8gzU7hxXp7ofvORr//NzpECEaIZgvz8veA5OK9seP6479Raag3YTJHOjffeeR+OgpCxXJNhohmNOUQv/BNL79tw349r0b8GKPepPX/bIzeqmslXz1ghX49kVHIEKgzDUmdDBJty4ZxbxZNdh9cEq1E5o547Vrak5TSkkOuaitThid016fQE08qjBeUVpsXrpn8f+nLWvD7ZedDEKAPguawtxZak1BL4oNKK5xpnExmsILlC9cfbauEMhQk4iiMRXDgOx0n8rmlX4HgO+/6yhcL0dTajGnKaUInF4ikNFHuXwBsagUgVITj2I1N4m3DoyjtS5Rosb/6pJVWN8/gg/+SjrpaHF7nZJLX4kWkieHWTugFvNbavG44CBxniks7ahXHFfM/LDuG2/DyFQWx3zrn7jh4mNx/PxmdLfUorulFj37J/C5P71cIgG01yeVOOqmmjhmNyVBZBsuk8Zq4lHsGp5EOltqPvrGhSsxb1YNbnt+lxJB1NmUKnmuU14Y+0YyClHiMZ6RojeYI3tBa62yE3Vxe72ywQooRlQBwKt9IyhQYHFbnbLRjZkyUvEoUvEoulpq0XtgChOZHBa01uLNy9ux/fvnIxIhitM0EYvgn589XWH+UflsbkKkHeza7zFCi6yClwvPZJoEv3Guu7lIsHlk8wWFeG38zrmIEIKnt0nf+9Dr+3D1Xa8phKKruaZEs/nqBStw10u7VXXsGpaZQjyKMw/vUEJDd+w39tfMqo3jX08q9WHNlYn31kFxQrrX+qXout9/7ERECFFMYb98fLsy19j4z25MYfv+CdQlYpjXXIN7X9kjNM1qtW/mjN8zkkZ9MqbSHBiS8l4I9p0iYY3XTi88uhOXn7EE7Q1JJGIRdDamSnwj0waaQlezer5rBUDtvdpEtOggns6DEMl8fc9/nGrpVLTZjSl5kx5FvkBVm+ROXtKqK2zNaawpccJ7gcBpCgOjUmx6PCqpnwtaa7FlQD2ZD+8sNRk01cQV2y8ALGmvLzIFjWNYa9IoZwdkWNBaq8S4f+PtK5XrLC8Js6cyhsVv82+qiaPnmgtw0bHzlI1K3c2SY1GkEhJClHY21SSQjEl5lvYcTGN4YhpvWNCMo7qasEvWFLSTsqMxhavOX6E4yL7zziPx6H+eAQD40rmH4xcfOh4AlMW5R0cCGc9kVdL4/JY6JSSRhSK+67h5uP8zp2HVwqK2xnYz6/lUAGkceocnMcaFsbKwStZH07mCyoQCSKo1s7mWMwXxYBv7LjrWOCqJMRpeUq1LxtBSl1CkWBaSOy2bOgGJ2bEoIgB4VNb+WJipqK2XnrYYf//0aao6eoenMJWVtL8FrXXoueYCnHV4hyrHv8ino7VDM8ybVYP+g1NCQgxAOU+5LhFT+Ubmt9QqbWd9wu7XJWOYN6sWuQJV7Pg88RXtnmbMsT6prodBuwkwLjjLdnZD8b25s2qwpL1eMft0t9SWMG22T0EErVQ/u0k/ZBeAslMZkNKk18Ql0/XRXbOwTGDG1MMc2WTLfEC86VEbWs6jXFCIWwgUU8jmCzj1B4+gQIuTiu9sJmm21IkHj/ctLGmvx+6DU5iazitMgS1eLVMot9HoIycvwJHzGhVCBUC1nb6ruQaEFCOJ2BkNeikaGOa31Bge4ci+l6m1c2fVoH9EIhgNqRgWtNRi5/CkQkBEUOzjtXFl8l1+xhKcd5QU284IhTZqg2Eik1fto1jQWqtEubQ3JPHQ59+Ma959FFZ0NqqOO2GEpiYexdKOelx2+mJoMV9exOPpXImUxswfbzlMHOvP7P1Wzh+eO6sGm757Lt67qtvwubfJG5zmt6iZEWNiD27Yh6VX34/N+8YUn4L2OQB4fY96k5zI1KVFd4sUljo5nUcNx0QWtdWhZ2hCMdWkswWVnwfQN3/MnSURIb2jK1lEi1br4k2YrJ+Z+aY2EVUYPpv3y7nwbZGfjz1fl4wiKYiOS8aKYa8AEI+VlsGvKa2jeH5LreJHvOulPuwcmlCyI4gwuzGFkxa34Lf/dgJe+ebbFOFOD/NbiiHDv35qh/B8bzPoapY0ZH6jKoNR1OCcJsk5r91F7jYCZT6ayhbzpDMCfsTcRiX08PRlbfjrS7uRikVUW9R5/OyDxyt/Uyqp3GwxJhSmoFYbjeL0AeBbF0lZU3/JnfHKxxGn4lHMbapREp4NTUyjIRkTTnwe3S3GZiwWassW+7zmGqzfPYJYNIKu5ijmt9QqbU/pMYV64zzsXc21KobGQCnFpbesxsMbB1SOed4fwwg+wwVHdeIPz+/Cm5e3K2a2ZDyKhz7/ZmHdC9vqlJj1Og1TiEQInv7ymSq7Po/ZDSlsH5zQ3Sykh3JjAgBvP7oTb1jQXCJJdjfXYsOeUWU+PrZpQPYpqIlXSk6UuFtj39buJRGhu7kGr+4eQXdzLWo4qXFRu9RXe0fTmDurBplcHis6G/Hklv2Y25RC/0ha9yzmrmZJot82UGo+qolHZc2clEjU3dw6YUxhjizJS2lEJCLKNPLDZjfitd3qxIk8WH/q9UMqHsFsToMQOeR5ZqON5Zd2C2ewa2gSn/vTOizrqEeElH4XQzRCcPtlJwvvidDdUotntg0p4bB2jjkFpOSJwxPTStbVmkQEDakYxtI5Q3MoEzb6DkwJAyzcQrA0hVyRcDGb8hFc+N6xcoTB8MQ0nvvKWXjuK2eVlHHB0Z244OhOLOmQpLxtg+Ml5iMmsRw5Typb63jWA/+c9pSzhW3FMMS/ru1TcgMZoRxTYGUwAW9xWx16D0xhdCqLmngMi7iY/FodgsAibvROV2MMbYcmg+e+0YySC5+fqHyIrnYCn7K0Ddu+fz4uPLpTVb4eFrUW2y+y586bVaO7SJiZIaYj/ToBIUToMOxqkaJtWE9u3CNpCiLi1S0wm5kxdc1vqcXuA1IW0lqNpgAU/QqZbAEdDSn0XHMBPi8nd9Q7z4G9OyGQbI+aJ+V2EtnE52sEAABol6Xp8UxOcRazjXTaqD4t2PMsoq1BM+ZNNXF08pqCwHzEQ6uNsLn52GZp3m4ZGNcdHzuY31KLyem8IkB9+bzDbZWzQJ73r+8tatN/vfwUXHX+4YbrZWGreg54hUBpCgVKFRMEs0mv7CwyhaO7JKawad+YYj7Qw8LWOhAiMQW2KBhTaKqJ4+cfOh5vWNCMzfvGsKzDHNflibh2gS9orcN9r+5BJpfHaDqHY7pnlS1PlDHzJx84TrENr1rQgr+u3a3YXxe11SFfoBgYy6A2EVUmCaDvcP3M2ctQk4iq8rxrsbi9rmSi8akE+DzyC7g6RRM4GiFYzG0a0x6QwoNnalpNoRzM5G1yG93NtZjOFxSJe8OeUXnzWuk3djXXluTyN+MU726RpPodg+M4cZHaRwZIZ2acurQN45mcIr0zYUVP4+U39GlxxLxGvNAzLNyhzmvUrO31sqAylpaYVlt9UnFG81qjCCwVCNsV3N6QxFgmh4uOnYu7X+5HW31S5T8SmY8A4NaPv1F4Ahxbnxv6i9pK/8iUIkw6BWM6Ree7NS2VYWGbupxUPIplsxvK+iVY3xilYHcDgWMKUUhhfZ+T0/7yuwpXdDagNhHFZ89eXrasVDyK7uZabBucwOnL1ZoCAJwv29S1dkkj8FKyNsxtUWsdDk5mlSMH3350+RQLIjX61CWtyjd/4MRuLJtdj1ULJP8FT2xrE1HVAqrRkUJrE7Gy/bWorQ53vbRbyety2wu78JW/vqrc580gvAStF3GxpN2YcTDwUmG9Cc2Kx2GyVKq3H8MLMKLHBJZtg+Nor08KzQhsrjTVxJV9GEahzwzMZDOazqmITkdDErWJKLYPjiNfoBhNZ5VNm4wp6KWyaJf3xPCb6L759pWoTcTQWp/Ab5/uEZ7ZwM93NleZNsDSji9pr1NyVpXTjtl8ZeX+x5lL8fk71uHqC1bgv997DOLRiML8ACCmoym8aVmb8DrzgfAJD9NZ/ZBUqygyBVnCt8kUtMzFaI3waKqJo6Uuocoa4AUCxhSAhkQU93/mNNX1Wz/+RsSjBMlYFBu+fa7p8pa012HbQNF8lHSoRjZwm1siGrMFW5hMSrFK5N60tA1Pbd2vchYSQnACF9GzqE2tGfAmFz3zkRksbK3DWDqHoYlptNUn8esnt6vu823iCZveZOb3SBj1A9+H9SacsDwuOnYe0tkC3v0G8elWXkBrx83mKfpH0sJIG2a+FO0INwIv1fNMlxDpIKgd+ycwOpUFpcV+Zk75jwsOuGfvzm+R/CEfPWUhAODiE+cjFY8q/gAReEc2c1LPbkxh3Tfeptjzl3TUc4kMjcdwRWcjbvvESTh+gSS5/8vxXbjo2HkqBzi/f6Hc+Q9atNcnUZeI4rXd6oOG3DIfMU3kdU2YrlXUJmLoaEgqzMssUwAkf8QhZz4SqWR6kkE5LGmvx7Pbh1TpfL3CElmKfLlPMhmYVS1b6hIYnpjGZ89ehlsvfaPhs001cUXiYw5TO/H6WjAzzvbBCfnENu7siQ8chyPnNQnfM9rsw6B1BmrBvqfBYDepCNEIwQffOL/8gy6ipS6h7JFZ1lGvhEqLiA4zSeYLFG31CWGGVRE6m1LKITTaMV3UVodXd48oGzhZJA4hBNu/f76h1jSnKYUNe0bR1VyDS7nNf93N+n4tvUwB/Ljzkn1NIoqnvvQWw0OBtMkLtRFR/G+9+o3au3R2g5IZNxohyBeopT0ERkjFo+huqcErFte4CAvb6pTT/6xoMova6vHU1tK9Um4iUI7mAqWWuGY5LOmoRzpbUBxDbkgMFxzVKcy1tLC1DslYBGt3ShvtzNrIWToHvXBBLZgfgjE4FrfthCkwCZjtP+D9JRce3VmymYZ9P9v5a4RyxJ59v1sL12ssk8Muj5jbqEiyonnFE8uHP38G1nz1bFPlE0KwXDbRaMd0cVsdeocnFT8KrylGIsSQiDIzqTZ/VDlB6ah5TYbP8H6EVDyKruZa1bdXGixXFCFQhBk3acphsxuUZHZO1twKzilvpX2L2+uwbzQjPMTLLQSLKRSccV8t2OaqjbIN0A1N4cYPHoeXvv62kuvRCMFhcxoUldAskfvx+47B6cvbsaKzNEmaCMy5nIiyTV4SkzBzBq8e5jal0FQTV0xfvH1ZRGhuv+xkfPedRxqGd173/mMwtylVcs5A6XPH4pQlrb4SEitgDLQ2GVPaLDJzMIJx8uJWNNXGVb6xcmDzVjuHFrXXoUCL89loB64WTJjQJowDpCSFnzpzqfC9P3/yZLz89bfqlrtEx9zlBLd94iTV5lArYONDadF27yZT4E2I5TIRG+Fwbr0bbVjTYoW8cZf3m5g5Vc8KHJmPCCHHAvgfACkAOQD/Til9gUiU5AYA5wOYBPBRSunacuVRSnUdpnawRHEMFpN0OYWRNLZiTiNekQ9ON6spHDG3Cb+Xc/6YwZKOOmB9McfMte87Fjc8vEXXxGMGhBCs7GxUHKiZXAFHzmvEVeetED5/2JwGxdGrh3cd14V3Hddl+AwAHNM9C3/8xEnWG+0TWITI8Pg0VnQ2YuPeMd15tf5b5wjz95QDI2basyxY5lxmM6+1wBTe+4Yu3PNyPz4kSINx5bn6oZXlCOrcptINbk5x8pJW3TMyymE5Ny9ZUITZ40zNgJ/3TugJH75rhbms7JTW+Yb+UcXf+JGbX7DdDhGcUskfAvgWpfRYAF+XfwPAeQCWyf8uA/ALM4UVqDOHqRatdQk018bxqmwDtLvZxCxWcOk36lzUeHgc2y1FIjG9oLulFv/93mNMbcoywsq5jdi4ZxS5fAGZXAFHzZuFU5ba8+XMZLB9M1sHxxVTkt7O1joTGxhFYFE62n0HbF8H2yBmxTnf0ZjCPz53umESQzvggwXclMjtgt9VzfYjaTcROiufYwoO6IlK47CUNymJlrqEKuxWdEysEzilkhQA04OaALCjvS4C8Hsq4TkAswghnaICeExMG+/oswpCCI7tngW2mdet0DQ98CYgK1KcFZy9ogPXvf+YknMJnGJlZyMyuQJ6hiYwnct73lfVihVy/qQzlrcr5iP+hDg3cPaK2XjXcfNwxVvUJp2m2jha6xJKAju70S9u46rzD1elQ/cTfJqMC4/qxMrORlVWXafgo8OcaAq8JcGK+Yhp9WzjGyDOg+UETmfVZwH8gxDy35AYzCny9XkAernn+uRre7QFEEIug6RNIDFnKYZcPkTi+PnNeHSTnHLBoTRdDrwJxyvHKSHElFnGKljbX9p1EBmDdMOHOmoSUSntdyqmJD48YUFzmbes13GdTvrkJe31GJKP5rS64c8rXHb6Elx2urtCil0QQrCisxGFAkVzXQL3acLbnYKnIVZDZrVgEWxWo6xWzm3E757pUTLAVpwpEEIeAiA6OeJqAGcB+Byl9C+EkPcB+A2AswGIvlLoCaWU3gTgJgBIdi6jWwX5WZzgDdyC9TIkFVAvUrPRREHBso56NNXEsbrngGFmyRDFZHyzG1N44aqzLDmRneLoria8IDOFaonYqjTu/dSbKlKP0zXy/9u7+xi5qjKO49/f9pXaSnf7AqUtbFvexKZ0S8GGGtBCClQFmoCpmFARNEhJUGNiCYKYKFHxDQlCIBLQGMAWlKKigIL4xjuFtmlql4Jai628lZpgFfv4xz0znW5ndjuzszt3pr9Pspk7Z07vnKfn7py55959zsqLT2THzurvIuqaOpab397Fui3b6Tq0vewfHvZHn1FFxKkRMbPMz73AUuCeVHUFULhiuhkoTUU5hd1TSxVNGDOC68/rqi6CPpSmmxiMD7rSvD/NpK1NzD2snT9tepWIgZ9qaxUT3zlyUL8AzBnELznNakibBrRPVl06nwvmd1Z191c5B44atldyzn1xXGd2DDyZvhxUWiCrVv09qrYAhRSYC4CNaXsVcL4y84DtEbHX1FFPB79zJAuOPqifTdrTYH97v25JFxu+vO9/dZ0nczs7iqmH/YGTT8fVearKqjdryli++KF3Vz3tUy8Tx4ykc9yo4gp6haVZ66W/k5KfAK6TNBT4N+naAPALsttRu8luSb2gn+/TLx854VDueOKvg/Je2beU5jytP2Ha7g9DQekwAAAIG0lEQVScgb7+YrWpJleXta7jOzt4aP1WIiJfF5oj4vfAcWXKA1jWn33X0zWLZ/KVs2c2uhm5V8hCCz5TyLP3HTWh13ULrPXNmz6OFU9vZt2WN8suh9of+bh9YYBJGtRsms1q2JA2Zk7OFkqpVxIxq79blx7f6CZYg5181AQkuH9tn7PyVfNvvu3hxBnZH6xtLZOv3vKhrU17Zem1/cv40SOYPXUs96/5R9337UHB9rDs/YfzgVmTWNw1eCmpzax6pxw9kU0DkEbbg4Lt4cADhnHDeXP2yGtvZvlTWCis3jwomJk1oekTRtPRRxbiWnhQMDNrUufOrX/KGw8KZmZN6rJTjuCiCsuw1sqDgplZkxo1fChf+GBtCxJV4kHBzMyKPCiYmVmRBwUzMyvyoGBmZkUeFMzMrMiDgpmZFXlQMDOzIg8KZmZWpGw9nHyQtAPY0Oh2DKDxwCuNbsQAcnzNq5Vjg9aP76iIGFOPHeVtkZ0NETG30Y0YKJKecnzNq5Xja+XYYP+Ir1778vSRmZkVeVAwM7OivA0KNze6AQPM8TW3Vo6vlWMDx7fPcnWh2czMGitvZwpmZtZAHhTMzKwoN4OCpNMlbZDULWl5o9tTC0kvSVojaXXhFjFJHZIelLQxPbanckn6bor3eUlzGtv6vUm6VdI2SWtLyqqOR9LSVH+jpKWNiKWcCvFdLenvqQ9XS1pU8trlKb4Nkk4rKc/lsStpqqSHJa2XtE7SZam86fuwl9haov8kjZT0hKTnUnxfSuXTJD2e+uEuScNT+Yj0vDu93lmyr7JxVxQRDf8BhgAvANOB4cBzwDGNblcNcbwEjO9R9nVgedpeDnwtbS8C7gcEzAMeb3T7y8RzEjAHWFtrPEAHsCk9tqft9kbH1kt8VwOfK1P3mHRcjgCmpeN1SJ6PXWASMCdtjwH+nOJo+j7sJbaW6L/UB6PT9jDg8dQnPwaWpPKbgE+l7UuAm9L2EuCu3uLu7b3zcqZwAtAdEZsi4j/AncBZDW5TvZwF3J62bwfOLin/QWQeA8ZKmtSIBlYSEY8Cr/Uorjae04AHI+K1iHgdeBA4feBb37cK8VVyFnBnROyMiBeBbrLjNrfHbkS8HBHPpO0dwHpgMi3Qh73EVklT9V/qg3+lp8PSTwALgJWpvGffFfp0JXCKJFE57oryMihMBv5W8nwzvXdwXgXwgKSnJX0ylR0UES9DdiADE1N5s8ZcbTzNGOelafrk1sLUCk0eX5pO6CL7xtlSfdgjNmiR/pM0RNJqYBvZQPwC8EZEvJ2qlLa1GEd6fTswjhriy8ugoDJlzXiv7PyImAOcASyTdFIvdVsl5oJK8TRbnDcCM4DZwMvAN1N508YnaTRwN/DpiHizt6plynIdY5nYWqb/IuJ/ETEbmEL27f5d5aqlx7rFl5dBYTMwteT5FGBLg9pSs4jYkh63AT8h68ithWmh9LgtVW/WmKuNp6nijIit6ZdxF3ALu0+1mzI+ScPIPjR/FBH3pOKW6MNysbVa/wFExBvAI2TXFMZKKuSsK21rMY70+oFkU6NVx5eXQeFJ4Ih0ZX042YWSVQ1uU1UkvUPSmMI2sBBYSxZH4W6NpcC9aXsVcH6642MesL1wSp9z1cbzK2ChpPZ0Kr8wleVSj+s6i8n6ELL4lqS7PKYBRwBPkONjN80pfx9YHxHfKnmp6fuwUmyt0n+SJkgam7YPAE4lu27yMHBOqtaz7wp9eg7wm8iuNFeKu7JGX2Uvudq+iOwOgheAKxrdnhraP53sKv9zwLpCDGTzer8GNqbHjth9d8ENKd41wNxGx1AmpjvITsH/S/aN48Ja4gE+TnaBqxu4oNFx9RHfD1P7n0+/UJNK6l+R4tsAnJH3Yxd4L9lUwfPA6vSzqBX6sJfYWqL/gFnAsymOtcBVqXw62Yd6N7ACGJHKR6bn3en16X3FXenHaS7MzKwoL9NHZmaWAx4UzMysyIOCmZkVeVAwM7MiDwpmZlbkQcFagqSxki4peX6IpJW9/Zt+vNfZkq6qw36+IWlBPdpkVi++JdVaQsp/87OImDkI7/VH4MyIeKWf+zkMuCUiFtanZWb95zMFaxVfBWakHPrXSupUWidB0sck/VTSfZJelHSppM9KelbSY5I6Ur0Zkn6ZEhr+TtLRPd9E0pHAzsKAIOk2STcqy+2/SdLJKRHbekm3pTpDUr21ytbb+AxARPwFGCfp4MH5LzLr29C+q5g1heXAzMgSiBXOHErNJMukOZLsrz4/HxFdkr4NnA98h2zx84sjYqOk9wDfI0tVXGo+8EyPsvZU70zgvlTnIuBJSbPJcvZPLpzFFNIXJM+k+nfXFrZZfXlQsP3Fw5Hl3d8haTvZhzdkKRFmpWybJwIrsrQ6QLYwSU+TgH/2KLsvIkLSGmBrRKwBkLQO6AR+C0yXdD3wc+CBkn+7DTikv8GZ1YsHBdtf7CzZ3lXyfBfZ70EbWa762X3s5y2yDJTl9l263+K+I+J1SceSLVazDPgwWS4hyM5c3qoiDrMB5WsK1ip2kC3LWJPIcvG/KOlcKK5XfGyZquuBw6vZt6TxQFtE3A1cSbYEaMGR7M7kadZwHhSsJUTEq8Af0sXca2vczUeBCyUVMt2WW5bxUaBLJXNM+2Ay8EhaRes24HIorgdwOPBUje01qzvfkmpWJUnXkV1HeKif+1lMtvj8lfVpmVn/+UzBrHrXAKPqsJ+h7F4u0iwXfKZgZmZFPlMwM7MiDwpmZlbkQcHMzIo8KJiZWZEHBTMzK/o/qn09vobF0uIAAAAASUVORK5CYII=n”, “text/plain”: [

“<Figure size 432x288 with 1 Axes>”

]

}, “metadata”: {

“needs_background”: “light”

}, “output_type”: “display_data”

}, {

“data”: {

“image/png”: “iVBORw0KGgoAAAANSUhEUgAAAZMAAAEWCAYAAACjYXoKAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3dd3zU9f3A8df7LhtIAiGsBEhI2EsQUZEiQ5YL3NilVWtVrKt19udsraO1jrpqq62t1q0VFUUUcAuCMmSHJSGMsBIg68bn98f3e5fL5ZJcyGVd3s/Hgwd33+/3vvf53F2+7+9nizEGpZRSqiEczZ0ApZRSrZ8GE6WUUg2mwUQppVSDaTBRSinVYBpMlFJKNZgGE6WUUg2mwUS1CiKyWkTGN3c6IkFEpojI/5o7HZEkIsNE5MvmTodqPhpMVKtgjBlsjFnU3OmojYiMF5H8MA79I3B/Y6enLiJyl4i8EIlzGWNWAgdF5IxInE+1PhpMVNQSkZiW9l4ichyQYoz5upGTVFc6GuOzeRH4VSOcV7UCGkxUkxKRniLypogUisg+EXnc3p4jIgvsbXtF5EURSQ143VYROaWOc98lIq+LyAsiUgxcLCIOEblFRDbZ535VRDrZx2eJiBGRy0WkQER2ishvAs4XLyKP2PsK7Mfx9r7xIpIvIjeLyC7gJeB9oIeIHLb/9QiRzOnAJ0HpNiJylYhsFJFDIvJ7+/P4SkSK7TTHBRw/Q0SW2/s2icg0e3sPEZkjIvtFJE9EflnLZ3MFcBtwgZ3WFfZxKSLyrP1Z7BCRP4iI0973lIi8HnDOB0TkYxERe9MiYJLvM1JtjDFG/+m/JvkHOIEVwMNAOyABGGvvywUmA/FAOvAp8EjAa7cCp9Rx/rsAFzAT60YpEbgO+BrItM/9N+Al+/gswGAFgnbAUKDQ9z7APfZru9hp+hL4vb1vPOAGHrDPm2hvy68jja8BNwZtM8AcIBkYDJQDHwN9gBRgDXCRfexooMj+rBxABjDA3vcJ8KT9uR5j52VSLZ/NXcALQWn5n/0ZtbPzvQT4lb0vCdgAXAz8CNgLZAa9vhgY1ty/Nf3X9P+aPQH6r+38A060L3AxYRw7E/gu4Hm4weTToG1rfRdU+3l3+6IaExBMBgTsfxB41n68CTg1YN9UYKv9eDxQASQE7A8nmMwHrgjaZoCTAp4vA24OeP4QdmC1L/QPhzhvT8ADdAjYdh/wr1o+myrBBOhqB7LEgG0XAgsDno8G9gPbgAtDpGMHMK65f2v6r+n/NVmdslJYF7xtxhh38A4R6QI8hnXH2wHr7vnAUbzH9qDnvYG3RMQbsM2DdeEM9ZptWCUUgB7288B9gVVXhcaYsnqm7wBW/oLtDnhcGuJ5N/txT2BuiNf3APYbYw4FpXdUwPPgzyZYbyAW2FlZc4Uj8HXGmCUishmr1PJqiHN0AA7W8T4qCmmbiWpK24FeNTT+3od1hz7MGJMM/BSQEMfVJXga7O3AdGNMasC/BGPMjoBjegY87gUU2I8LsC6wofaFeq9wpuBeCfQL47iabAdyQmwvADqJSGCg6oVVUvCpK73bsUomnQM+q2RjzGDfASIyG6tarwC4KfDFdhtRHLC+HvlRUUKDiWpKS4CdwP0i0k5EEkTkJHtfB+AwVvfSDODGCL3n08C9ItIbQETSRWRG0DG3i0iSiAwGfgG8Ym9/Cfg/+zWdgTuA2rrS7gbSRCSllmPmAicfTUZszwK/EJFJdueCDBEZYIzZjtWmc5/9uQ4DLsXqYVVberNExAFgjNkJfAg8JCLJ9vlzRORkABHpB/wBK9D/DLhJRI4JON94YIExprwB+VOtlAYT1WSMMR7gDKzG9h+AfOACe/fdwEisxuX3gDcj9LaPYjVufygih7Aa1I8POuYTIA+r0fvPxpgP7e1/AJZilSZWAd/a20IyxqzDCkCbReRgqN5cxphvgSIRCU5DWIwxS7AC3sNYn9UnVJaeLsRqByoA3gLuNMbMr+V0r9n/7xORb+3HP8cqXazBqpJ7HehulyZfAB4wxqwwxmzE6g32n4DeWz/BCt6qDRJjdHEs1TaJSBawBYgN1Y7TiO87BbjKGDOzqd6zsYnIUOAZY8yJzZ0W1Tw0mKg2q7mCiVLRSKu5VKsiIu8HDAoM/Hdbc6dNqbZMSyZKKaUaTEsmSimlGiwqBi127tzZZGVlNXcylFKqVVm2bNleY0x6JM4VFcEkKyuLpUuXNncylFKqVRGRbXUfFR6t5lJKKdVgGkyUUko1mAYTpZRSDRYVbSZKKdUcXC4X+fn5lJXVd/LoppWQkEBmZiaxsbGN9h4aTJRS6ijl5+fToUMHsrKyCJi2v0UxxrBv3z7y8/PJzs5utPfRai6llDpKZWVlpKWltdhAAiAipKWlNXrpSYOJUko1QEsOJD5NkUYNJkpFoe93FPHOigJ0uiTVVDSYKBVl3B4v5//tK3790ne8u3JncydHNYEPPviA/v37k5uby/33398sadBgolSU2VR4hJIKDwAPfbger1dLJ9HM4/Ewe/Zs3n//fdasWcNLL73EmjVrmjwdGkyUijIHSioA+PHxvdi6r4SF6/c0c4pUY1qyZAm5ubn06dOHuLg4Zs2axdtvv93k6dCuwUpFmXK3F4AZw3uwYO0envtiC5MGdm3mVEW/u99ZzZqC4oiec1CPZO48Y3Ctx+zYsYOePXv6n2dmZrJ48eKIpiMcWjJRKsqUuawqrnbxMfx8TG++yNvH+l2HmjlVqrGE6mTRHD3MtGSiVCu2bd8RnliYx7Wn9CMjNRGoLJkkxDq58LhePPrRRv715VbuO3tocyY16tVVgmgsmZmZbN++3f88Pz+fHj16NHk6tGSiVCv23yU/8OrSfK57+Tv/HaqvZBIf46BjuzjOGpHBW9/lc9BuS1HR5bjjjmPjxo1s2bKFiooKXn75Zc4888wmT4cGE6Vasf2HrQDxzdYDLFpfCFSWTOJjrT/vi8ZkUeby8vI320OfRLVqMTExPP7440ydOpWBAwdy/vnnM3hw05eStJpLqVas1OWhV6ck3B4vT3+yiQkDulBul0wSYp0ADOyezAl9OvGfr7Zx2dhsYpx6DxltTj31VE499dRmTYP+qpRqxUorPHRIiOGSsdks3rKfFdsPVpZMYir/vC8ek82Og6V8tHZ3cyVVRTkNJkq1YiUVHpLinMwa3YsOCTE889lmyl0eRCAuoAQyeVBXMlIT+ecXW5svsSqqaTBRqhUrcXlIjIuhfXwMF47uxQff72Lz3iPExziqdA91OoSLxvRm8Zb9rC4oasYUR5/WMP9ZU6RRg4lSrdA3W/eTf6CEsgoPiQEN7QDvrtxJfIyz2msuGNWLxFgnz3+5tQlTGt0SEhLYt29fiw4ovvVMEhISGvV9tAFeqVZm+faDnPf0VyQnxGCMNUoaICM1kWmDu/Heqp14QszHlZIUy1kjM3h9WT63TB9Ip3ZxTZ30qJOZmUl+fj6FhYXNnZRa+VZabExhBRMRmQY8CjiBfxhj7g/aHw/8GzgW2AdcYIzZau+7FbgU8ADXGGPm2dufA04H9hhjhgScqxPwCpAFbAXON8YcOOocKhVl1u20puwoLnMDlb22AC4Zm817q3ZyuNwd8rW/GJPFfxf/wEtLfmD2hNzGT2yUi42NbdTVC1uTOqu5RMQJPAFMBwYBF4rIoKDDLgUOGGNygYeBB+zXDgJmAYOBacCT9vkA/mVvC3YL8LExpi/wsf1cKWUrtbv+ntwvHcDfFRhgZK9UABJiQ/9p9+3agbG5nXnh6224PN5GTqlqS8JpMxkN5BljNhtjKoCXgRlBx8wAnrcfvw5MEqv1bwbwsjGm3BizBcizz4cx5lNgf4j3CzzX88DMeuRHqajnm17+xqn9gcrBiWDNyfTd7ZP59MYJNb7+4jFZ7Cwq48PV2k1YRU44wSQDCBw6m29vC3mMMcYNFAFpYb42WFdjzE77XDuBLqEOEpHLRWSpiCxt6fWVSkVSmd31d3CPZN68agy3TB9YZX/HdnF0Sa65sXXCgC706pTEc19saeykqjYknGASavrJ4Na9mo4J57VHxRjzjDFmlDFmVHp6eiROqVSz2VNcxn1z17JuV91TmJdWeEiMdSIijOzVkZTE2Hq9l9Mh/OKkLJZtO8CybaEqB5Sqv3CCST7QM+B5JlBQ0zEiEgOkYFVhhfPaYLtFpLt9ru6Aruyjot6zn2/hb59u5pJ/fkNJRejGc58SlzVQsSEuOK4nqUmx/O2TzQ06j1I+4QSTb4C+IpItInFYDepzgo6ZA1xkPz4XWGCsjtdzgFkiEi8i2UBfYEkd7xd4rouApl8yTKkmtnHPYQAKisr4x2e1Vz+VVXiq9OA6GklxMfzshN7MX7ubzYWHG3QupSCMYGK3gVwNzAPWAq8aY1aLyD0i4pvn+FkgTUTygBuwe2AZY1YDrwJrgA+A2cYYD4CIvAR8BfQXkXwRudQ+1/3AZBHZCEy2nysV1UorPIzq3ZFTBnbh2c+31Ni1F6zeXIkNDCYAPz8xi1ing7+HCF4vLt7GuU99yda9Rxr8PqptCGsEvDFmrjGmnzEmxxhzr73tDmPMHPtxmTHmPGNMrjFmtDFmc8Br77Vf198Y837A9guNMd2NMbHGmExjzLP29n3GmEnGmL72/1qpq6JemdsqbcyekEtRqYv/Lt5W47ElFR4SG1jNBZDeIZ5zRmbyxrf5FB4qr7Lvxa9/YOm2A1z78nd4QwyAVC3LzqJSCg6WNmsadDoVpVqAMpeXhFgHI3p15KTcNP7+2Rb/IleBFm/exycbCtm+vyQi7/vLH2Xj8nirTbHia7dZkV/Eu6t2RuS9VOPYd7icSQ99wpSHP+WHfVV/F08t2sRpj33WJIFGg4lSLUC5y0O8XXU1e0IuhYfKeW1ZfrXjfFVSY3I7R+R9+6S3Z8qgrvzn620cCahaK6nwcP6oTAZ068DD8zfg1gGOLdY3Ww9QUuHhcLmbe+euqbLvre/yWV1QzM1vrGz0+cM0mCjVApS5PCTYkzOe2CeNEb1S+dsnm6qNUt9zqIyRvVL587nDI/bel4/LoajUxatLK4eElVZ4aBcfw/WT+7Fl7xHmrKirE6ZqLoWHrSrKnxzfi3mrd7OmoLJ7uW9tm8827uWjtY3bMVaDiVItQJnb658CRUSYPT6X/AOlvBN0ES9zeejSISEibSY+x/buyHFZHfnHZ1twe7wYY/zdjycP7MqAbh14fEFeyMkjVfPzTadzxck5dIiP4fGFG/37jpRbJczeaUk88tGGRi2daDBRqgUoc1Xt7jtxQBcGdOvAk4s2VWkA97WtRNrl43LYcbCUd1YWUOHx4vEakuJicDiEayf1ZfPeI7y7UksnLZGv9NElOZ6LT8pi7qpdrN91CIDSCjfJCbFcM7EvqwuKmdeIU+hoMFFt1rpdxfx53noOHKlo1nQYY+xgUvnn6HAIV03IJW/PYT5cs8u/PTjoRMqkAV3o37UDTy7cxJFy607X1/146uBu9Ovanr8uyKuxZ1eF28v//W8VTy3aFPG0tXRHyt3cN3dtleqlplQWsLLmJSdl0y7OyRMLre/KV8KccUwPsju3468LNjZa6USDiWqz/jxvA48vzOPG11c0azpcHoPX4G8z8TltaHey0pJ4YuEm/wWgtJGCicMhzJ6Yy8Y9h/nfdzsA/KPsHQ7h1xP7krfnMO9/vyvk6xet38MLX//AAx+sY/6atjWB5Jvf5vO3Tzfzk398Xev4oMbia28TETq2i+OnJ/bm3ZUFrNlZjDGQFB9DjNPBVeNzWF1QzML1jdN2osFEtVlb91kD8j5au4cv8vY2Sxq+2rSPi56zJoUIDhJOh3DFyTms2lHEZxut9JW7vI0STMAKXtmd2/GneesBqrTLnDq0Oznp1p1tqNLJpkLrs8xITeSPc9e2qd5fm+2BnQdKXPz906afnia46vOysX2Ii3Hw0IfW99jO/h5njsggs2Mij32c1yilEw0mqs0qrfBw2rDuZKQm8uC89dX+wFZsP8jEhxb579Trw+XxsmzbgToH/D04bx1fbd4HWMEj2FkjM+iWnMATC60G8ApP47SZ+N7/yvE5/vVSAkfZO+3Sybpdh/gwRMnDNybm/04b2OZ6f1mdIuI5bWh3/v7ZZvYdLq/7RRF+/8BlmtM7xHPh6F4sXG/Npp4YZ62BGOt0cOX4HJZvP8gXefsing4NJirq7ThYyjUvfcfXm6v+AZW7PaQmxnL1xFxWbD/IovVVlzKY+/1ONhce4bevrQg5SLDM5eHFxduqjR4HePSjjZzz1Jfc9/7aWtO2uqCYLh3iAWifUH3h0/gYJ78c14fFW/b7S0+RmEqlJmeNqFwhIimuanpOH2aVXB77uHq9e5nbQ5zTwdTB3RjYPZnHF+SFVTpxe7z8+O9fM/OJLzhY0rxtV0er1J6R4IYp/ShzeXj6k6ZtNyp3V7/BuHxcH//jwElBzz02k67J8fx1wUYiTYOJinr//morc1YUcPm/l7I/oLHdN5X7ucdm0rNTIg8HdZ0sLnUBEOMUf5VB8Hl/99b3XPKvb6p1m12+/SAA//h8C2t3hm6YdXm8VLi9/OyE3rz767GcMzL0Gt0Xju5Jp3ZxPDR/A1C9OiySYp0OfjO5HwCpSVWnto9xOpg9IZc1O4urjVkod3mJj3XYvb9y2bz3CO+E0fvrm60H+HLTPpZvP8jv36098LZUvrnSctLbc9aITP791Tb2FJc12fuH6pTRPSWR0VmdAOs79YmPcfKrcTks3rKfJVsiO1OVBhMV9fYdtgLI4XI3j31s3ZEZY/yN2bFOB7+e0JeV+UV8HHCRLKnw0DstiUtOyuZ/ywtYXVBU5bzb7KkrVu0o4s1vq45WL3V5GJKRTHJCLPe/vy5kunxdOhNinQzJSAlZzQVWCeGSk7JYYQeoxqrm8rl6Yi7vXTOWIRkp1fbNPKYHvTolVSudlLsrL2hTBnVjQLcOPPZx3aUTX6A9e0QGb36XX+0zbomKSlwUlbj8z0sD2rGundQXj9fwxMK8pklLqYsyt9c/e0Kgxy4cwcxjejCqd8cq2y8c3YvO7eMiXjrRYKKiXqnLQ5/0dlxwXC9e+HobP+wrocLjxWsqG5nPGplBr05JPPJxZemkxC65/OrkHJITYnh4/sZq581ITWR4ZgoPz99QZS6t0goP3ZITuWp8Dp9sKGTx5up11L7j48MIDj87Mcv/uDFLJmANmhzco3ogAat0cvWEXFbtKKpSLRjYCOxwCNedYo2cf3t57aWT3YfKiHM6uPPMwaQkxvob/xvT5xv3cv/76zhU5qr74CAuj5dTH/uME+77mO93WIGvtMLtr3rslZbEeaMyeWnJdnY08nxYby/fwfC7P+TTDYUkxFT/DXVLSeCRWSPo2C6uyvbEOCeX/aiPv1NHpGgwUVGv3K6GuO6UvjgdwmMLNlJWUVkqAKsq4JpJffl+R7G/a2tphdVHPyUxlsvH9eGjtbv9pYPA/TdPG0BBURkvfF0502+Zy6pHv2hMFl06xPPQh9VHH/uCSXCX4FBSEmM591irGkwkdAmmqZw1MoOM1EQeDSidBE4HAzB1cFcG90jmsQUbq00JE6jc5SU+xkFKYixXnpzDovWF1dq2IskYw29fW8HTn2zi1jdX1fv12/aVsONgKaUuDze/sRKP1yrhBvZ8u3piXwAeX9C4pZM3vq3sGLK4nlVWPz2hNwO6dYhoejSYqKjnq87qmpzAT0/ozZvf5rPGrl4JrDKaaQ/sevgjq/trSYXb3wh98UnZdEyK9bdb+M6bGOdkTG5nTspN4+lPNvknS7Tq0R0kxDr59cRclmzdz6dBd4K+aq5wSiYAd585mGsn9WXigC5H/2FEQKzddrJ8+0H/3W1wvb2IcP0p/di2r4S3vq25N1yFx+vP/0VjsuiaHM+DH6xrtIF1h8rd7Couo318DO+u3MlXm+oXuHyzKc88pgerC4p549v8al1zM1ITuXB0T15bur3aLL6RtKe4jIkDutA9JYGLx2TV67Xt42N4/9ofRTQ9GkxU1Ctzef3VEFeOzyE+xskDH1jtGIE9o2KcDn49MZe1O4v5cM2uKuuGtI+P4YqTc/h0QyFLt1p3gaUBKx7eMLk/ew9X8PxXW619AQtYXXBcLzJSE3now6rdj/3VXGGUTAD/xIvt46v3+mpq5xybQY+UBH/pJNQ0L5MGdmFYZgqPLdhIhTt06aTC7SXObiBOiHVy7aR+fPvDwSptV5FUVmF95ted0pduyQn8+cPqXcJrU2q//rxRPRmWmcKjH23kcJm72nc4e0IuTofw6MeR7zXlT4vLQ4eEGL64eSJ3nTm43q+PdAlXg4mKeoEX/c7t47loTJa/t1XwReDM4T3ok96ORz7aWG20+c9PzKJze6vKCuyqLHv/sb07MnFAF/72yWaKy1zWe9qBKC7GwbWnWA38gXMjVTbAt74/w/gYJ1eOz2HZNqs3Vpm7eo8iEeH6yf3IP1DK6yGm0wfrMwhsPD5vVKZ/4GRjTCxZ5rI+85TEWK6Z1Jdl2w6wYF34gavENwYnzslvp/Rnx8FSdhWX+QOiT5fkBH5+Ym/e+i6fvD2Nsyyyr2rRUUPHjabW+n7FqlE19poHzSF43qtfBfTBjw9quIxxOrh2kjU4b9u+kioNm4lxTq4an8NXm/fxZd5eSu15j3xumNyPolIX//h0M+Vub5VSz9kjMuiT3o6/zK+8SNa3ZNLSnDeqJ12T43n0442Uubwh8zG+XzojeqXy+IKNlLurL/ZVYY9P8Yl1OvjNlH6s332It5fXf7BoXcrsNCTEOjnPnk33T/PWh72apK9kkhTn5Ed9OzM62+p+6wnxd3PFyTkkxDobrXTSWJN+Hq2WkxLV7CrcXk597HNOe+yziA4g23OojPlrdjfbFOaBJQiAju3iOG1YdyD0qPPTh/Ugt0t7wCpVBPrx8b3olpzAQ/M3+Ht7+QzJSGH6kG48bncLDa5Cu/6UfmzYfdg/rXy5q/WWTMC6IF9xcg5Ltuxn7c7ikPkQEW6Y3I+CojJe/WZ7tf1WyaTq604d0p3BPZL5y/wNNVaPhev9VTv9pVAI6PRgdwm/YXI/1u06FNaYGKgMJomx1lxYN07tDxDy7yWtfTwXj8ni3ZUFrNtV/0kgdxeXMeOJL2os1ZW6Kku/LUHr/BWrRrFh9yHW7ixmdUExd81ZHbHzzn7xW37576X8/t01dR/cCEJNjvinc4dx++mDOCnEioVOe9p1qJy/yych1snVE3NZtu0A+QdKq/Xvv35yP3wxM/g9TxvanYHdk3nkow24PF7/nXprLZmANWYh3R7BX1M+xuZ2ZnRWJx5fmFdtKeLANhMfh0O4adoA8g+U8tKSH446bXl7DnPli98y84kv/FVNwVWLZwzrwYBuHfjL/A219jrzCazmAjguqxMPXzCcO88I3WZx+bg+tI+L4eGAjhvhWrhuDyu2H+S3r62oFoy8XkOF2xtWT8CmosFE+ZXYd13H9Ezlf8sLWLYtdHfDL/P2Mv3Rz1gUxuyjpRUelm47AMDzX22tcpfYFD74ficHSlxVqqPAGgh46djsaiUPn9OGduenJ/Ti2kn9qu07f1RPMjsmAtVLFf26duC4LGuQWPCF0+EQfjO5H1v3lfDGsnx//X1rLZmAFTB91Yab94ZuG/C1newuLuc/X22rsi9UyQRgXN/OnNCnE39dkFdlOeH62BZwI3D3O6v9U/370g3Wd3Lj1P5s21dSZaXJmvgWogosdZ41IpOenZJCHp+aFMelP8pm3urd/nEp4Sq2x8HEOR3c+17V2QECB7y2FK33V6wizjfB32+m9KNrcjy/f3dtyDaUFxZvY+3OYq7+73fsLKp9YNbWfUcwBu4/eyid28dz15zVTdYuU1Tq4ooXvgWqX9jr4nAIf5g51F8nHiguxsE19liCUHN23Xf2MNLaxYV87aSBXTimZyqPfbzRf7FoSReEo/GT460xCxeM6lnjMSfmpDGuXzpPLMrz5xtCl0zACkA3TRvA3sPl/POLLUeVLt/N0YWje/LZxr0sXL+nMoAH3NFPHNCFY3t35LGPN9b4Oyk8VM60Rz7lD/ZFvT6lyUvGZpOSGMtfaimd/HneeiY9tIi8PYeqpf/Gqf35bONePt1QOUi0cjLOlnMJbzkpUc2u1O5Dn9Yunhsm92P59oPMXVV9/YqDJS66JSfg8njrrLryre/QIzWRG6f2Z/n2g7y7cmfkEx/C5kLrTnlkr1R+Xs9++HU5e2QG54zM5PJxOdX25XZpz7LbJzOiV8dq+3z17AVFZfzzi61A9U4ArU1inJMPrhvHrNG9aj3upqn9OVji4plPKqdpL3d7arwwj+zVkcmDuvK3TzYf1QJmvgvu5eNyyO7cjvvmrvOPEwksDYkIN03tz+7icp7/cmvIc320djfrdlVe6GOd4fegSk6wBr0uWLeHZXYpPdgLi7exqfAI17683N+2WFrhIT7Gwc/H9KZnJ2tq/+DOGy3pRqR1/4pVRJUG1Aefe2xP+nVtz4Pz1lVrBC11eejbtT1XT8hl7qpdIacK8fG9Nj7GwTkjMxnYPZkHPlhX75LC0fA1lt40bQA56e0jeu4Yp4OHzh8esvRRl5NyO3NinzS22OtgtKQLQmMakpHCGcN78OznW/wTIVa4vTVWNQL8dkp/Dle4j2omXt/3n5wQw41T+7Nxz2FeXGy1wQS3NRzfJ42T+6Xz5KJNFJVWn2Zlf1Awq+8YjYvHZJHWLi5k24kxhoMlLvqkt2N1QTH/tduJSuwZFuJjnNw0dQDrdh3yL4egwUS1aKX2FCOJsU6cDuHW6QPZtq+E/y7eFnSc1aD9y3F96J6SwB/fr3nEsi+YxMU4cDqE/zttIPkHSmu8A4ykkoBunC3Nb+1eQND6Syb18ZvJ/XB5vPzVnmqk3O2tNf/9u3XgrBEZ/OvLrXVWqQbz3RwlxcUwfUg3hvdM9c+UG6qd6sap/SkqDb3AlW9p3OV3TOaD6+o/crxdfAxXjs/h87y9IZZCsP5Gzj02k+OzO/Hw/A0Ul7nsYGINUD1taHeGZabw0IfrKXN5/HnTYKJapNKgnirj+6czJieNR1LhKAYAACAASURBVAPq9wH/GIqEWCc3TO7Hiu0HeW9V6Kqr8oBgAtZd+YT+6Ty+MK/a3V6kVV5MWs4fnM+xvTv6e0HFhGgziFZZndsxa3RPXlryA1v3HqmzZAJw/Sn98Brjn/E5XL6bifgYByLCrdMH+PeFmmV3SEYKpw/rznNfbKm2Ro1vgGBqUhwDuiXXKx0+Pz2hN106xPPnoIXY/GNXYp3832mD2H+kgqcXbaLU5fb/LTocwi3TrTngnv9ya4vsvNFyUqKana/NxNdTxfoDHMiBEhdPL9oUcFzlIMCzR2YyoFsHHvxgfcgxARWeymoun9tOHUhJhYdHP6p/d8nazFu9q8oaDS3x7i3Q/OvH8e6vxzZ3MprcNRP7Eut08Jf5G+ySSe3fT89OSfzk+N68ujTf3w4WDt/4It8I8RP6pNHBXoCspgXGfjOlP+Vub7Up5CMxQDAh1sk1k/qydNuBKqtVBt7EDc1M4awRGTz7+RY2Fx6pks4xOdaN2BML89htVxO2pN+2BhPFS0t+4MzHP+ebrQdwOqRK4+LQzBRmHmPVcxfYU2oHzjvldAi3njqQH/aXVJk118fXlTLOWfmj79u1A7OO68mLi39gUz0uDrVZt6uYX/1nGef/7St/9+PK0crNP5dVKKlJcSHXDIl2XZITuGRsFnNWFHC43F1nyQSsua7iYxxVJtqsyfw1u3n0o40Ul7qqzOYLsPC34/nPpaNrfM/szu04f1QmLy7eVqVrcagFqI7GrON6ktulPfe/X9kWGXzT85sp/TDAul2HqgW9m6cP4FC5279YW2OuullfGkwUTy7KY2V+EZ9sKMQYU61x8TdT+mMM/q6NZUEjb8f17czY3M78dcHGao2XvpJJ8B/v9ZP7kRDrrHHhqPoKnBr+ljdW4vJ4Q65lrloG3xoxEF6bUXqHeC4dm817K3fWOl6jzOXhqheX8fBHG3j5m+3VvvvO7eP5Ud/0Wt/rulP6Eet0+CcDBShzeyMSTGKcDm47dQBb9h7xt0UG3/RkdrQWZAOq3WwN6JbMuSMz2VTY8jpvaDBp47xew/b9pf5eSaFmPOnZKYmLT8rijW+tlfDKg0beilj1uQdLXTy1qGqvm8DeXIE6t4/nyvE5zF+zOyLrVxwpt/4gHzxnGOt2HeLFr7cFzH2lP/OWJjkhlivGW92qi8NcpOqX4/qQmhTLg7UsoLVx92FcHkOPlASAo1qgqmtyAlecnMPcVbv4xp4huszlidjvaEL/LpyUa7VFFpW6/L/TwMB31QTrs8nu3K7a62+YUjmQtiXdKOlfWRvnayCf0L8LPzuhN5NqWCtj9vhckhNi/dOsBFcfDMlI4axjMnjuiy3kH6gcyFfhDl0yAbh0bDY9UhL4w3trap1oz+3xctec1fxl/oYaj/NN4HfG8B6Mze3Mwx9tZLc9m2tLmVVVVXXZ2D5cdGJvflzH+BSf5IRYZo/P5dMNhXy5KfQqgb5xTX84awgAHY5yuv5f/qgP3ZIT+P271m8zUtVcYN183XbqQA6WunhyYV5Am0nl30hyQiyf3TSBZ34+qtrru6ckMus4a4BoSlJsRNIUCWEFExGZJiLrRSRPRG4JsT9eRF6x9y8WkayAfbfa29eLyNS6zikik0TkWxFZLiKfi0huw7KoalPun0XVwe9nDuHZi48LeVxKUiy/npjLN1utQVehlgn97dT+OIQqVVe1BZOEWCc3TuvP9zuK+V8tM8Qu3rKff325lcc+3shzNYyG9k2aGB/j4PbTB3GozMVLS7aHVR+vmkdcjIO7Zwyhb9fwV/z72Ym9re7oc9eGvLHw/Z5Tk+L4/OYJvHvN0XVwSIxzctO0/qzML+LtFTsoj/AMvYN7pHDOyEz++cVWNuy2qrKCg1XPTkl0Clpy1+fes4by2U0TSElsRcFERJzAE8B0YBBwoYgMCjrsUuCAMSYXeBh4wH7tIGAWMBiYBjwpIs46zvkU8BNjzDHAf4H/a1gWVW3K/Bfhuu+6fnZib3zNKaHu0nqkJnL5uBzeXbnTv4BUhceLCMTUUDqYMTyDYZkp/Gneen/dcTDfyOORvVL584frQ1ZdlNlTmTscQv9uHfjJ8b2ByjtVFR0SYp3cMn0A3+8oDjmbblnATUVmxyR6p1WvJgrXzGMyGJqRwoMfrOdASUXE2yd+O6U/Dgf+WSTqU2XldEiN84E1l3BC7Wggzxiz2RhTAbwMzAg6ZgbwvP34dWCSWK24M4CXjTHlxpgtQJ59vtrOaQBfR+4UILy5oduIhev28GVe6CL+0agcSVv3TyE+xsk9M6zqg5qWmr3iZKt64O531vhnNo1zOmocMexwCL87dSA7i8pqLHX4Jvp75IIRAPwxaNI7sNcSD0jT9ZOrT9CoosOZw3swslcqD85bz6Gg9pZyd+S6gzscwu2nD2JnURkb9xyO+Ay93VKsthmf4Krj1iacYJIBBE6nmW9vC3mMMcYNFAFptby2tnNeBswVkXzgZ8D9oRIlIpeLyFIRWVpYWBjqkKizbd8RfvGvb/jxPxbz4erqc2YdjbJ6/vH99PhevPTLEzhjWI+Q+5PiYrh5en9W7Sjize92UB7GoLTj+6QxZVBXnlyYV22wGFhdJ+OcDnqlJXHlybm8t2pntYBaHrTSX6d2cfzj56P441lDw8qXaj1EhDvPGMzew+U8sbBqh49ITzMyOrsT04d0A+BgaeQH2f4qYG63pNiW2YU9XOEEk1C3lMGVlTUdU9/tANcDpxpjMoF/An8JlShjzDPGmFHGmFHp6bV39YsWvrpVgFvfXMW+w9UvvPVV35G0IsKJOWm1jtqeMTyDY3qm8uAH6zhQUhFWL5hbpg+g3O3l4RADGQMHSf7q5D5kdkzkrndWV1l/wlrpr+r7nDKoKz8+PrzGXdW6DO+ZyjkjM3nu8y1B40F8swJHrn3jtlMHAtYEqJGWGOfk+UtGc9rQ7v4Bla1VOJ94PhA4t3Qm1aue/MeISAxW9dT+Wl4bcruIpAPDjTGL7e2vAGPCykkLUeH2NtoU6767rid+PJLiMldExmiU+7vPRq6I7XAId5wxiD2Hynl7eUHIKcaD9Ulvz09P6M3LS35gw+5DVfaVuTz+KoCEWCd3nD6IDbsP8++AtTEi2dtGtQ43TetPjFOqrPXRGBMg9uyUxPzrx3Gv3UMs0k7ul84TPxnZ6nsdhhNMvgH6iki2iMRhNajPCTpmDnCR/fhcYIGxrqhzgFl2b69soC+wpJZzHgBSRMRX4T0ZqF5B3kIdLKlg3IMLmfnEF43S8Ov7QxmWmcIlY7N5bVl+jVNa18TrNby05Ad/18oyd+PM8TOyV0dmHmNVhe0Ncw6uayf1pV18DH+cW/UrD14pcfKgrpzcL51H5m9gzyFrWolyd8taD1s1vq7JCcyekMuHa3b7qz0rS9qRvbHo27UDqUmhe1YpS51/fXYbyNXAPKwL+6vGmNUico+InGkf9iyQJiJ5wA3ALfZrVwOvAmuAD4DZxhhPTee0t/8SeENEVmC1mdwYuew2ruXbD7KruIwV+UXcHcFlb338g/BircWZuiUncMfb39drbfV3V+3k1jdX8eO/L+bzjXsDBvZF/q7+ZntivXDX8e7YLo5fT8xl0fpCPtsYsBBQhafaIMk7zxhEmdvDA+9bA9isQWVaMmlrLh2bTWbHRO5+Zw1ueynkWKfgbOV3+a1RWLdyxpi5xph+xpgcY8y99rY7jDFz7MdlxpjzjDG5xpjRxpjNAa+9135df2PM+7Wd097+ljFmqDFmuDFmfOC5Wjpf19aJA7rw2rL8BvW6codYj9p315UY66RdfAz/d/pAa/2DxdXnxKrJV5v2EusUctLbcePrK9hrt7s0RhVR95REnv7psTzx45Fhv+aiMVn0Tkvizjmr/UGowlO91NEnvT2X/agPb3ybz7Jt+7Vk0kYl2DPtrt99iH9/tc2akFFvKpqF/vVFkG8k641T+5OVlsRtb606qkWg3l1ZwOA753FfUHVPcH3waUO7MyYnjT/NWx92Y/yWvUcYnpnKn88bzu7iMu5+x+rj3lhTjkwb0o3ThnUP+/j4GCd3nTmYzYVH+Ptn1n2Ey+MlNkS7y9UTcumWnMCdc1ZTElR6UW3H1MFWtedf5m9g+4GSkNPLq8anwSSCfCWHjklx/GHmULbuK+HJoKmsw/HSkh8od3v526ebeWdFZV+HMrfHntXX+tpEhHtmDKakwhN2Y3yZy0tSfAwjenXkFydl++/+W1If9wn9uzB9SDf+umAj2/eX4HKbkMGkXXwMt502kO93FLN2Z3GNY19UdBMR7jpzMBVuL/PX7NYSajPRTz2CAgcAju3bmbNGZPDUJ5vI23OojldWlbfnMGePyGB4Zgp3v7OagyUV9vm91bo85nbpwKV2Y7xvUrra+AYRAtwwuWVOGAdw++mDcIhw9ztrqPB4ia2h5HTGsO4cb09S6Qvmqu3J7tyOK07uA0D+gfpP7qgaToNJBAWvS/C70waSFBfDbW9+X+tEhsHK3V7aJ8Rw39nDOFBS2QU4uFeTz7Wn9CUjNZHb3lxVZ2N3udvjv4NvFx/DG1eeyOXj+rS41Qh7pCZy3Sl9+WjtbpZvP0icM3SDqohw94zBgJUf1XZdOd6axs+3gqVqWhpMIqjcXifa1/7QuX08t506gCVb94ecR6jm81hrJwzqkcxlY7N5+ZvtLN68r8axFElxMdwzYzAb9xz2tzPUeO6gNbeP7d2J204dWON0J83pFydl069rewBcnpqD8YBuybx+xYncfvrApkqaaoES45x8ectE3rqqVQ1NixoaTCKo1F4nOvDCfN6xPRmd1Yl7567195yqjTHGKj3YF/xrT+lLZsdEbntrFcWl7hrrgycN7Mr0Id147OONVUYEB6twVx8p3lLFOh38YaY1HUpBHetSjMrqRJcOCU2RLNWC9UhNJLNjy5oAsa1oHVeVFszrNSzffpAylyfkOtEOh3DvWUMoqXCHnKAwmNtr8JrK0k1SXAx/mDmETYVH+Gjt7lq78N55xmBinQ5uf3t1jaPww1lzuyUZnd2JB88Zxp/PG97cSVFK1UKDSQM998UWZj7xBRc88zUHS10hG7L7du3AFSfn8OZ3O+oce1Lurj4l/Pj+XZhhjyavbeW4bikJ/HZKPz7dUMg7K3fWcP7IrRjXVM4/rifDe6Y2dzKUUrVoXVeVFugLOzis2H6Qd1YU1FhymD0hl6y0JH73v+9rHXtS05Twt59uLffSuX3tjYs/OzGLYZkp3PPOGopKqk7PbYw9JXwrCyZKqZZPryoNtL/Exbh+6Vw2NhuAzXtDt1ckxDr5w8yhbNl7hCeD1kkPFKpkAlYQ+eiGk/nXL0KvhOjjdAh/PGsoB0oquHfumir7gqvQlFIqUvSq0kDlLqva6LdT+xPndDA6q1ONx47t25mZx/TgqUV5rN8VeuxJecD8W8Fyu7QPq3FxSEYKl4/rw6tL8/l0Q+UcV7UtoauUUg2hV5UG8vWOSoh18u0dk3mujpLD7acPIjkhlhteXV5lPQ6fypJJw76aayf1JSe9Hbe+uco/g3FNpR6llGooDSYNFNg7qn18DO3rGDiX1j6eP549lNUFxTy+oPpUK/4LfgNHpCfEOnnw3OEUFJVy//tr7XP7ZgjWr10pFVl6VWmgwBHl4Zo6uBtnj8jg8YV5rMovqrKvckr4hn81x/buyKUnZfPC19b6JVrNpZRqLHpVCcOi9Xs44Y8f8/D86kvKBo8oD9edZwymc/s4bnh1eZXeXZGuivrNFGsG41veWMUBu3eXVnMppSJNg0kYnv18C7uKy3j04428tnR7lX1HOwgwJSmWB84ZxsY9h6sEqfIIlkzAmmLigXOG8cP+Eu59r3Gnm1dKtV16VQnD6oJizh+VyYl90rj97e/ZVHgYqBy3cbQX5/H9u3Dh6F4889lmlm2zZvwtb4RldI/vk8bFY7L4Zqu1xK9WcymlIk2vKnU4Uu5m/5EKsjq345FZx5AQ6+T6V6yeWJWN5Uf/Mf7utIFkpCbym1dXUFLhbrQeVzdPG+B/3JLWLlFKRQcNJnUoPGRNztgtOYGuyQncf/ZQVuYX8chHGyJy4W8fH8Ofzh3O1n0lPPD+uirrvEdSYpyTOVefxHFZHenTuV1Ez62UUroARB0qPFUDxrQh3Tl/VCZPLtrEoO4p9r6GXfhPzEnjFydl8c8vtjKhf3qV94ukYZmpvHaFTs+tlIo8LZnUwdedNjZgcaY7zxhMr05JzP7vt0BkGrRvnjaA3C7tWbi+MGLnVEqppqJXrDr4RqkHLhvbLj6GRy44xv+8oQMMwRpk+OisgHNqMFFKtSJ6xaqDb4U/37rpPiN6deQnx/cCInfhH9wjhfvOHsr0Id1a5MqHSilVE20zqYO/ZOKsHjDumTGEk/ulM2FAl4i934Wje3Hh6F4RO59SSjUFDSZ1qPBUbzPxcTqEKYO7NXWSlFKqxdFqrjq43DWXTJRSSln0ClkHf5uJNogrpVSN9ApZh9raTJRSSln0ClmH2tpMlFJKWTSY1MFXMgnuGqyUUqqSXiHroA3wSilVt7CukCIyTUTWi0ieiNwSYn+8iLxi718sIlkB+261t68Xkal1nVMs94rIBhFZKyLXNCyLDeNrgI/VBnillKpRneNMRMQJPAFMBvKBb0RkjjFmTcBhlwIHjDG5IjILeAC4QEQGAbOAwUAP4CMR6We/pqZzXgz0BAYYY7wiErkRgUdB20yUUqpu4dxujwbyjDGbjTEVwMvAjKBjZgDP249fByaJNR/IDOBlY0y5MWYLkGefr7ZzXgncY4zxAhhj9hx99hrO35vLoSUTpZSqSThXyAwgcK3afHtbyGOMMW6gCEir5bW1nTMHq1SzVETeF5G+4WWlcbg8XmIcgsOhJROllKpJOMEk1FXUhHlMfbcDxANlxphRwN+B50ImSuRyO+AsLSwsDJnwSHB5jDa+K6VUHcK5SuZjtWH4ZAIFNR0jIjFACrC/ltfWds584A378VvAsFCJMsY8Y4wZZYwZlZ6eHkY2jk6F26vtJUopVYdwgsk3QF8RyRaROKwG9TlBx8wBLrIfnwssMMYYe/ssu7dXNtAXWFLHOf8HTLQfnwxsOLqs1Z8xhreX72Dh+j1YybequXQqFaWUql2dvbmMMW4RuRqYBziB54wxq0XkHmCpMWYO8CzwHxHJwyqRzLJfu1pEXgXWAG5gtjHGAxDqnPZb3g+8KCLXA4eByyKX3dq9viyfG19fCcBlY7P53WkDcXm8Ws2llFJ1CGsKemPMXGBu0LY7Ah6XAefV8Np7gXvDOae9/SBwWjjpirTP8/bSqV0cpw/rzj8+30JKYqy2mSilVBh0PZMAJRUeunSI5+4zB3OozM1D860atpz0ds2cMqWUatn0ljtAudtLfKwTEeGBc4YxNrczAJsKjzRzypRSqmXTYBKgzOUhwW5sj4tx8NRPR9IjJYHJg7o2c8qUUqpl02quAOUuD6lJcf7nHRJiWXTjBER7BiulVK00mAQoc3lJiK1aWNNuwUopVTe9UgYoc3tIiHU2dzKUUqrV0WASoNzlJV5LIkopVW965QygJROllDo6GkwClLk0mCil1NHQYGIzxlgN8FrNpZRS9aZXTptvRcV4LZkopVS9aTCxlbmsYKLVXEopVX9tepxJhdvLda98xw/7S7hsbB+AauNMlFJK1a1NB5N5q3cxd9UukhNiuO6V5QDEx2jJRCml6qtN34avLigm1il8etME+nVtD0D7eA0mSilVX226ZFJS4aZdfAypSXHMuXosH3y/i4kDdFJHpZSqrzYdTAJHvCfEOpk5IqOZU6SUUq1Tm67mKnd7tI1EKaUioI0HE52LSymlIqFNX0mtlRXb9EeglFIR0aavpFrNpZRSkdG2g4lOOa+UUhHRpq+k2mailFKR0aavpFrNpZRSkdHGg4lX13hXSqkIaNNX0goNJkopFRFt+kqqwUQppSKjzV5JK9xeikpdxDnb7EeglFIR02avpC98vQ231zAmJ625k6KUUq1emw0mS7ftp1enJKYM7tbcSVFKqVavzQaTPcXlZHZMbO5kKKVUVGizwaTc7dX13pVSKkLCCiYiMk1E1otInojcEmJ/vIi8Yu9fLCJZAftutbevF5Gp9TjnX0Xk8NFlq24Vbq82viulVITUeTUVESfwBDAdGARcKCKDgg67FDhgjMkFHgYesF87CJgFDAamAU+KiLOuc4rIKCC1gXmrVbnbozMGK6VUhIRzNR0N5BljNhtjKoCXgRlBx8wAnrcfvw5MEhGxt79sjCk3xmwB8uzz1XhOO9D8CbipYVmrXbmWTJRSKmLCuZpmANsDnufb20IeY4xxA0VAWi2vre2cVwNzjDE7a0uUiFwuIktFZGlhYWEY2aiqQtcyUUqpiAnnaiohtpkwj6nXdhHpAZwH/LWuRBljnjHGjDLGjEpPT6/r8Gqskok2wCulVCSEE0zygZ4BzzOBgpqOEZEYIAXYX8tra9o+AsgF8kRkK5AkInlh5qVedCoVpZSKnHCupt8AfUUkW0TisBrU5wQdMwe4yH58LrDAGGPs7bPs3l7ZQF9gSU3nNMa8Z4zpZozJMsZkASV2o35Eeb2GCo+uZaKUUpESU9cBxhi3iFwNzAOcwHPGmNUicg+w1BgzB3gW+I9ditiPFRywj3sVWAO4gdnGGA9AqHNGPnuhVXi8AFoyUUqpCKkzmAAYY+YCc4O23RHwuAyrrSPUa+8F7g3nnCGOaR9O+uqr3G0FEy2ZKKVUZLTJq2mFBhOllIqoNnk1LXd7AHTJXqWUipA2GUx8JRNtM1FKqcgIq80kmnyyoZBlW/cDkKCDFpVSKiLaVDCZs6KAa176zv9cq7mUUioy2lQweXnJD2SlJfHHs4aydNsBTtRVFpVSKiLaTDAxxrC6oJjTh3VnTG5nxuR2bu4kKaVU1GgzjQZFpS6KSl1kd27X3ElRSqmo02aCSUmF1R24Q0KbKYwppVSTaTPBxNcdOFbXMFFKqYhrM1dWl0eDiVJKNZY2c2Wt0GCilFKNps1cWV0eaz0vnY9LKaUir81cWbXNRCmlGk+bubJWtpmEWjFYKaVUQ7SZYKILYimlVONpM1dWl1ZzKaVUo2kzV1YtmSilVONpM1dWHWeilFKNp81cWV1uq2uwlkyUUiry2syVtUJ7cymlVKNpO8HEt1SvVnMppVTEtZkrq7aZKKVU42kzV1aX9uZSSqlG02aurL5qrhiHtpkopVSkRW0wKXN5WF1QxKEyFwAVHkOc04GIBhOllIq0qFx28GBJBWc8/jnb95fidAjHZ3di8Zb9GGOaO2lKKRWVojKYvLRkO9v3l/L7mUMoOFjKh6t34fEaMjsmNnfSlFIqKkVlMPlq8z76dW3Pz07oDcDN0wawqfCwtpcopVQjicpgsmXvYUb26lhlW056+2ZKjVJKRb+oa4A3xrCnuJyuyQnNnRSllGozwgomIjJNRNaLSJ6I3BJif7yIvGLvXywiWQH7brW3rxeRqXWdU0RetLd/LyLPiUhsfTJ0qNxNudtLevv4+rxMKaVUA9QZTETECTwBTAcGAReKyKCgwy4FDhhjcoGHgQfs1w4CZgGDgWnAkyLirOOcLwIDgKFAInBZfTJ0pNwNQIeEqKzBU0qpFimcksloIM8Ys9kYUwG8DMwIOmYG8Lz9+HVgklgDOmYALxtjyo0xW4A8+3w1ntMYM9fYgCVAZn0y5JsdWKdNUUqpphPOFTcD2B7wPN/eFvIYY4wbKALSanltnee0q7d+BnwQKlEicrmILBWRpYWFhf7tFR4PoNOmKKVUUwrnihuqP23w6L+ajqnv9kBPAp8aYz4LlShjzDPGmFHGmFHp6en+7RVaMlFKqSYXTsNCPtAz4HkmUFDDMfkiEgOkAPvreG2N5xSRO4F04FdhpK+KygkddUyJUko1lXBu378B+opItojEYTWozwk6Zg5wkf34XGCB3eYxB5hl9/bKBvpitYPUeE4RuQyYClxojPHWN0MVOtW8Uko1uTpLJsYYt4hcDcwDnMBzxpjVInIPsNQYMwd4FviPiORhlUhm2a9dLSKvAmsANzDbGOMBCHVO+y2fBrYBX9mTMr5pjLkn3Ay5dBEspZRqcmH1nzXGzAXmBm27I+BxGXBeDa+9F7g3nHPa2xvUp9dfMtEGeKWUajJRd8V1eawGeC2ZKKVU04m6K65vESxtM1FKqaYTdVdcXZ5XKaWaXtRdcX1tJjrdvFJKNZ2oCyYerw5aVEqpphZ1V1y3HUycWjJRSqkmE3XBxKPVXEop1eSiLpj4SyZODSZKKdVUoi6Y+NpMtGSilFJNJ+qCibaZKKVU04u6YFJZMom6rCmlVIsVdVdcX8lECyZKKdV0oi6YeLxeYhyCPeOwUkqpJtCgGXpbivW7DnHS/Quo8HgpPFROYqyzuZOklFJtSlQEk8Q4Jyf0SSMuRoh1OhiWmdrcSVJKqTYlKoJJr05JPHT+8OZOhlJKtVlR12ailFKq6WkwUUop1WAaTJRSSjWYBhOllFINpsFEKaVUg2kwUUop1WAaTJRSSjWYBhOllFINJsaY5k5Dg4nIIWB9c6ejEXUG9jZ3IhpJNOcNNH+tXbTnr78xpkMkThQVI+CB9caYUc2diMYiIkujNX/RnDfQ/LV2bSF/kTqXVnMppZRqMA0mSimlGixagskzzZ2ARhbN+YvmvIHmr7XT/IUpKhrglVJKNa9oKZkopZRqRhpMlFJKNVirDiYiMk1E1otInojc0tzpOVoislVEVonIcl9XPRHpJCLzRWSj/X9He7uIyGN2nleKyMjmTX11IvKciOwRke8DttU7PyJykX38RhG5qDnyEkoN+btLRHbY3+FyETk1YN+tdv7Wi8jUgO0t7vcrIj1FZKGIrBWR1SJyrb09Kr6/WvIXLd9fgogsEZEVdv7utrdni8hiUahdFwAABhtJREFU+7t4RUTi7O3x9vM8e39WwLlC5rtGxphW+Q9wApuAPkAcsAIY1NzpOsq8bAU6B217ELjFfnwL8ID9+FTgfUCAE4DFzZ3+EPkZB4wEvj/a/ACdgM32/x3txx2bO2+15O8u4Lchjh1k/zbjgWz7N+tsqb9foDsw0n7cAdhg5yEqvr9a8hct358A7e3HscBi+3t5FZhlb38auNJ+fBXwtP14FvBKbfmu7b1bc8lkNJBnjNlsjKkAXgZmNHOaImkG8Lz9+HlgZsD2fxvL10CqiHRvjgTWxBjzKbA/aHN98zMVmG+M2W+MOQDMB6Y1furrVkP+ajIDeNkYU26M2QLkYf12W+Tv1xiz0xjzrf34ELAWyCBKvr9a8leT1vb9GWPMYftprP3PABOB1+3twd+f73t9HZgkIkLN+a5Raw4mGcD2gOf51P6jaMkM8KGILBORy+1tXY0xO8H6AwC62Ntba77rm5/WmM+r7aqe53zVQLTi/NlVHiOw7m6j7vsLyh9EyfcnIk4RWQ7swQrim4CDxhi3fUhgWv35sPcXAWkcRf5aczCRENtaaz/nk4wxI4HpwGwRGVfLsdGUb6g5P60tn08BOcAxwE7gIXt7q8yfiLQH3gCuM8YU13ZoiG2tMX9R8/0ZYzzGmGOATKzSxMBQh9n/Ryx/rTmY5AM9A55nAgXNlJYGMcYU2P/vAd7C+gHs9lVf2f/vsQ9vrfmub35aVT6NMbvtP2Iv8HcqqwRaXf5EJBbrQvuiMeZNe3PUfH+h8hdN35+PMeYgsAirzSRVRHxzMQam1Z8Pe38KVhVuvfPXmoPJN0Bfu5dCHFbj0ZxmTlO9iUg7EengewxMAb7HyouvB8xFwNv24znAz+1eNCcARb7qhxauvvmZB0wRkY52lcMUe1uLFNRudRbWdwhW/mbZvWaygb7AElro79euL38WWGuM+UvArqj4/mrKXxR9f+kikmo/TgROwWoXWgicax8W/P35vtdzgQXGaoGvKd81a+7eBw35h9WTZANWneDvmjs9R5mHPli9JlYAq335wKq3/BjYaP/fyVT21njCzvMqYFRz5yFEnl7CqipwYd3hXHo0+QEuwWr4ywN+0dz5qiN//7HTv9L+Q+wecPzv7PytB6a35N8vMBarOmMlsNz+d2q0fH+15C9avr9hwHd2Pr4H7rC398EKBnnAa0C8vT3Bfp5n7+9TV75r+qfTqSillGqw1lzNpZRSqoXQYKKUUqrBNJgopZRqMA0mSimlGkyDiVJKqQbTYKLaNBFJFZGrAp73EJHXa3tNA95rpojcEYHz/FlEJkYiTUpFinYNVm2aPT/Tu8aYIU3wXl8CZxpj9jbwPL2BvxtjpkQmZUo1nJZMVFt3P5Bjr2HxJxHJEnudEhG5WET+JyLviMgWEblaRG4Qke9E5GsR6WQflyMiH9gTdX4mIgOC30RE+gHlvkAiIv8SkafEWltjs4icbE8wuFZE/mUf47SP+16s9W6uBzDGbAPSRKRb03xEStUtpu5DlIpqtwBDjDUxnq+kEmgI1syyCVijhG82xowQkYeBnwOPAM8AVxhjNorI8cCTWFN+BzoJ+DZoW0f7uDOBd+xjLgO+EZFjsNbMyPCVmnzTZNi+tY9/4+iyrVRkaTBRqnYLjbXuxSERKcK66IM19cYwe/bZMcBr1rRPgLWgULDuQGHQtneMMUZEVgG7jTGrAERkNZAFfAL0EZG/Au8BHwa8dg/Qo6GZUypSNJgoVbvygMfegOderL8fB9ZaEcfUcZ5SrBlZQ5078Lz+cxtjDojIcKyFpmYD52PNdwVWSam0HvlQqlFpm4lq6w5hLd96VIy1FsYWETkP/GuiDw9x6Fogtz7nFpHOgMMY8wZwO9ZSwT79qJzZVqlmp8FEtWnGmH3AF3Yj95+O8jQ/AS4VEd/Mz6GWb/0UGCEBdWFhyAAW2avm/Qu4FfzrceQCS48yvUpFnHYNVqqJiMijWO0kHzXwPGcBI40xt0cmZUo1nJZMlGo6fwSSInCeGCqXlVWqRdCSiVJKqQbTkolSSqkG02CilFKqwTSYKKWUajANJkoppRpMg4lSSqkG+3+5m5OTegDjxAAAAABJRU5ErkJggg==n”, “text/plain”: [

“<Figure size 432x288 with 1 Axes>”

]

}, “metadata”: {

“needs_background”: “light”

}, “output_type”: “display_data”

}

], “source”: [

“from bmtk.analyzer.compartment import plot_tracesn”, “n”, “_ = plot_traces(config_file=’sim_ch02/simulation_config.json’, node_ids=[0], report_name=’v_report’)n”, “_ = plot_traces(config_file=’sim_ch02/simulation_config.json’, node_ids=[0], report_name=’cai_report’)”

]

}, {

“cell_type”: “markdown”, “metadata”: {}, “source”: [

“## 5. Additional things to do:n”, “n”, “#### Changing edge propertiesn”, “n”, “When using the Network Builder add_edges method, we gave all the edges the same parameter values (delay, weight, target_section, etc.). All connection created by this method call constitute an single edge-type that share the same parameters, and are specified in the mthalamic_edge_type.csv file”

]

}, {

“cell_type”: “code”, “execution_count”: null, “metadata”: {}, “outputs”: [], “source”: [

“import pandas as pdn”, “pd.read_csv(‘sim_ch02/network/mthalamus_mcortex_edge_types.csv’, sep=’ ‘)”

]

}, {

“cell_type”: “markdown”, “metadata”: {}, “source”: [

“(if in the build script we called add_edges multiple times, we’d have multiple edge-types). n”, “n”, “Using a simple text-editor we can modify this file directly, change parameters before a simulation run without having to rebuild the entire network (although for a network this small it may not be beneficial).n”, “n”, “#### weight_functionn”, “n”, “By default BioNet uses the value in syn_weight to set a synaptic weight, which is a constant stored in the network files. Often we will want to adjust the synaptic weight between simulations, but don’t want to have to regenerate the network. BioNet allows us to specify custom synaptic weight functions that will calculate synaptic weight before each simulation. n”, “n”, “To do so first we must set the value of ‘weight_function’ column. Either we can open up the file mthalamus_mcortex_edge_types.csv with a text-editor and change the column. n”, “n”, “n”, “|edge_type_id | target_query | source_query | ... | weight_function |\n", "|————-|--------------|—————-|-----|—————–|n”, “|100 | * |pop_name==’tON’ | … |adjusted_weight |n”, “n”, “or we can rebuild the edgesn”, “`python\n", "thalamus.add_edges(source={'pop_name': 'tON'}, target=cortex.nodes(),\n", "                   connection_rule=5,\n", "                   syn_weight=0.001,\n", "                   weight_function=adjusted_weight,\n", "                   delay=2.0,\n", "                   target_sections=['basal', 'apical'],\n", "                   distance_range=[0.0, 150.0],\n", "                   dynamics_params='AMPA_ExcToExc.json',\n", "                   model_template='exp2syn')\n", "`n”, “n”, “Then we write a custom weight function. The weight functions will be called during the simulation when building each synapse, and requires three parameters - target_cell, source_cell, and edge_props. These three parameters are dictionaries which can be used to access properties of the source node, target node, and edge, respectively. The function must return a floating point number which will be used to set the synaptic weightn”, “n”, “`python\n", "def adjusted_weights(target_cell, source_cell, edge_props):\n", "    if target_cell['cell_name'] == 'Scnn1a':\n", "        return edge_prop[\"weight_max\"]*0.5\n", "    elif target_cell['cell_name'] == 'Rorb'\n", "        return edge_prop[\"weight_max\"]*1.5\n", "    else:\n", "        ...\n", "`n”, “n”, “Finally we must tell BioNet where to access the function which we can do by using the add_weight_function.n”, “`python\n", "from bmtk.simulator import bionet\n", "\n", "bionet.nrn.add_weight_function(adjusted_weights)\n", "\n", "conf = bionet.Config.from_json('config.json')\n", "...\n", "`

]

}, {

“cell_type”: “markdown”, “metadata”: {}, “source”: [

“### Using NWB for spike trainsn”, “n”, “Instead of using csv files to set the spike trains of our external network, we can also use nwb files. The typical setup would look like the following in the config file:n”, “n”, “`json\n", "{\n", "  \"inputs\": {\n", "    \"LGN_spikes\": {\n", "      \"input_type\": \"spikes\",\n", "      \"module\": \"nwb\",\n", "      \"input_file\": \"$INPUT_DIR/lgn_spikes.nwb\",\n", "      \"node_set\": \"lgn\",\n", "      \"trial\": \"trial_0\"\n", "    },\n", "  }\n", "}\n", "`

]

}, {

“cell_type”: “code”, “execution_count”: null, “metadata”: {}, “outputs”: [], “source”: []

}

], “metadata”: {

“anaconda-cloud”: {}, “kernelspec”: {

“display_name”: “Python 3”, “language”: “python”, “name”: “python3”

}, “language_info”: {

“codemirror_mode”: {

“name”: “ipython”, “version”: 3

}, “file_extension”: “.py”, “mimetype”: “text/x-python”, “name”: “python”, “nbconvert_exporter”: “python”, “pygments_lexer”: “ipython3”, “version”: “3.7.4”

}

}, “nbformat”: 4, “nbformat_minor”: 2

}