R Installation and Administration
Version 4.3.1 (2023-06-16)

R Core Team

This manual is for R, version 4.3.1 (2023-06-16).
Copyright (©) 2001-2023 R Core Team

Permission is granted to make and distribute verbatim copies of this manual
provided the copyright notice and this permission notice are preserved on all
copies.

Permission is granted to copy and distribute modified versions of this manual
under the conditions for verbatim copying, provided that the entire resulting
derived work is distributed under the terms of a permission notice identical to
this one.

Permission is granted to copy and distribute translations of this manual into
another language, under the above conditions for modified versions, except that
this permission notice may be stated in a translation approved by the R Core
Team.

Table of Contents

1 Obtaining R............. 1
1.1 Getting and unpacking the sources................., 1
1.2 Getting patched and development versions 1

1.2.1 Using Subversion and rSync.............c.oviueeeeninneann. 1

2 Installing R under Unix-alikes.................. 3
2.1 Simple compilation 3
2.2 Help Options. ...t 4
2.3 Making the manuals.......... i 5)
2.4 TInstallation........ ..o 7
2.5 Uninstallation 9
2.6 Sub-architectures.......... 9

2.6.1 Multilib . ..o 10
2.7 Other Options. . ..o e 11
2.7.1 Debugging Symbols......... ... i i 11
2.7.2 OpenMP Support...... ..o 12
2.7.3 CH SUPPOTE « ottt 12
2.74 Cstandardso 13
2.7.5 Link-Time Optimization................ ..o ... 14
2.75.1 LTO with GCC... ... e 14
2.75.2 LTO with LLVM. 15
2.7.5.3 LTO for package checking............... 16

2.8 Testing an Installation............. o i, 16

3 Installing R under Windows 18

3.1 Building from sourceo 18
3.1.1 The Windows toolset, 18
3.2 X oot 18

3.2 Checking the buildo o 19

3.3 Testing an Installation...........o i i 19

4 Installing R under macOS..................... 21
4.1 Running R under macOS....... i, 22
4.2 Uninstalling under macOSt 23
4.3 Multiple versionso e 23

5 Running R................ 24

6 Add-onpackages................... ..., 25
6.1 Default packagescoo i 25

6.2 Managing libraries............o i 25

6.3 Installing packageso 26
6.3.1 WINdOwWsSoottiiii 27

6.3.2 macOS ... 28

6.3.3 Customizing package compilation 30

6.3.4 Multiple sub-architecturesl 31
6.3.5 Byte-compilation 32

6.3.6 External software............... ... 32

6.4 Updating packages ... 33
6.5 Removing packages..........ouiiiiiiiiii 33
6.6 Setting up a package repository..........o i 33
6.7 Checking installed source packages.............coviiieennnn... 34

7 Internationalization and Localization......... 35
7.1 Locales.o 35
7.1.1 Locales under Unix-alikes................., 35

7.1.2 Locales under Windows...........cooiiiiiiieennninninnn. 36

7.1.3 Locales under macOS......... ..., 36

7.2 Localization of messages..........oouiiiiiiiiniiinina.n 36

8 Choosing between 32- and 64-bit builds...... 38
9 The standalone Rmath library................ 39
9.1 Unix-alikeso 39
9.2 WINAOWS . ..o ottt e 40

Appendix A Essential and useful other

programs under a Unix-alike................... 42
A.1 Essential programs and libraries................... ..o, 42
A.2 Useful libraries and programscooiiiiiiina.... 44
A2 Tel/TK oo 46
A2.2 Java SUPPOTt ..ottt e 47
A.2.3 Other compiled languages..............ccoiiiiiiii ... 48
A3 Linear algebra 48
A3l BLAS. . 49
A3.1.1 ATLAS . 50
A31.2 OpenBLASand BLIS...........ooii.... 51
A313 Intel MKL ... 51
A3.14 Shared BLAS 52
A32 LAPACK ... 53

A.3.3 CaveatsS . ..ooo i 54

ii

Appendix B Configuration on a Unix-alike..... 56

B.1 Configuration optionsc.oiiiiiiiiiiiiiiiiii .. 56
B.2 Internationalization support............ o it 57
B.3 Configuration variables.............. i o7
B.3.1 Setting paper Sizeuuuuiiimiit i 58
B.3.2 Setting the browsers..............coo i 58
B.3.3 Compilation flags ... 58
B.3.4 Making manuals i 58
B.4 Setting the shell i 58
B.5 Using makeooouuiiii i 59
B.6 Using Fortran..........c.oiiiiiiiii i 59
B.7 Compile and load flags.........o 59
B.8 Maintainer mode. 61
Appendix C Platform notes..................... 62
C.l XL d8SUES « et ettt et e 62
C.2 LUK . oot 64
C21 Clang. ..ot 66
C.2.2 Intel compilers....... ..o 66
C.3 macOS . o 67
C.3.1 Prerequisites...... .o 67
C.3.2 Fortran compiler........ ... 70
C.3.3 Cairo graphics ..ot 70
C.3.4 Other C/C++ compilersoooiiiiiiiiiian.. 71
C.3.5 Other libraries ... 72
C.3.6 Tcl/Tk headers and libraries 73
C.3.7 Java ... 73
C.3.8 Frameworks....... ... 74
C.3.9 Building R.app....ovuriiiii 75
C.3.10 Building binary packages............ ... i, 75
C.3.11 Building for Intel on ‘armé4’cccoiinnn. 76
C.3.12 Installeroiii e 76
C.d FreeBSDo 76
C.5 OpenBSD 77
C.b6 CygWin . oottt 77
C.7 New platforms e 77
Function and variable index....................... 79
Concept index................, 80

Environment variable index....................... 81

1 Obtaining R

Sources, binaries and documentation for R can be obtained via CRAN, the “Comprehensive
R Archive Network” whose current members are listed at https://CRAN.R-project.org/
mirrors.html.

1.1 Getting and unpacking the sources

The simplest way is to download the most recent R-x.y.z.tar.gz file, and unpack it with
tar -xf R-x.y.z.tar.gz

on systems that have a suitable! tar installed. On other systems you need to have the gzip
program installed, when you can use

gzip -dc R-x.y.z.tar.gz | tar -xf -

The pathname of the directory into which the sources are unpacked should not contain
spaces, as most make programs (and specifically GNU make) do not expect spaces.

If you want the build to be usable by a group of users, set umask before unpacking so
that the files will be readable by the target group (e.g., umask 022 to be usable by all users).
Keep this setting of umask whilst building and installing.

If you use a fairly recent GNU version of tar and do this as a root account (which
on Windows includes accounts with administrator privileges) you may see many warnings
about changing ownership. In which case you can use

tar --no-same-owner -xf R-x.y.z.tar.gz

and perhaps also include the option --no-same-permissions. (These options can also be
set in the TAR_OPTIONS environment variable: if more than one option is included they
should be separated by spaces.)

1.2 Getting patched and development versions

A patched version of the current release, ‘r-patched’, and the current development version,
‘r-devel’, are available as daily tarballs and via access to the R Subversion repository. (For
the two weeks prior to the release of a minor (4.x.0) version, ‘r-patched’ tarballs may refer
to beta/release candidates of the upcoming release, the patched version of the current release
being available via Subversion.)

The tarballs are available from https://stat.ethz.ch/R/daily/. Download
R-patched.tar.gz or R-devel.tar.gz (or the .tar.bz2 versions) and unpack as
described in the previous section. They are built in exactly the same way as distributions
of R releases.

1.2.1 Using Subversion and rsync

Sources are also available via https://svn.R-project.org/R/, the R Subversion reposi-
tory. If you have a Subversion client (see https://subversion.apache.org/), you can
check out and update the current ‘r-devel’ from https://svn.r-project.org/

R/trunk/ and the current ‘r-patched’ from ‘https://svn.r-project.org/R/branches/

! e.g. GNU tar version 1.15 or later, or that from the ‘libarchive’ (as used on macOS) or ‘Heirloom

Toolchest’ distributions.

https://CRAN.R-project.org/mirrors.html
https://CRAN.R-project.org/mirrors.html
https://stat.ethz.ch/R/daily/
https://svn.R-project.org/R/
https://subversion.apache.org/
https://svn.r-project.org/R/trunk/
https://svn.r-project.org/R/trunk/

Chapter 1: Obtaining R 2

R-x-y-branch/’ (where x and y are the major and minor number of the current released
version of R). E.g., use

svn checkout https://svn.r-project.org/R/trunk/ path

to check out ‘r-devel’ into directory path (which will be created if necessary).
The alpha, beta and RC versions of an upcoming x.y.0 release are available from
‘https://svn.r-project.org/R/branches/R-x-y-branch/’ in the four-week period prior
to the release.

Note that ‘https:’ is required?, and that the SSL certificate for the Subversion server
of the R project should be recognized as from a trusted source.

Note that retrieving the sources by e.g. wget —r or svn export from that URL will not

work (and will give a error early in the make process): the Subversion information is needed
to build R.

The Subversion repository does not contain the current sources for the recom-
mended packages, which can be obtained by rsync or downloaded from CRAN. To
use rsync to install the appropriate sources for the recommended packages, run
./tools/rsync-recommended from the top-level directory of the R sources.

If downloading manually from CRAN, do ensure that you have the correct versions
of the recommended packages: if the number in the file VERSION is ‘x.y.z" you need to
download the contents of ‘https://CRAN.R-project.org/src/contrib/dir’, where dir is
‘x.y.z/Recommended’ for r-devel or x.y-patched/Recommended for r-patched, respectively,
to directory src/library/Recommended in the sources you have unpacked. After down-
loading manually you need to execute tools/link-recommended from the top level of the
sources to make the requisite links in src/library/Recommended. A suitable incantation
from the top level of the R sources using wget might be (for the correct value of dir)

wget -r -11 --no-parent -A*.gz -nd -P src/library/Recommended \
https://CRAN.R-project.org/src/contrib/dir
./tools/link-recommended

2 for some Subversion clients ‘http:’ may appear to work, but requires continual redirection.

2 Installing R under Unix-alikes

R will configure and build under most common Unix and Unix-alike platforms including
‘cpu-*-linux-gnu’ for the ‘alpha’, ‘arm64’, ‘hppa’, ‘ix86’, ‘m68k’, ‘mips’, ‘mipsel’#,
‘ppc64’, ‘s390x’, ‘sparc64’, and ‘x86_64" CPUs, ‘x86_64-apple-darwin’ and ‘aarch64-
apple-darwin’' as well as perhaps (it is tested less frequently on these platforms) ‘1386-
sun-solaris’, ‘i386-*-freebsd’, ‘x86_64-*-freebsd’, ‘1386-*-netbsd’, ‘x86_64-*-
openbsd’ and ‘powerpc-ibm-aix6%’

In addition, binary distributions are available for some common Linux distributions (see
the FAQ for current details) and for macOS. These are installed in platform-specific ways,
so for the rest of this chapter we consider only building from the sources.

Cross-building is not possible: installing R builds a minimal version of R and then runs
many R scripts to complete the build.

2.1 Simple compilation

First review the essential and useful tools and libraries in Appendix A [Essential and useful
other programs under a Unix-alike], page 42, and install those you want or need. Ensure that
either the environment variable TMPDIR is either unset (and /tmp exists and can be written
in and scripts can be executed from) or points to the absolute path to a valid temporary
directory (one from which execution of scripts is allowed) which does not contain spaces.?
Choose a directory to install the R tree (R is not just a binary, but has additional

data sets, help files, font metrics etc). Let us call this place R_LHOME. Untar the source
code. This should create directories src, doc, and several more under a top-level directory:
change to that top-level directory (At this point North American readers should consult
Section B.3.1 [Setting paper size|, page 58.) Issue the following commands:

./configure

make
(See Section B.5 [Using make|, page 59, if your make is not called ‘make’.) Users of Debian-
based 64-bit systems® may need

./configure LIBnn=1ib

make

Then check the built system works correctly by
make check

Failures are not necessarily problems as they might be caused by missing functionality,
but you should look carefully at any reported discrepancies. (Some non-fatal errors are
expected in locales that do not support Latin-1, in particular in true C locales and non-UTF-
8 non-Western-European locales.) A failure in tests/ok-errors.R may indicate inadequate
resource limits (see Chapter 5 [Running R], page 24).

More comprehensive testing can be done by
make check-devel

! aka ‘Apple Silicon’, known to some as ‘arm64-apple-darwin’.
2 Spaces were discouraged but allowed prior to R 4.3.0.

3 which use 1ib rather than 1ib64 for their primary 64-bit library directories: attempts are made to detect
such systems.

Chapter 2: Installing R under Unix-alikes 4

or
make check-all

see Section 2.8 [Testing a Unix-alike Installation], page 16, for the possibilities of doing this
in parallel. Note that these checks are only run completely if the recommended packages
are installed. If you have a local CRAN mirror, these checks can be speeded up by either
setting environment variable R_CRAN_WEB to its URL, or having a file .R/repositories
specifying it (see ?setRepositories).

Parallel make is supported for building R but not for the ‘check’ targets (as the output is
likely to be unreadably interleaved, although where supported* GNU make’s -0 may help).

If the configure and make commands execute successfully, a shell-script front-end called
R will be created and copied to R_HOME/bin. You can link or copy this script to a place where
users can invoke it, for example to /usr/local/bin/R. You could also copy the man page
R.1 to a place where your man reader finds it, such as /usr/local/man/manl. If you want
to install the complete R tree to, e.g., /usr/local/1ib/R, see Section 2.4 [Installation],
page 7. Note: you do not need to install R: you can run it from where it was built.

You do not necessarily have to build R in the top-level source directory (say, TOP_
SRCDIR) To build in BUILDDIR, run

cd BUILDDIR
TOP_SRCDIR/configure
make

and so on, as described further below. This has the advantage of always keeping your
source tree clean and is particularly recommended when you work with a version of R from
Subversion. (You may need GNU make to allow this, and you will need no spaces in the
path to the build directory. It is unlikely to work if the source directory has previously been
used for a build.)

There are many settings which can be customized when building R and most are de-
scribed in the file config.site in the top-level source directory. This can be edited, but for
an installation using BUILDDIR it is better to put the changed settings in a newly-created
file config.site in the build directory.

Now rehash if necessary, type R, and read the R manuals and the R FAQ (files FAQ or
doc/manual/R-FAQ.html, or https://CRAN.R-project.org/doc/FAQ/R-FAQ.html which
always has the version for the latest release of R).

Note: if you already have R installed, check that where you installed R replaces or
comes earlier in your path than the previous installation. Some systems are set up to have
/usr/bin (the standard place for a system installation) ahead of /usr/local/bin (the de-
fault place for installation of R) in their default path, and some do not have /usr/local/bin
on the default path.

2.2 Help options

R by default provides help pages as plain text displayed in a pager, with the options (see
the help for help) of displaying help as HTML or PDF.

4 not by the version supplied by macOS.

https://CRAN.R-project.org/doc/FAQ/R-FAQ.html

Chapter 2: Installing R under Unix-alikes 5

By default HTML help pages are created when needed rather than being built at install
time.

If you need to disable the server and want HTML help, there is the option to build
HTML pages when packages are installed (including those installed with R). This is enabled
by the configure option --enable-prebuilt-html. Whether R CMD INSTALL (and hence
install.packages) pre-builds HTML pages is determined by looking at the R installation
and is reported by R CMD INSTALL --help: it can be overridden by specifying one of the
INSTALL options —-html or ——no-html.

The server is disabled by setting the environment variable R_DISABLE_HTTPD to a non-
empty value, either before R is started or within the R session before HTML help (including
help.start) is used. It is also possible that system security measures will prevent the
server from being started, for example if the loopback interface has been disabled. See
7tools: :startDynamicHelp for more details.

2.3 Making the manuals
There is a set of manuals that can be built from the sources,

‘fullrefman’
Printed versions of all the help pages for base and recommended packages
(around 3750 pages).

‘refman’ Printed versions of the help pages for selected base packages (around 2200
pages)

‘R-FAQ’ R FAQ

‘R-intro’ “An Introduction to R”.

‘R-data’ “R Data Import/Export”.

‘R-admin’ “R Installation and Administration”, this manual.

‘R-exts’ “Writing R Extensions”.

‘R-lang’ “The R Language Definition”.

To make these (with ‘fullrefman’ rather than ‘refman’), use

make pdf to create PDF versions
make info to create info files (not ‘refman’ nor ‘fullrefman’).

You will not be able to build any of these unless you have texi2any version 5.1 or later
installed, and for PDF you must have texi2dvi and texinfo.tex installed (which are part
of the GNU texinfo distribution but are, especially texinfo.tex, often made part of the
TEX package in re-distributions). The path to texi2any can be set by macro ‘TEXI2ANY’
in config.site. NB: texi2any requires perl.

The PDF versions can be viewed using any recent PDF viewer: they have hyperlinks
that can be followed. The info files are suitable for reading online with Emacs or the
standalone GNU info program. The PDF versions will be created using the paper size
selected at configuration (default ISO a4): this can be overridden by setting R_PAPERSIZE
on the make command line, or setting R_PAPERSIZE in the environment and using make

Chapter 2: Installing R under Unix-alikes 6

-e. (If reemaking the manuals for a different paper size, you should first delete the file
doc/manual/version.texi. The usual value for North America would be ‘letter’.)

There are some issues with making the PDF reference manual, fullrefman.pdf or
refman.pdf. The help files contain both non-ASCII characters (e.g. in text .Rd) and upright
quotes, neither of which are contained in the standard IATEX Computer Modern fonts. We
have provided the following alternatives:

times (The default.) Using standard PostScript fonts, Times Roman, Helvetica and
Courier. This works well both for on-screen viewing and for printing. One dis-
advantage is that the Usage and Examples sections may come out rather wide:
this can be overcome by using in addition either of the options inconsolata
(on a Unix-alike only if found by configure) or beramono, which replace the
Courier monospaced font by Inconsolata or Bera Sans mono respectively. (You
will need the BTEX package inconsolata® or bera installed.)

Note that in most ITEX installations this will not actually use the standard
fonts for PDF, but rather embed the URW clones NimbusRom, NimbusSans
and (for Courier, if used) NimbusMon.

This needs IXTEX packages times, helvetic and (if used) courier installed.
1m Using the Latin Modern fonts. These are not often installed as part of a TEX
distribution, but can obtained from https://www.ctan.org/tex-archive/

fonts/ps-typel/1lm/ and mirrors. This uses fonts rather similar to Computer
Modern, but is not so good on-screen as times.

The default can be overridden by setting the environment variable R_RD4PDF. (On Unix-
alikes, this will be picked up at install time and stored in etc/Renviron, but can still
be overridden when the manuals are built, using make -e.) The usual® default value for
R_RD4PDF is ‘times,inconsolata,hyper’: omit ‘inconsolata’ if you do not have IXTEX
package inconsolata installed. As from R 4.2.0, ‘hyper’ is always enabled (with a fallback
if W TEX package hyperref is not installed).

Further options, e.g for hyperref, can be included in a file Rd.cfg somewhere on your
IXTEX search path. For example, if you prefer to hyperlink the text and not the page number
in the table of contents use

\ifthenelse{\boolean{Rd@use@hyper}}{\hypersetup{linktoc=section}}{}
or
\ifthenelse{\boolean{Rd@use@hyper}}{\hypersetup{linktoc=all}}{}
to hyperlink both text and page number.
Any generated PDF manuals can be compacted by
make compact-pdf

provided gpdf and gs are available (see 7tools::compactPDF for how to specify them if
not on the path).

5 Instructions on how to install the latest version are at https://www.ctan.org/tex-archive/fonts/

inconsolata/.

6 on a Unix-alike, ‘inconsolata’ is omitted if not found by configure.

https://www.ctan.org/tex-archive/fonts/ps-type1/lm/
https://www.ctan.org/tex-archive/fonts/ps-type1/lm/
https://www.ctan.org/tex-archive/fonts/inconsolata/
https://www.ctan.org/tex-archive/fonts/inconsolata/

Chapter 2: Installing R under Unix-alikes 7

Ebook versions of most of the manuals in one or both of .epub and .mobi formats can

be made by running in doc/manual one of

make ebooks

make epub

make mobi
This requires ebook-convert from Calibre (https://calibre-ebook.com/download), or
from most Linux distributions. If necessary the path to ebook-convert can be set as make
macro EBOOK by editing doc/manual/Makefile (which contains a commented value suitable
for macOS) or using make -e.

2.4 Installation

To ensure that the installed tree is usable by the right group of users, set umask appropriately
(perhaps to ‘022’) before unpacking the sources and throughout the build process.

After

./configure
make
make check

(or, when building outside the source, TOP_SRCDIR/configure, etc) have been completed
successfully, you can install the complete R tree to your system by typing

make install

A parallel make can be used (but run make before make install). Those using GNU make
4.0 or later may want to use make -j n -0 to avoid interleaving of output.

This will install to the following directories:

prefix/bin or bindir
the front-end shell script and other scripts and executables

prefix/man/manl or mandir/manl
the man page

prefix/LIBnn/R or libdir/R
all the rest (libraries, on-line help system, ...). Here LIBnn is usually ‘1ib’,
but may be ‘1ib64’ on some 64-bit Linux systems. This is known as the R
home directory.

where prefix is determined during configuration (typically /usr/local) and can be set by
running configure with the option —--prefix, as in
./configure --prefix=/where/you/want/R/to/go

where the value should be an absolute path. This causes make install to install the R script
to /where/you/want/R/to/go/bin, and so on. The prefix of the installation directories can
be seen in the status message that is displayed at the end of configure. The installation
may need to be done by the owner of prefix, often a root account.

There is the option of using make install-strip (see Section 2.7.1 [Debugging Symbols],
page 11).

You can install into another directory tree by using

make prefix=/path/to/here install

https://calibre-ebook.com/download

Chapter 2: Installing R under Unix-alikes 8

at least with GNU make (but not some other Unix makes).

More precise control is available at configure time via options: see configure —-help
for details. (However, most of the ‘Fine tuning of the installation directories’ options are
not used by R.)

Configure options --bindir and --mandir are supported and govern where a copy of
the R script and the man page are installed.

The configure option ——libdir controls where the main R files are installed: the default
is ‘eprefix/LIBnn’, where eprefix is the prefix used for installing architecture-dependent
files, defaults to prefix, and can be set via the configure option —-exec-prefix.

Each of bindir, mandir and 1ibdir can also be specified on the make install command
line (at least for GNU make).

The configure or make variables rdocdir and rsharedir can be used to install
the system-independent doc and share directories to somewhere other than libdir.
The C header files can be installed to the value of rincludedir: note that as the
headers are not installed into a subdirectory you probably want something like
rincludedir=/usr/local/include/R-4.3.1.

If you want the R home to be something other than 1ibdir/R, use rhome: for example

make install rhome=/usr/local/lib64/R-4.3.1
will use a version-specific R home on a non-Debian Linux 64-bit system.

If you have made R as a shared/static library you can install it in your system’s library

directory by

make prefix=/path/to/here install-1ibR
where prefix is optional, and 1ibdir will give more precise control.” However, you should
not install to a directory mentioned in LDPATHS (e.g. /usr/local/1ib64) if you intend to
work with multiple versions of R, since that directory may be given precedence over the
1ib directory of other R installations.

make install-strip

will install stripped executables, and on platforms where this is supported, stripped libraries
in directories 1ib and modules and in the standard packages.
Note that installing R into a directory whose path contains spaces is not supported, and
some aspects (such as installing source packages) will not work.
To install info and PDF versions of the manuals, use one or both of
make install-info
make install-pdf
Once again, it is optional to specify prefix, 1ibdir or rhome (the PDF manuals are installed
under the R home directory).
More precise control is possible. For info, the setting used is that of infodir (default

prefix/info, set by configure option --infodir). The PDF files are installed into the R
doc tree, set by the make variable rdocdir.

A staged installation is possible, that it is installing R into a temporary directory in
order to move the installed tree to its final destination. In this case prefix (and so on)

7 This will be needed if more than one sub-architecture is to be installed.

Chapter 2: Installing R under Unix-alikes 9

should reflect the final destination, and DESTDIR should be used: see https://www.gnu.
org/prep/standards/html_node/DESTDIR.html.

You can optionally install the run-time tests that are part of make check-all by
make install-tests

which populates a tests directory in the installation.

2.5 Uninstallation
You can uninstall R by

make uninstall
optionally specifying prefix etc in the same way as specified for installation.
This will also uninstall any installed manuals. There are specific targets to uninstall info
and PDF manuals in file doc/manual/Makefile.

Target uninstall-tests will uninstall any installed tests, as well as removing the di-
rectory tests containing the test results.

An installed shared/static 1ibR can be uninstalled by
make prefix=/path/to/here uninstall-1ibR

2.6 Sub-architectures

Some platforms can support closely related builds of R which can share all but the executa-
bles and dynamic objects. Examples include builds under Linux for different CPUs or 32-
and 64-bit builds.

R supports the idea of architecture-specific builds, specified by adding ‘r_arch=name’ to
the configure line. Here name can be anything non-empty, and is used to name subdi-
rectories of 1ib, etc, include and the package 1ibs subdirectories. Example names from
other software are the use of sparcv9 on Sparc Solaris and 32 by gcc on ‘x86_64" Linux.

If you have two or more such builds you can install them over each other (and for 32/64-
bit builds on one architecture, one build can be done without ‘r_arch’). The space savings
can be considerable: on ‘x86_64" Linux a basic install (without debugging symbols) took
74Mb, and adding a 32-bit build added 6Mb. If you have installed multiple builds you can
select which build to run by

R --arch=name
and just running ‘R’ will run the last build that was installed.

R CMD INSTALL will detect if more than one build is installed and try to install packages
with the appropriate library objects for each. This will not be done if the package has an
executable configure script or a src/Makefile file. In such cases you can install for extra

builds by
R --arch=name CMD INSTALL --libs-only pkgl pkg2 ...

If you want to mix sub-architectures compiled on different platforms (for example
‘x86_64" Linux and ‘1686’ Linux), it is wise to use explicit names for each, and you may
also need to set 1ibdir to ensure that they install into the same place.

When sub-architectures are used the version of Rscript in e.g. /usr/bin will
be the last installed, but architecture-specific versions will be available in e.g.

https://www.gnu.org/prep/standards/html_node/DESTDIR.html
https://www.gnu.org/prep/standards/html_node/DESTDIR.html

Chapter 2: Installing R under Unix-alikes 10

/usr/1ib64/R/bin/exec${R_ARCH}. Normally all installed architectures will run on the
platform so the architecture of Rscript itself does not matter. The executable Rscript
will run the R script, and at that time the setting of the R_ARCH environment variable
determines the architecture which is run.

When running post-install tests with sub-architectures, use
R --arch=name CMD make check[-devell|all]
to select a sub-architecture to check.

Sub-architectures are also used on Windows, but by selecting executables within the
appropriate bin directory, R_HOME/bin/x64. For backwards compatibility there are exe-
cutables R_HOME/bin/R.exe and R_HOME/bin/Rscript.exe: these will run an executable
from one of the subdirectories, which one being taken first from the R_ARCH environment
variable, then from the --arch command-line option® and finally from the installation de-
fault (which is 32-bit for a combined 32/64 bit R installation). R 4.2.0 follows the scheme,
but supports and includes only 64-bit builds.

2.6.1 Multilib

For some Linux distributions®, there is an alternative mechanism for mixing 32-bit and
64-bit libraries known as multilib. If the Linux distribution supports multilib, then parallel
builds of R may be installed in the sub-directories 1ib (32-bit) and 1ib64 (64-bit). The
build to be run may then be selected using the setarch command. For example, a 32-bit
build may be run by

setarch i686 R

The setarch command is only operational if both 32-bit and 64-bit builds are installed.
If there is only one installation of R, then this will always be run regardless of the architec-
ture specified by the setarch command.

There can be problems with installing packages on the non-native architecture. It is a
good idea to run e.g. setarch 1686 R for sessions in which packages are to be installed,
even if that is the only version of R installed (since this tells the package installation code
the architecture needed).

There is a potential problem with packages using Java, as the post-install for a ‘1686’
RPM on ‘x86_64" Linux reconfigures Java and will find the ‘x86_64" Java. If you know
where a 32-bit Java is installed you may be able to run (as root)

export JAVA_HOME=<path to jre directory of 32-bit Java>
setarch i686 R CMD javareconf

to get a suitable setting.

When this mechanism is used, the version of Rscript in e.g. /usr/bin will be the last
installed, but an architecture-specific version will be available in e.g. /usr/1ib64/R/bin.
Normally all installed architectures will run on the platform so the architecture of Rscript
does not matter.

8 with possible values ‘1386’, ‘x64’, ‘32’ and ‘64’.

9 mainly on RedHat and Fedora, whose layout is described here.

Chapter 2: Installing R under Unix-alikes 11

2.7 Other Options

There are many other installation options, most of which are listed by configure --help.
Almost all of those not listed elsewhere in this manual are either standard autoconf options
not relevant to R or intended for specialist uses by the R developers.

One that may be useful when working on R itself is the option --disable-byte-
compiled-packages, which ensures that the base and recommended packages are not byte-
compiled. (Alternatively the (make or environment) variable R_NO_BASE_COMPILE can be
set to a non-empty value for the duration of the build.)

Option --with-internal-tzcode makes use of R’s own code and copy of the IANA
database for managing timezones. This will be preferred where there are issues with the
system implementation, usually involving times after 2037 or before 1916. An alternative
time-zone directory!? can be used, pointed to by environment variable TZDIR: this should
contain files such as Europe/London. On all tested OSes the system timezone was deduced
correctly, but if necessary it can be set as the value of environment variable TZ.

Options --with-internal-iswxxxxx, --with-internal-towlower and --with-
internal-wcwidth were introduced in R 4.1.0. These control the replacement of the
system wide-character classification (such as iswprint), case-changing (wctrans) and
width (wcwidth and weswidth) functions by ones contained in the R sources. Replacement
of the classification functions has been done for many years on macOS and AIX (and
Windows): option --with-internal-iswxxxxx allows this to be suppressed on those
platforms or used on others. Replacing the case-changing functions was new in R 4.1.0
and the default on macOS (and on Windows since R 4.2.0). Replacement of the width
functions has also been done for many years and remains the default. These options will
only matter to those working with non-ASCII character data, especially in languages
written in a non-Western script!! (which includes ‘symbols’ such as emoji). Note that
one of those iswxxxxx is iswprint which is used to decide whether to output a character
as a glyph or as a ‘\U{xxxxxx} escape—for example, try ‘"\U1£f600"’, an emoji. The
width functions are of most importance in East Asian locale: their values differ between
such locales. (Replacing the system functions provides a degree of platform-independence
(including to OS updates) but replaces it with a dependence on the R version.)

2.7.1 Debugging Symbols

By default, configure adds a flag (usually -g) to the compilation flags for C, Fortran and
CXX sources. This will slow down compilation and increase object sizes of both R and
packages, so it may be a good idea to change those flags (set ‘CFLAGS’ etc in config.site
before configuring, or edit files Makeconf and etc/Makeconf between running configure
and make).

Having debugging symbols available is useful both when running R under a debugger
(e.g., R =d gdb) and when using sanitizers and valgrind, all things intended for experts.

Debugging symbols (and some others) can be ‘stripped’ on installation by using

make install-strip

10 How to prepare such a directory is described in file src/extra/tzone/Notes in the R sources.
11 But on Windows problems have been seen with case-changing functions on accented Latin-1 characters.

Chapter 2: Installing R under Unix-alikes 12

How well this is supported depends on the platform: it works best on those using GNU
binutils. On ‘x86_64" Linux a typical reduction in overall size was from 92MB to 66MB.
On macOS debugging symbols are not by default included in .dylib and .so files, so there
is negligible difference.

2.7.2 OpenMP Support

By default configure searches for suitable flags'®> for OpenMP support for the C, C++
(default standard) and Fortran compilers.

Only the C result is currently used for R itself, and only if MAIN_LD/DYLIB_LD were not
specified. This can be overridden by specifying

R_OPENMP_CFLAGS

Use for packages has similar restrictions (involving SHLIB_LD and similar: note that
as Fortran code is by default linked by the C (or C++) compiler, both need to support
OpenMP) and can be overridden by specifying some of

SHLIB_OPENMP_CFLAGS
SHLIB_OPENMP_CXXFLAGS
SHLIB_OPENMP_FFLAGS

Setting these to an empty value will disable OpenMP for that compiler (and configuring with
--disable-openmp will disable all detection'® of OpenMP). The configure detection test
is to compile and link a standalone OpenMP program, which is not the same as compiling
a shared object and loading it into the C program of R’s executable. Note that overridden
values are not tested.

2.7.3 C++ Support

C++ is not used by R itself, but support is provided for installing packages with C++ code
via make macros defined in file etc/Makeconf (and with explanations in file config.site):

CXX
CXXFLAGS
CXXPICFLAGS
CXXSTD

CXX11
CXX11STD
CXX11FLAGS
CXX11PICFLAGS

CXX14
CXX14STD
CXX14FLAGS
CXX14PICFLAGS

12 for example, -fopenmp, -xopenmp or -qopenmp. This includes for clang and the Intel and Oracle
compilers.

13 This does not necessarily disable use of OpenMP — the configure code allows for platforms where
OpenMP is used without a flag. For the flang compiler in late 2017, the Fortran runtime always used
OpenMP.

Chapter 2: Installing R under Unix-alikes 13

CXX17
CXX17STD
CXX17FLAGS
CXX17PICFLAGS

CXX20
CXX20STD
CXX20FLAGS
CXX20PICFLAGS

CXX23
CXX23STD
CXX23FLAGS
CXX23PICFLAGS

The macros CXX etc are those used by default for C++ code. configure will attempt to set
the rest suitably, choosing for CXXSTD and CXX11STD a suitable flag such as -std=c++11 for
C++11 support (which is required if C++ is to be supported at all). inferred values can be
overridden in file config.site or on the configure command line: user-supplied values
will be tested by compiling some C++11/14/17/20/23 code.

It may be that there is no suitable flag for C++14/17/20/23 support with the default
compiler, in which case a different compiler could be selected for CXX14/CXX17/CXX20/CXX23
with its corresponding flags.

The -std flag is supported by the GCC, clang++ and Intel compilers. Currently accepted
values are (plus some synonyms)

gt++: c++11 gnu+1l c++14 gnu++14 c++17 gnu++17 c++2a gnu++2a (from 8)
c++20 gnu++20 (from 10) c++23 gnu++23 c++2b gnu++2b (from 11)

Intel: c++11 c++14 (from 16.0) c++17 (from 17.0) c++20 (from 2021.1)
c++23 (from 2022.2)

(Those for LLVM clang++ are documented at https://clang.llvm.org/cxx_status.
html, and follow g++: -std=c++20 is supported from Clang 10, -std=c++2b from Clang 13.
Apple Clang supports -std=c++2b from 13.1.6.)

‘Standards’ for g++ starting with ‘gnu’ enable ‘GNU extensions’: what those are is hard
to track down.

For the use of C++11 and later in R packages see the ‘Writing R Extensions’ manual.
Prior to R 3.6.0 the default C++ standard was that of the compiler used: currently it is
C++17 (if available): this can be overridden by setting ‘CXXSTD’ when R is configured.

https://en.cppreference.com/w/cpp/compiler_support indicates which versions of
common compilers support (parts of) which C++ standards. GCC 5 was the minimum ver-
sion with sufficient C++14 support. GCC introduced C++17 support gradually, but version
7 should suffice.

2.7.4 C standards

Compiling R requires C99 or later: C11 and C17 are minor updates, but the substantial
update planned for ‘C23’ (now expected in 2024) will also be supported.

https://clang.llvm.org/cxx_status.html
https://clang.llvm.org/cxx_status.html
https://en.cppreference.com/w/cpp/compiler_support

Chapter 2: Installing R under Unix-alikes 14

As from R 4.3.0 there is support for packages to indicate their preferred C version.
Macros CC17, C17FLAGS, CC23 and C23FLAGS can be set in config.site (there are examples
there). Those for C17 should support C17 or earlier and not allow C23 additions so for
example bool, true and false can be used as identifiers. Those for C23 should support
new types such as bool.

Some compilers warn enthusiastically about prototypes. For most, omitting -Wstrict-
prototypes in C17FLAGS suffices. However, versions 15 and later of LLVM clang and 14.0.3
and later of Apple clang warn by default in all modes if -Wall or -pedantic is used, and
may need -Wno-strict-prototypes.

2.7.5 Link-Time Optimization

There is support for using link-time optimization (LTO) if the toolchain supports it: config-
ure with flag ——enable-1to. When LTO is enabled it is used for compiled code in add-on
packages unless the flag —~—enable-1to=R is used'?.

The main benefit seen to date from LTO has been detecting long-standing bugs in the
ways packages pass arguments to compiled code and between compilation units. Benchmark-
ing in 2020 with gcc/gfortran 10 showed gains of a few percent in increased performance
and reduction in installed size for builds without debug symbols, but large size reductions
for some packages'® with debug symbols. (Performance and size gains are said to be most
often seen in complex C++ builds.)

Whether toolchains support LTO is often unclear: all of the C compiler, the Fortran
compiler'® and linker have to support it, and support it by the same mechanism (so mixing
compiler families may not work and a non-default linker may be needed). It has been
supported by the GCC and LLVM projects for some years with diverging implementations.

LTO support was added in 2011 for GCC 4.5 on Linux but was little used before 2019:
compiler support has steadily improved over those years and --enable-1to=R is nowadays
used for some routine CRAN checking.

Unfortunately ——enable-1to may be accepted but silently do nothing useful if some of
the toolchain does not support LTO: this is less common than it once was.

Various macros can be set in file config.site to customize how LTO is used. If the
Fortran compiler is not of the same family as the C/C++ compilers, set macro ‘LTO_FC’
(probably to empty). Macro ‘LTO_LD’ can be used to select an alternative linker should
that be needed.

2.7.5.1 LTO with GCC

This has been tested on Linux with gcc/gfortran 8 and later: that needed setting (e.g. in
config.site)

AR=gcc-ar

RANLIB=gcc-ranlib

14 Then recommended packages installed as part of the R installation do use LT O, but not packages installed
later.

15 A complete CRAN installation reduced from 50 to 35GB.
16 although there is the possibility to exclude Fortran but that misses some of the benefits.

Chapter 2: Installing R under Unix-alikes 15

For non-system compilers or if those wrappers have not been installed one may need some-
thing like

AR="ar --plugin=/path/to/liblto_plugin.so"

RANLIB="ranlib --plugin=/path/to/liblto_plugin.so"

amd NM may be needed to be set analogously. (If using an LTO-enabled build to check
packages, set environment variable UserNM'” to ‘gcc-nm’.)

With GCC 5 and later it is possible to parallelize parts of the LTO linking process: set
the make macro ‘LTO’ to something like ‘LTO=-f1to=8" (to use 8 threads), for example in
file config.site.

Under some circumstances and for a few packages, the PIC flags have needed overriding
on Linux with GCC 9 and later: e.g use in config.site:

CPICFLAGS=-fPIC
CXXPICFLAGS=-fPIC
CXX11PICFLAGS=-fPIC
CXX14PICFLAGS=-fPIC
CXX17PICFLAGS=-fPIC
CXX20PICFLAGS=-fPIC
FPICFLAGS=-fPIC

We suggest only using these if the problem is encountered (it was not seen on CRAN with
GCC 10 at the time of writing).

Note that R may need to be re-compiled after even a minor update to the compiler (e.g.
from 10.1 to 10.2) but this may not be clear from confused compiler messages.

2.7.5.2 LTO with LLVM

LLVM supports another type of LTO called ‘Thin LTO’ as well as a similar implementa-
tion to GCC, sometimes called ‘Full LTO’. (See https://clang.1lvm.org/docs/ThinLTO.
html.) Currently the only LLVM compiler relevant to R is clang for which this can be se-
lected by setting macro ‘LTO0=-flto=thin’. LLVM has

AR=11lvm-ar

RANLIB=11lvm-ranlib
(but macOS does not, and these are not needed there). Where the linker supports a parallel
backend for Thin LTO this can be specified via the macro ‘LTO_LD’: see the URL above for
per-linker settings and further linking optimizations.)

For example, on macOS one might use

LTO=-flto=thin
LTO_FC=
LTO_LD=-Wl,-mllvm,-threads=4

to use Thin LTO with 4 threads for C/C++ code, but skip LTO for Fortran code compiled
with gfortran.

It is said to be particularly beneficial to use -03 for clang in conjunction with LTO.

T hot NM as we found make overriding that.

https://clang.llvm.org/docs/ThinLTO.html
https://clang.llvm.org/docs/ThinLTO.html

Chapter 2: Installing R under Unix-alikes 16

2.7.5.3 LTO for package checking

LTO effectively compiles all the source code in a package as a single compilation unit and
so allows the compiler (with sufficient diagnostic flags such as -Wall) to check consistency
between what are normally separate compilation units.

With gcc/gfortran 9.x and later'® LTO will flag inconsistencies in calls to Fortran
subroutines/functions, both between Fortran source files and between Fortran and C/C++.
gfortran 8.4, 9.2 and later can help understanding these by extracting C prototypes from
Fortran source files with option -fc-prototypes-external, e.g. that (at the time of writ-
ing) Fortran LOGICAL corresponds to int_least32_t * in C.

On some systems it is possible to build the BLAS, LINPACK and LAPACK support
as static libraries containing intermediate-level code that LTO will compile for all objects
linked against these libraries, by configuring R with --enable-1to=check. This checks
the consistency of calls to BLAS/LINPACK/LAPACK in any packages installed using the
build. NB: as its name suggests, this option is intended only for checking installation of R
and packages: it includes these library routines (those called directly and all they depend
on) in each package. This is unlikely to work in conjunction with non-default options for
BLAS and LAPACK, and ‘linking’ against these libraries may be very slow.

2.8 Testing an Installation

Full post-installation testing is possible only if the test files have been installed with
make install-tests
which populates a tests directory in the installation.

If this has been done, two testing routes are available. The first is to move to the home
directory of the R installation (as given by R RHOME or from R as R.home ()) and run

cd tests

followed by one of
../bin/R CMD make check
../bin/R CMD make check-devel
../bin/R CMD make check-all

and other useful targets are test-BasePackages and test-Recommended to run tests of the
standard and recommended packages (if installed) respectively.

This re-runs all the tests relevant to the installed R (including for example the code
in the package vignettes), but not for example the ones checking the example code in the
manuals nor making the standalone Rmath library. This can occasionally be useful when
the operating environment has been changed, for example by OS updates or by substituting
the BLAS (see Section A.3.1.4 [Shared BLAS], page 52).

Parallel checking of packages may be possible: set the environment variable TEST_MC_
CORES to the maximum number of processes to be run in parallel. This affects both checking
the package examples (part of make check) and package sources (part of make check-devel
and make check-recommended). It does require a make command which supports the make
-j n option: most do.

18 probably also 8.4 and later.

Chapter 2: Installing R under Unix-alikes 17

Alternatively, the installed R can be run, preferably with —-vanilla. Then

pdf ("tests.pdf") ## optional, but prevents flashing graphics windows
Sys.setenv(LC_COLLATE = "C", LC_TIME = "C", LANGUAGE = "en")
tools::testInstalledBasic("both")

tools: :testInstalledPackages(scope = "base")

tools: :testInstalledPackages(scope = "recommended")

runs the basic tests and then all the tests on the standard and recommended packages.
These tests can be run from anywhere: the basic tests write their results in the tests
folder of the R home directory and run fewer tests than the first approach: in particular
they do not test things which need Internet access—that can be tested by

tools::testInstalledBasic("internet")

It is possible to test the installed packages (but not their package-specific tests) by
testInstalledPackages even if make install-tests was not run. The outputs are written
under the current directory unless a different one is specified by outDir.

Note that the results may depend on the language set for times and messages: for
maximal similarity to reference results you may want to try setting (before starting the R
session)

LANGUAGE=en
and use a UTF-8 or Latin-1 locale.

18

3 Installing R under Windows

[The rest of this paragraph is only relevant after release.| The bin/windows directory of a
CRAN site contains binaries for a base distribution and a large number of add-on packages
from CRAN to run on 64-bit Windows.

R is best tested on current versions of Windows 10 and Windows Server 2022 with
UTF-8 as the charset encoding. It works also on Windows 11. It runs on older versions of
Windows, but normally with other charset encoding and may require manual installation
of the Universal C Runtime (UCRT).

Your file system must allow long file names (as is likely except perhaps for some network-
mounted systems). If it does not also support conversion to short name equivalents (a.k.a.
DOS 8.3 names), then R must be installed in a path that does not contain spaces.

Installation is via the installer R-4.3.1-win.exe. Just double-click on the icon and
follow the instructions. You can uninstall R from the Control Panel.

You will be asked to choose a language for installation: that choice applies to both
installation and un-installation but not to running R itself.

See the R Windows FAQ (https://CRAN.R-project.org/bin/windows/base/rw-FAQ.
html) for more details on the binary installer and for information on use on older Windows
systems.

3.1 Building from source

It is possible to use other 64-bit toolchains (including ‘MSYS2’) with UCRT support to
build R, but this manual only documents that used for binary distributions of R 4.2.x and
later. When using other toolchains, makefiles of R and packages may need to be adapted.

3.1.1 The Windows toolset

The binary distribution of R is currently built with tools from Rtools43 for Windows
(https://CRAN.R-project.org/bin/windows/Rtools/rtools43/rtools.html).

See Building R and packages (https://CRAN.R-project.org/bin/windows/base/
howto-R-devel.html) for more details on how to use it.

The toolset includes compilers (GCC version 12.2.0 with selected additional patches) and
runtime libraries from the ‘MinGW-w64’ project (http://mingw-w64.org/) and a number
of pre-compiled static libraries and headers used by R and R packages, compiled by '"MXE’
(https://mxe.cc/) (M cross environment, with updates maintained by Tomas Kalibera).
The toolset also includes build tools from the the 'MSYS2’ project (https://www.msys2.
org/). Additional build tools packaged by '"MSYS2’ may be installed via a package manager
(‘pacman’).

The toolsets used for 64-bit Windows from 2008 to 2022 were based on MinGW-w64.
The assistance of Yu Gong at a crucial step in porting R to MinGW-w64 is gratefully
acknowledged, as well as help from Kai Tietz, the lead developer of the MinGW-w64 project
and from Martin Storsjo.

3.1.2 BIEX

Both building R and checking packages need a distribution of IXTEX installed, with the
directory containing pdflatex on the path.

https://CRAN.R-project.org/bin/windows/base/rw-FAQ.html
https://CRAN.R-project.org/bin/windows/base/rw-FAQ.html
https://CRAN.R-project.org/bin/windows/Rtools/rtools43/rtools.html
https://CRAN.R-project.org/bin/windows/Rtools/rtools43/rtools.html
https://CRAN.R-project.org/bin/windows/base/howto-R-devel.html
https://CRAN.R-project.org/bin/windows/base/howto-R-devel.html
http://mingw-w64.org/
https://mxe.cc/
https://mxe.cc/
https://www.msys2.org/
https://www.msys2.org/

Chapter 3: Installing R under Windows 19

The ‘MiKTeX’ (https://miktex.org/) distribution of IXTEX is that used on CRAN. This
can be set up to install extra packages ‘on the fly’ (without asking), which is the simplest
way to use it. The ‘basic’ version of ‘MiKTeX’ will need to add some packages.! In any case
ensure that the inconsolata package is installed—you can check with the ‘MiKTeX’ Package
Manager.

It is also possible to use the TeX Live distribution from https://www.tug.org/texlive/
. (The CRAN package tinytex (https://CRAN.R-project.org/package=tinytex) can in-
stall and manage a subset of TeX Live.)

3.2 Checking the build

You can test a build by running
make check
The recommended packages can be checked by
make check-recommended
Other levels of checking are
make check-devel
for a more thorough check of the R functionality, and
make check-all
for both check-devel and check-recommended.

If a test fails, there will almost always be a .Rout.fail file in the directory being checked
(often tests/Examples or tests): examine the file to help pinpoint the problem.

Parallel checking of package sources (part of make check-devel and make
check-recommended) is possible: see the environment variable TEST_MC_CORES to the
maximum number of processes to be run in parallel.

3.3 Testing an Installation

The Windows installer contains a set of test files used when building R.

The toolset is not needed to run these tests, but more comprehensive analysis of errors
will be given if diff is in the path.

Launch either Rgui or Rterm (preferred), preferably with -—-vanilla. Then run
Sys.setenv(LC_COLLATE = "C", LC_TIME="C", LANGUAGE = "en"
tools: :testInstalledBasic("both")

tools: :testInstalledPackages(scope = "base")
tools: :testInstalledPackages(scope = "recommended")

runs the basic tests and then all the tests on the standard and recommended packages.
These tests can be run from anywhere: testInstalledBasic writes results in the tests
folder of the R home directory (as given by R.home ()) and testInstalledPackages under
the current directory unless a different one is specified by outDir.

For the tests folder to be writeable, one normally needs to install R to a directory
other than the default C:\Program Files. The installer also allows to install R without

1 There are reports of segfaults when ‘MiKTeX’ installs additional packages when making NEWS.pdf: re-
running make seems to solve this.

https://miktex.org/
https://www.tug.org/texlive/
https://www.tug.org/texlive/
https://CRAN.R-project.org/package=tinytex

Chapter 3: Installing R under Windows 20

Administrator privileges, see the R Windows FAQ (https://CRAN.R-project.org/bin/
windows/base/rw-FAQ.html) for more details.

The results of example (md5sums) when testing tools may differ from the reference output
as some files are installed with Windows’ CRLF line endings. Also, expect differences in
reg-plot-latinl.pdf.

One can also run tests from the toolset shell (e.g. bash) similarly to a Unix-like instal-
lation. Move to the home directory of the R installation (as given by R RHOME or from R as
R.home()) and run

cd tests

followed by one of
../bin/R CMD make check
../bin/R CMD make check-devel
../bin/R CMD make check-all

Remember that IATEX needs to be on the path.

https://CRAN.R-project.org/bin/windows/base/rw-FAQ.html
https://CRAN.R-project.org/bin/windows/base/rw-FAQ.html

21

4 Installing R under macOS

[The rest of this paragraph is only relevant after release.] The front page of a CRAN site has
a link ‘Download R for (Mac) OS X’ which takes you to a new page. Two files are offered
for download, R-4.3.1-arm64.pkg and R-4.3.1.pkg. Both are for macOS 11 or later (Big
Sur, Monterey, Ventura, . . .).

The first runs is for ‘Apple Silicon’ (aka ‘M1’ or ‘M2’) Macs, the second for older Macs
with an ‘x86_64’ (Intel) CPU.

Package R-4.3.1.pkg also be installed on ‘Apple Silicon’ CPUs using ‘Rosetta’ emula-
tion', but the native build is preferred. It is a little faster (and for some tasks, considerably
so) but may give different numerical results from the more common ‘x86_64" platforms
(on Windows, Linux, ... as well as macOS) as ARM hardware lacks extended-precision
floating-point operations.

It is important that if you use a binary installer package that your OS is fully updated:
look at ‘Software Update’ in ’System Preferences’ to be sure.

To install, just double-click on the icon of the file you downloaded. At the ‘Installation
Type’ stage, note the option to ‘Customize’. This currently shows four components: ev-
eryone will need the ‘R Framework’ component: the remaining components are optional.
(The ‘Tcl/Tk’ component is needed to use package tecltk. The ‘Texinfo’ component is only
needed by those installing source packages or R from its sources.)

Note for Ventura users: installation from the Downloads folder may not be allowed or
may require additional authorization, so we suggest you download somewhere else such as
your desktop or home folder.

These are Apple Installer packages. If you encounter any problem during the installation,
please check the Installer log by clicking on the “Window” menu and item “Installer Log”.
The full output (select “Show All Log”) is useful for tracking down problems. Note that
the installer is clever enough to try to upgrade the last-installed version of the application
where you installed it (which may not be where you want this time . . .).

Various parts of the build require XQuartz to be installed: see https://www.xquartz.
org/releases/.? These include the tcltk package and the X11 graphics device: attempt-
ing to use these without XQuartz will remind you. This is also needed for some builds of
the cairographics-based devices (which are not often used on macOS) such as png(type =
"cairo") and svg() and some third-party packages (e.g. rgl (https://CRAN.R-project.
org/package=rgl)).

If you update your macOS version, you should re-install R (and perhaps XQuartz): the
installer may tailor the installation to the current version of the OS.

Installers for R-patched and R-devel are usually available from https://mac.
R-project.org. (Some of these packages may be unsigned/not notarized: to install those
Control /right /two-finger click, select ‘Open With’ and ‘Installer’.)

For building R from source, see Section C.3 [macOS], page 67.

1 You may be asked to install Rosetta at first use —https://support.apple.com/en-us/HT211861 — which
may need administrator privileges.

2 At the time of writing, version 2.8.5 or later.

https://www.xquartz.org/releases/
https://www.xquartz.org/releases/
https://CRAN.R-project.org/package=rgl
https://CRAN.R-project.org/package=rgl
https://mac.R-project.org
https://mac.R-project.org
https://support.apple.com/en-us/HT211861

Chapter 4: Installing R under macOS 22

4.1 Running R under macOS

There are two ways to run R on macOS from a CRAN binary distribution.

There is a GUI console normally installed with the R icon in /Applications which you
can run by double-clicking (e.g. from Launchpad or Finder). (If you cannot find it there it
was possibly installed elsewhere so try searching for it in Spotlight.) This is usually referred
to as R.APP to distinguish it from command-line R: its user manual is currently part of the
macOS FAQ at https://cran.r-project.org/bin/macosx/RMac0SX-FAQ.html and can
be viewed from R.APP’s ‘Help’ menu.

You can run command-line R and Rscript from a Terminal® so these can be typed as
commands as on any other Unix-alike: see the next chapter of this manual. There are
some small differences which may surprise users of R on other platforms, notably the de-
fault location of the personal library directory (under ~/Library/R, e.g. ~/Library/R/x86_
64/4.2/1library), and that warnings, messages and other output to stderr are highlighted
in bold.

Those using the zsh shell (the default for new user accounts as from Catalina) might
find the command R being masked by the zsh builtin r (which recalls commands). One can
use a full path to R in an alias, or add disable r to ~/.zshrc.

If you have installed both installer packages on an arm64 Mac, the last installed will be
used.

It has been reported that running R.APP may fail if no preferences are stored, so if it
fails when launched for the very first time, try it again (the first attempt will store some
preferences).

Users of R.APP need to be aware of the ‘App Nap’ feature (https://developer.apple.
com/library/archive/releasenotes/Mac0SX/WhatsNewInOSX/Articles/Mac0SX10_9.
html) which can cause R tasks to appear to run very slowly when not producing output in
the console. Here are ways to avoid it:

e Ensure that the console is completely visible (or at least the activity indicator at the
top right corner is visible).
e In a Terminal, run
defaults write org.R-project.R NSAppSleepDisabled -bool YES

(see https://developer.apple.com/library/archive/releasenotes/Mac0SX/
WhatsNewIn0SX/Articles/Mac0SX10_9.html).

Using the X11 graphics device or the X11-based versions of View() and edit () for data
frames and matrices (the latter are the default for command-line R but not R.APP) requires
XQuartz (https://www.xquartz.org/) to be installed.

Under some rather nebulous circumstances messages have been seen from fontconfig
about missing/unreadable configuration files when using cairo-based devices, especially
X11(type = "cairo"). With XQuartz installed there are two fontconfig areas from dif-
ferent versions and it can help to set

setenv FONTCONFIG_PATH /opt/X11/1ib/X11/fontconfig

Another symptom has been that italic/oblique fonts are replaced by upright ones.

3 The installer puts links to R and Rscript in /usr/local/bin. If these are missing or that is not on
your path, you can run directly the copies in /Library/Frameworks/R.framework/Resources/bin or
link those yourself to somewhere on your path.

https://cran.r-project.org/bin/macosx/RMacOSX-FAQ.html
https://developer.apple.com/library/archive/releasenotes/MacOSX/WhatsNewInOSX/Articles/MacOSX10_9.html
https://developer.apple.com/library/archive/releasenotes/MacOSX/WhatsNewInOSX/Articles/MacOSX10_9.html
https://developer.apple.com/library/archive/releasenotes/MacOSX/WhatsNewInOSX/Articles/MacOSX10_9.html
https://developer.apple.com/library/archive/releasenotes/MacOSX/WhatsNewInOSX/Articles/MacOSX10_9.html
https://developer.apple.com/library/archive/releasenotes/MacOSX/WhatsNewInOSX/Articles/MacOSX10_9.html
https://www.xquartz.org/

Chapter 4: Installing R under macOS 23

4.2 Uninstalling under macOS

R for macOS consists of two parts: the GUI (R.APP) and the R framework. Un-installation
is as simple as removing those folders (e.g. by dragging them onto the Bin aka Trash). The
typical installation will install the GUI into the /Applications/R.app folder and the R
framework into the /Library/Frameworks/R.framework folder. The links toR and Rscript
in /usr/local/bin should also be removed.

If you want to get rid of R more completely using a Terminal, simply run:

sudo rm -Rf /Library/Frameworks/R.framework /Applications/R.app \
/usr/local/bin/R /usr/local/bin/Rscript

The installation consists of up to four Apple packages:* for the Intel
build, org.R-project.x86_64.R.fw.pkg, org.R-project.x86_64.R.GUI.pkg,
org.r-project.x86_64.tcltk and org.r-project.x86_64.texinfo. You can use sudo
pkgutil --forget if you want the Apple Installer to forget about the package without
deleting its files (useful for the R framework when installing multiple R versions in
parallel), or after you have deleted the files. NB: the package names are case-sensitive and
the R domain is named inconsistently.

Uninstalling the Tecl/Tk and Texinfo components (which are installed under

/opt/R/x86_64 on a ‘x86_64" build and /opt/R/arm64 for an ‘arm64’ one) is not as
simple. You can list the files they installed in a Terminal by e.g.

pkgutil --files org.r-project.x86_64.tcltk
pkgutil --files org.r-project.x86_64.texinfo
or the “Apple Silicon’ build, replace x86_ y armé64. ese are paths relative to /, the
For the ‘Apple Silicon’ build 1 86_64 b 64.) Th ths relative to /, th
root of the file system.

If you are not compiling R nor installing packages from source you could remove all of
/opt/R/x86_64 or /opt/R/arm64.

4.3 Multiple versions

The installer will remove any previous version® of the R framework which it finds installed.
This can be avoided by using pkgutil --forget (see the previous section). However, note
that different versions are installed under /Library/Frameworks/R.framework/Versions
as 4.4 (or 4.4-arm64), 4.3 and so on, so it is not possible to have different ‘4.x.y’ versions
installed for the same ‘x’ and CPU type.

R.ApP will always run the ‘current’ version, that is the last installed version.

4 At the time of writing: use pkgutil --pkgs | grep -i org.r-project to check.
5 More precisely, of the Apple package of the same name: this means that Intel and ARM versions can be
installed together.

24

5 Running R

How to start R and what command-line options are available is discussed in Section “In-
voking R” in An Introduction to R.

You should ensure that the shell has set adequate resource limits: R expects a stack
size of at least 8MB and to be able to open at least 256 file descriptors. (Any modern OS
should have default limits at least as large as these, but apparently NetBSD may not. Use
the shell command ulimit (sh/bash) or 1imit (csh/tcsh) to check.) For some compilers!
and packages a larger stack size has been needed: 20-25MB has sufficed to date.

R makes use of a number of environment variables, the default values of many of which
are set in file R_HOME/etc/Renviron (there are none set by default on Windows and hence
no such file). These are set at configure time, and you would not normally want to
change them — a possible exception is R_PAPERSIZE (see Section B.3.1 [Setting paper size],
page 58). The paper size will be deduced from the ‘LC_PAPER’ locale category if it exists
and R_PAPERSIZE is unset, and this will normally produce the right choice from ‘a4’ and
‘letter’ on modern Unix-alikes (but can always be overridden by setting R_PAPERSIZE).

Various environment variables can be set to determine where R creates its per-session
temporary directory. The environment variables TMPDIR, TMP and TEMP are searched in turn
and the first one which is set and points to a writable area is used. If none do, the final
default is /tmp on Unix-alikes and the value of R_USER on Windows. The path should be an
absolute path not containing spaces? (and it is best to avoid non-alphanumeric characters
such as + or quotes).

Some Unix-alike systems are set up to remove files and directories periodically from
/tmp, for example by a cron job running tmpwatch. Set TMPDIR to another directory before
starting long-running jobs on such a system.

Note that TMPDIR will be used to execute configure scripts when installing packages,
so if /tmp has been mounted as ‘noexec’, TMPDIR needs to be set to a directory from which
execution is allowed.

! Including GCC 9 on Linux.
2 On Windows a path containing spaces will be replaced by the ‘short path’ version if that does not contain
spaces.

25

6 Add-on packages

It is helpful to use the correct terminology. A package is loaded from a library by the
function library (). Thus a library is a directory containing installed packages; the main
library is R_HOME/library, but others can be used, for example by setting the environment
variable R_LIBS or using the R function .libPaths(). To avoid any confusion you will
often see a library directory referred to as a ‘library tree’.

6.1 Default packages

The set of packages loaded on startup is by default

> getOption("defaultPackages")
[1] "datasets" “"utils" "grDevices" "graphics" '"stats" "methods"

(plus, of course, base) and this can be changed by setting the option in startup code (e.g.
in "/.Rprofile). It is initially set to the value of the environment variable R_DEFAULT_
PACKAGES if set (as a comma-separated list). Setting R_DEFAULT_PACKAGES=NULL ensures
that only package base is loaded.

Changing the set of default packages is normally used to reduce the set for speed when
scripting: in particular not using methods will reduce the start-up time by a factor of up
to two. But it can also be used to customize R, e.g. for class use. Rscript also checks
the environment variable R_SCRIPT_DEFAULT_PACKAGES; if set, this takes precedence over
R_DEFAULT_PACKAGES.

6.2 Managing libraries

R packages are installed into libraries, which are directories in the file system containing a
subdirectory for each package installed there.

R comes with a single library, R_HOME/library which is the value of the R object
‘.Library’ containing the standard and recommended' packages. Both sites and users
can create others and make use of them (or not) in an R session. At the lowest level
‘.1libPaths()’ can be used to add paths to the collection of libraries or to report the cur-
rent collection.

R will automatically make use of a site-specific library R_HOME/site-library if this
exists (it does not in a vanilla R installation). This location can be overridden by setting?
‘.Library.site’ in R_HOME/etc/Rprofile.site, or (not recommended) by setting the
environment variable R_LIBS_SITE.

Users can have one or more libraries, normally specified by the environment variable R_
LIBS_USER. This has a default value (to see it, use ‘Sys.getenv("R_LIBS_USER")’ within
an R session), but that is only used if the corresponding directory actually exists (which by
default it will not).

Both R_LIBS_USER and R_LIBS_SITE can specify multiple library paths, separated by
colons (semicolons on Windows).

! unless they were excluded in the build.

2 its binding is locked once the startup files have been read, so users cannot easily change it. See 7.1ibPaths

for how to make use of the new value.

Chapter 6: Add-on packages 26

6.3 Installing packages

Packages may be distributed in source form or compiled binary form. Installing source
packages which contain C/C++/Fortran code requires that compilers and related tools be
installed. Binary packages are platform-specific and generally need no special tools to
install, but see the documentation for your platform for details.

Note that you may need to specify implicitly or explicitly the library to which the package
is to be installed. This is only an issue if you have more than one library, of course.

Ensure that the environment variable TMPDIR is either unset (and /tmp exists and can
be written in and executed from) or is the absolute path to a valid temporary directory,
not containing spaces.

For most users it suffices to call ‘install.packages (pkgname)’ or its GUI equivalent
if the intention is to install a CRAN package and internet access is available.> On most
systems ‘install.packages ()’ will allow packages to be selected from a list box (typically
with thousands of items).

To install packages from source on a Unix-alike use in a terminal
R CMD INSTALL -1 /path/to/library pkgl pkg2 ...

The part ‘-1 /path/to/library’ can be omitted, in which case the first library of a normal
R session is used (that shown by .1libPaths() [1]).

There are a number of options available: use R CMD INSTALL --help to see the current
list.

Alternatively, packages can be downloaded and installed from within R. First choose
your nearest CRAN mirror using chooseCRANmirror (). Then download and install packages
pkgl and pkg2 by

> install.packages(c("pkgl", "pkg2"))
The essential dependencies of the specified packages will also be fetched. Unless the library
is specified (argument 1ib) the first library in the library search path is used: if this is not
writable, R will ask the user (in an interactive session) if the default personal library should
be created, and if allowed to will install the packages there.

If you want to fetch a package and all those it depends on (in any way) that are not
already installed, use e.g.
> install.packages("Rcmdr", dependencies = TRUE)
install.packages can install a source package from a local .tar.gz file (or a URL to

such a file) by setting argument repos to NULL: this will be selected automatically if the
name given is a single .tar.gz file.

install.packages can look in several repositories, specified as a character vector by
the argument repos: these can include a CRAN mirror, Bioconductor, R-forge, rforge.net,
local archives, local files, ...). Function setRepositories() can select amongst those
repositories that the R installation is aware of.

Something which sometimes puzzles users is that install.packages() may report that
a package which they believe should be available is not found. Some possible reasons:

e The package, such as grid or tcltk, is part of R itself and not otherwise available.

31Ifa proxy needs to be set, see 7download.file.

Chapter 6: Add-on packages 27

e The package is not in the available repositories, so check which have been selected by
getOption("repos")

e The package is available, but not for the current version of R or for the type of OS

(Unix/Windows). To retrieve the information on available versions of package pkg, use

av <- available.packages(filters=1list())

avlav[, "Package"] == pkg,]
in your R session, and look at the ‘Depends’ and ‘OS_type’ fields (there may be more
than one matching entry). If the package depends on a version of R later than the
one in use, it is possible that an earlier version is available which will work with your
version of R: for CRAN look for ‘Old sources’ on the package’s CRAN landing page and
manually retrieve an appropriate version (of comparable age to your version of R).

Naive users sometimes forget that as well as installing a package, they have to use
library to make its functionality available.

6.3.1 Windows

What install.packages does by default is different on Unix-alikes (except macOS) and
Windows. On Unix-alikes it consults the list of available source packages on CRAN (or
other repository/ies), downloads the latest version of the package sources, and installs them
(via R CMD INSTALL). On Windows it looks (by default) first at the list of binary versions
of packages available for your version of R and downloads the latest versions (if any). If no
binary version is available or the source version is newer, it will install the source versions of
packages without compiled C/C++/Fortran code, and offer to do so for those with, if make is
available (and this can be tuned by option "install.packages.compile.from.source").

On Windows install.packages can also install a binary package from a local zip file
(or the URL of such a file) by setting argument repos to NULL. Rgui.exe has a menu
Packages with a GUI interface to install.packages, update.packages and library.

Windows binary packages for R are distributed as a single binary containing either or
both architectures (32- and 64-bit). From R 4.2.0, they always contain only the 64-bit
architecture.

R CMD INSTALL works in Windows to install source packages. No addi-
tional tools are needed if the package does not contain compiled code, and
install.packages (type="source") will work for such packages. Those with compiled
code need the tools (see Section 3.1.1 [The Windows toolset|, page 18). The tools are
found automatically by R when installed by the toolset installer. See Building R and
packages (https://cran.r-project.org/bin/windows/base/howto-R-devel.html) for
more details.

Occasional permission problems after unpacking source packages have been seen on some
systems: these have been circumvented by setting the environment variable R_INSTALL_TAR
to ‘tar.exe’.

If you have only a source package that is known to work with current R and just want a
binary Windows build of it, you could make use of the building service offered at https://
win-builder.r-project.org/.

For almost all packages R CMD INSTALL will attempt to install both 32- and 64-bit builds
of a package if run from a 32/64-bit install of R (only 64-bit builds and installs are sup-
ported since R 4.2.0). It will report success if the installation of the architecture of the

https://cran.r-project.org/bin/windows/base/howto-R-devel.html
https://cran.r-project.org/bin/windows/base/howto-R-devel.html
https://win-builder.r-project.org/
https://win-builder.r-project.org/

Chapter 6: Add-on packages 28

running R succeeded, whether or not the other architecture was successfully installed. The
exceptions are packages with a non-empty configure.win script or which make use of
src/Makefile.win. If configure.win does something appropriate to both architectures
use! option --force-biarch: otherwise R CMD INSTALL --merge-multiarch can be applied
to a source tarball to merge separate 32- and 64-bit installs. (This can only be applied to
a tarball, and will only succeed if both installs succeed.)

If you have a package without compiled code and no Windows-specific help, you can zip
up an installation on another OS and install from that zip file on Windows. However, such
a package can be installed from the sources on Windows without any additional tools.

6.3.2 macOS

On macOS install.packages works as it does on other Unix-alike systems, but there is an
additional type mac.binary (available for the CRAN distribution but not when compiling
R from source) which can be passed to install.packages in order to download and install
binary packages from a suitable repository. These binary package files for macOS have the
extension ‘.tgz’. The R.APP GUI provides menus for installation of either binary or source
packages, from CRAN, other repositories or local files.

On R builds using binary packages, the default is type both: this looks first at the list of
binary packages available for your version of R and installs the latest versions (if any). If no
binary version is available or the source version is newer, it will install the source versions
of packages without compiled C/C++/Fortran code and offer to do so for those with, if make
is available.

Note that most binary packages which include compiled code are tied to a particular
series (e.g. R 4.2.x or 4.3.x) of R.

Installing source packages which do not contain compiled code should work with no
additional tools. For others you will need the ‘Command Line Tools’ for Xcode and compilers
which match those used to build R: see Section C.3 [macOS], page 67.

Package rJava (https://CRAN.R-project.org/package=rJava) and those which de-
pend on it need a Java runtime installed and several packages need X11 installed, including
those using Tk. See Section C.3 [macOS], page 67, and Section C.3.7 [Java (macOS)],
page 73. Package rjags (https://CRAN.R-project.org/package=rjags) needs a build of
JAGS installed under /usr/local, such as those at https://sourceforge.net/projects/
mcmc-jags/files/JAGS/4.x/Mac},2008%20X/.

Tcl/Tk extension BWidget used to be distributed with R but no longer is; Tktable has
been distributed with most versions of R (but not 4.0.0 and not ‘armé4’ builds of 4.1.0 or
4.1.1).

The default compilers specified are shown in file /Library/Frameworks/R.framework/
Resources/etc/Makeconf. At the time of writing those settings assumed that the C,
Fortran and C++ compilers were on the path (see Section C.3 [macOS], page 67). The
settings can be changed, either by editing that file or in a file such as ~/.R/Makevars (see
the next section). Entries which may need to be changed include ‘CC’, ‘CXX’, ‘FC’, ‘FLIBS’

4 for a small number of CRAN packages where this is known to be safe and is needed by the autobuilder
this is the default. Look at the source of tools:::.install_packages for the list. It can also be specified
in the package’s DESCRIPTION file.

https://CRAN.R-project.org/package=rJava
https://CRAN.R-project.org/package=rjags
https://sourceforge.net/projects/mcmc-jags/files/JAGS/4.x/Mac%20OS%20X/
https://sourceforge.net/projects/mcmc-jags/files/JAGS/4.x/Mac%20OS%20X/

Chapter 6: Add-on packages 29

and the corresponding flags, and perhaps ‘CXXCPP’, ‘DYLIB_LD’, ‘MAIN_LD’, ‘SHLIB_CXXLD’
and ‘SHLIB_LD’, as well as their ‘CXX11’, ‘CXX14’, ‘CXX17’ and ‘CXX20’ variants.
So for example you could select a specific LLVM clang for both C and C++ with extensive
checking by having in ~/.R/Makevars
CC = /usr/local/clang/bin/clang -isysroot
/Library/Developer/CommandLineTools/SDKs/Mac0SX.sdk
CXX = /usr/local/clang/bin/clang++ -isysroot
/Library/Developer/CommandLineTools/SDKs/Mac0SX. sdk

CXX11 = $CXX

CXX14 = $CXX

CXX17 = $CXX

CXX20 = $CXX

CFLAGS = -g -02 -Wall -pedantic -Wconversion -Wno-sign-conversion
CXXFLAGS = -g -02 -Wall -pedantic -Wconversion -Wno-sign-conversion
CXX11FLAGS = $CXXFLAGS

CXX14FLAGS = $CXXFLAGS

CXX17FLAGS = $CXXFLAGS

CXX20FLAGS = $CXXFLAGS

(long lines split for the manual only) and for the current macOS distribution of gfortran
at https://mac.r-project.org/tools/

FC = /opt/gfortran/bin/gfortran

(arm64)

FLIBS = -L/opt/gfortran/lib/gcc/aarch64-apple-darwin20.0/12.2.0
-L/opt/gfortran/1ib -lgfortran -lemutls_w -lquadmath

(Intel)

FLIBS = -L/opt/gfortran/lib/gcc/x86_64-apple-darwin20.0/12.2.0

-L/opt/gfortran/1ib -lgfortran -lquadmath
(line broken here for the manual only).
If that clang build supports OpenMP, you can add

SHLIB_OPENMP_CFLAGS = -fopenmp
SHLIB_OPENMP_CXXFLAGS = -fopenmp

to compile OpenMP-using packages. It will also be necessary to arrange for the
libomp.dylib library to be found at both install time and run time, for example by
copying/linking it somewhere that is searched such as /usr/local/lib.

Apple includes many Open Source libraries in macOS but increasingly without the cor-
responding headers (not even in Xcode nor the Command Line Tools): they are often rather
old versions. If installing packages from source using them it is usually easiest to install
a statically-linked up-to-date copy of the Open Source package from its sources or from
https://mac.r-project.org/bin/. But sometimes it is desirable/necessary to use Ap-
ple’s dynamically linked library, in which case appropriate headers could be extracted from
the sources® available via https://opensource.apple.com — this has been used for iodbc

Those using Command Line Tools / Xcode 12 or later (as released for macOS 11 ‘Big
Sur’) probably want to arrange that the flag

5 Note that capitalization and versioning may differ from the Open Source project.

https://mac.r-project.org/tools/
https://mac.r-project.org/bin/
https://opensource.apple.com

Chapter 6: Add-on packages 30

-Wno-implicit-function-declaration

is part of CFLAGS. Apple has changed the default to make implicit declarations a compilation
error and authors of packages and external software have been unaware that this might be
done — most issues seen were in configure scripts.

Some care may be needed with selecting compilers when installing external software
for use with packages. The ‘system’ compilers as used when building R are clang and
clang++, but the Apple toolchain also provides compilers called gcc and g++ which despite
their names are based on LLVM and libc++ like the system ones and which behave in
almost the same way as the system ones. Most Open Source software has a configure
script developed using GNU autoconf and hence will select gcc and g++ as the default
compilers: this usually works fine. For consistency one can use

./configure CC=clang CFLAGS=-02 CXX=clang++ CXXFLAGS=-02

(avoiding autoconf’s default -g). Be careful if you put the /usr/local/gfortran/bin
directory on your path as that contains (real) gcc and g++ which may be found rather the
Apple-provided commands, and may not be able to find the headers and libraries® of the
SDK. As from R 4.3.0, R CMD INSTALL and install.packages() try to invoke configure
with the same compilers and flags used to build R.

For ‘arm64’, not all configure scripts have been updated to recognize the platform and so
might need the flag ——build=aarch64-apple-darwin20.1.0. Also, be aware that running
the compilers from a ‘x86_64" application switches them to generating code for that CPU:
this applies to a Terminal, a shell, older cmake or (non-system) make, and from R CMD
INSTALL or install.packages(). One can use

./configure CC="clang -arch arm64" CFLAGS=-02 CXX="clang++ -arch arm64" CXXFLAGS=-02

to force ‘arm64’ code.

6.3.3 Customizing package compilation

The R system and package-specific compilation flags can be overridden or added to by
setting the appropriate Make variables in the personal file HOME/ .R/Makevars—-R_PLATFORM
(but HOME/ .R/Makevars.win or HOME/.R/Makevars.win64 on Windows), or if that does
not exist, HOME/ .R/Makevars, where ‘R_PLATFORM’ is the platform for which R was built,
as available in the platform component of the R variable R.version. The full path to an
alternative personal file” can be specified via the environment variable R_MAKEVARS_USER.

Package developers are encouraged to use this mechanism to enable a reasonable amount
of diagnostic messaging (“warnings”) when compiling, such as e.g. -Wall -pedantic for
tools from GCC, the GNU Compiler Collection, or for clang.

Note that this mechanism can also be used when it is necessary to change the optimiza-
tion level whilst installing a particular package. For example

for C code

CFLAGS = -g -0 -mtune=native
for C++ code

CXXFLAGS = -g -0 -mtune=native

5 From Big Sur those libraries are not publicly visible: rather the system compilers link to ‘text-based
definition’ (.tbd) files.

7 using a path containing spaces is likely to cause problems

Chapter 6: Add-on packages 31

for C++11 code

CXX11FLAGS = -g -0 -mtune=native

for fixed-form Fortran code

FFLAGS = -g -0 -mtune=native

for C17 code

C17FLAGS = -g -0 -mtune=native -Wno-strict-prototypes

Note that if you have specified a non-default C++ or C standard, you need to set the flag(s)
appropriate to that standard.

Another use is to override the settings in a binary installation of R. For example, for the
current distribution of gfortran at https://mac.r-project.org/tools/

FC = /opt/gfortran/bin/gfortran

(arm64)

FLIBS = -L/opt/gfortran/lib/gcc/aarch64-apple-darwin20.0/12.2.0
-L/opt/gfortran/lib -lgfortran -lemutls_w -lquadmath

(Intel)

FLIBS = -L/opt/gfortran/lib/gcc/x86_64-apple-darwin20.0/12.2.0

-L/opt/gfortran/1ib -lgfortran -lquadmath
(line broken here for the manual only).

There is also provision for a site-wide Makevars.site file under R_HOME/etc (in a sub-
architecture-specific directory if appropriate). This is read immediately after Makeconf, and
the path to an alternative file can be specified by environment variable R_MAKEVARS_SITE.

Note that these mechanisms do not work with packages which fail to pass settings down
to sub-makes, perhaps reading etc/Makeconf in makefiles in subdirectories. Fortunately
such packages are unusual.

6.3.4 Multiple sub-architectures

When installing packages from their sources, there are some extra considerations on in-
stallations which use sub-architectures. These are commonly used on Windows but can in
principle be used on other platforms.

When a source package is installed by a build of R which supports multiple sub-
architectures, the normal installation process installs the packages for all sub-architectures.
The exceptions are

Uniz-alikes
where there is an configure script, or a file src/Makefile.

Windows

where there is a non-empty configure.win script, or a file src/Makefile.win
(with some exceptions where the package is known to have an architecture-
independent configure.win, or if -——-force-biarch or field ‘Biarch’ in the
DESCRIPTION file is used to assert so).

In those cases only the current architecture is installed. Further sub-architectures can be
installed by

R CMD INSTALL --libs-only pkg

https://mac.r-project.org/tools/

Chapter 6: Add-on packages 32

using the path to R or R —--arch to select the additional sub-architecture. There is also R
CMD INSTALL --merge-multiarch to build and merge the two architectures, starting with
a source tarball.

6.3.5 Byte-compilation

As from R 3.6.0, all packages are by default byte-compiled.

Byte-compilation can be controlled on a per-package basis by the ‘ByteCompile’ field in
the DESCRIPTION file.

6.3.6 External software

Some R packages contain compiled code which links to external software libraries. Unless
the external library is statically linked (which is done as much as possible for binary packages
on Windows and macOS), the libraries have to be found when the package is loaded and
not just when it is installed. How this should be done depends on the OS (and in some
cases the version).

For Unix-alikes except macOS the primary mechanism is the 1d.so cache controlled by
ldconfig: external dynamic libraries recorded in that cache will be found. Standard library
locations will be covered by the cache, and well-designed software will add its locations
(as for example openmpi does on Fedora). The secondary mechanism is to consult the
environment variable LD_LIBRARY_PATH. The R script controls that variable, and sets it to
the concatenation of R_LD_LIBRARY_PATH, R_JAVA_LD_LIBRARY_PATH and the environment
value of LD_LIBRARY_PATH. The first two have defaults which are normally set when R is
installed (but can be overridden in the environment) so LD_LIBRARY_PATH is the best choice
for a user to set.

On macOS the primary mechanism is to embed the absolute path to dependent dynamic
libraries into an object when it is compiled. Few R packages arrange to do so, but it can
be edited® via install_name_tool — that only deals with direct dependencies and those
would also need to be compiled to include the absolute paths of their dependencies. If the
choice of absolute path is to be deferred to load time, how they are resolved is described in
man dyld: the role of LD_LIBRARY_PATH is replaced on macOS by DYLD_LIBRARY_PATH and
DYLD_FALLBACK_LIBRARY_PATH. Running R CMD otool -L on the package shared object will
show where (if anywhere) its dependencies are resolved. DYLD_FALLBACK_LIBRARY_PATH is
preferred (and it is that which is manipulated by the R script), but as from 10.11 (‘El
Capitan’) the default behaviour had been changed for security reasons to discard these
environment variables when invoking a shell script (and R is a shell script). That makes the
only portable option to set R_LD_LIBRARY_PATH in the environment, something like

export R_LD_LIBRARY_PATH="‘R RHOME‘/lib:/opt/local/lib"
The precise rules for where Windows looks for DLLs are complex and depend on the

version of Windows. But for present purposes the main solution is to put the directories
containing the DLLs the package links to (and any those DLLs link to) on the PATH.

The danger with any of the methods which involve setting environment variables is of
inadvertently masking a system library. This is less for DYLD_FALLBACK_LIBRARY_PATH and
for appending to PATH on Windows (as it should already contain the system library paths).

8 They need to have been created using -headerpad_max_install_names, which is the default for an R
package.

Chapter 6: Add-on packages 33

6.4 Updating packages

The command update.packages() is the simplest way to ensure that all the packages on
your system are up to date. It downloads the list of available packages and their current
versions, compares it with those installed and offers to fetch and install any that have later
versions on the repositories.

An alternative interface to keeping packages up-to-date is provided by the command
packageStatus (), which returns an object with information on all installed packages and
packages available at multiple repositories. The print and summary methods give an over-
view of installed and available packages, the upgrade method offers to fetch and install the
latest versions of outdated packages.

One sometimes-useful additional piece of information that packageStatus() returns is
the status of a package, as "ok", "upgrade" or "unavailable" (in the currently selected
repositories). For example

> inst <- packageStatus()$inst

> inst[inst$Status != "ok", c("Package", "Version", "Status")]
Package Version Status

Biobase Biobase 2.8.0 unavailable

RCurl RCurl 1.4-2 upgrade

Rgraphviz Rgraphviz 1.26.0 unavailable

rgdal rgdal 0.6-27 upgrade

6.5 Removing packages

Packages can be removed in a number of ways. From a command prompt they can be
removed by

R CMD REMOVE -1 /path/to/library pkgl pkg2 ...
From a running R process they can be removed by
> remove.packages(c("pkgl", "pkg2"),
lib = file.path("path", "to", "library"))

Finally, one can just remove the package directory from the library.

6.6 Setting up a package repository

Utilities such as install.packages can be pointed at any CRAN-style repository, and R
users may want to set up their own. The ‘base’ of a repository is a URL such as https://
www.stats.ox.ac.uk/pub/RWin/: this must be an URL scheme that download.packages
supports (which also includes ‘https://’, ‘ftp://’ and ‘file://’). Under that base URL
there should be directory trees for one or more of the following types of package distribu-
tions:
e "source": located at src/contrib and containing .tar.gz files. Other forms of com-
pression can be used, e.g. .tar.bz2 or .tar.xz files. Complete repositories contain
the sources corresponding to any binary packages, and in any case it is wise to have a
src/contrib area with a possibly empty PACKAGES file.

e "win.binary": located at bin/windows/contrib/x.y for R versions x.y.z and con-
taining .zip files for Windows.

https://www.stats.ox.ac.uk/pub/RWin/
https://www.stats.ox.ac.uk/pub/RWin/

Chapter 6: Add-on packages 34

e "mac.binary": located at bin/macosx/contrib/4.y for the CRAN builds for macOS
for R versions 4.y.z, containing .tgz files.

e "mac.binary.el-capitan": located at bin/macosx/el-capitan/contrib/3.y for the
CRAN builds for R versions 3.y.z, containing .tgz files.

Each terminal directory must also contain a PACKAGES file. This can be a concatenation
of the DESCRIPTION files of the packages separated by blank lines, but only a few of the
fields are needed. The simplest way to set up such a file is to use function write_PACKAGES
in the tools package, and its help explains which fields are needed. Optionally there can
also be PACKAGES.rds and PACKAGES.gz files, downloaded in preference to PACKAGES. (If
you have a mis-configured server that does not report correctly non-existent files you may
need these files.)

To add your repository to the list offered by setRepositories(), see the help file for
that function.

Incomplete repositories are better specified via a contriburl argument than via being
set as a repository.

A repository can contain subdirectories, when the descriptions in the PACKAGES file of
packages in subdirectories must include a line of the form

Path: path/to/subdirectory

—once again write_PACKAGES is the simplest way to set this up.

6.7 Checking installed source packages

It can be convenient to run R CMD check on an installed package, particularly on a platform
which uses sub-architectures. The outline of how to do this is,